
Performance Analysis of Containerized OrangeFS in
HPC Environment

Izzet Yildirim 1 Meng Tang 1 Anthony Kougkas 1 Xian-He Sun 1

1Illinois Institute of Technology

Introduction

Containerization is on the rise in cloud computing due to its benefits in reproducibility, portability, and its
lightweight properties. The need for scalable and reproducible products and the necessity to interoperate
on everything from local machines to large scale HPC resources have also made the HPC solutions adopt
containers expeditiously [1]. However, the necessity of developing HPC-focused containers appeared from
various scaling and security issues of general-purpose containers such as Docker [2]. As a result, three
such containers have emerged: Singularity, Shifter, and Charliecloud. While existing studies suggest that
these specialized containers create very low to negligible overhead for HPC applications [3], they mostly
focus on CPU and memory performance rather than I/O specific analysis.
In this paper, we specifically examine the I/O performance of different container solutions on OrangeFS,
a parallel storage system. Our analysis shows that Singularity covers almost all aspects, from mobility to
answering security concerns, with an almost perfect score. It performs nearly identical to bare metal within
a single server-single client setup. On the other hand, Linux Containers (LXC) fails at I/O performance by
producing almost two times more I/O requests than the bare metal, whereas Docker registers unnecessary
amount of network packets under the same workload. Our aim is to provide such insights to help HPC
practitioners so that they can obtain the best I/O performance when running HPC container solutions.

Approach

1. OrangeFS Deployment: As the goal of this study is to lay the groundwork for more detailed
experiments, we focus on employing a single server-single client OrangeFS setup rather than quickly
ramping up to advanced setups that have many OrangeFS nodes. We assign the same OrangeFS
server as both data and metadata manager, thus no data replication in our setup.

2. Container Deployment: We deploy five containers as part of our study: Singularity, Docker, LXC,
Podman and Charliecloud. Each container makes use of a definition file in that we can define the
installation scripts and the dependencies that our application needs. All containers are built on top of
a lightweight CentOS image and follow very similar steps while building the deployable OrangeFS
images. We then deploy these images to our HPC setup and directly interact with the containerized
OrangeFS applications through the images.

3. OrangeFS Through Containers: For HPC-focused containers, we only used bind-mount for
container storage setup. Since we rely on the kernel integration of OrangeFS to unleash its full
potential, bind-mount is the only option available for Docker that allows us to mount specialized file
systems (e.g. PVFS2) onto containers.

References

[1] G. M. Kurtzer, V. Sochat, and M. W. Bauer, “Singularity: Scientific containers for mobility of compute,” PLoS One, vol. 12, no. 5, 2017.

[2] R. Priedhorsky and T. Randles, “Charliecloud: unprivileged containers for user-defined software stacks in hpc,” Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis, no. 36, pp. 1–10, 2017.

[3] A. J. Younge, K. Pedretti, R. Grant, and R. B. Brightwell, “A tale of two systems: Using containers to deploy hpc applications on supercomputers
and clouds.,” 11 2017.

[4] H. Shan and J. Shalf, “Using ior to analyze the i/o performance for hpc platforms,” 6 2007.

Evaluation

1. Methodology: To evaluate the container solutions, we first conducted experiments on a bare
OrangeFS server-client setup without any virtualization. We use the results of these experiments as
our base performance metrics. Next, to understand the impacts of virtualization, we employ
containerized servers one at a time and measure the performance of the host machine on CPU and
memory utilization, and disk I/O and network throughput. For capturing the performance precisely, we
installed Intel’s Performance Analysis Tool on both server and client nodes and configured the client to
trigger recording when it starts running the experiment workload.

2. Workload: Our experimental setup essentially comprises a server and a client of a parallel storage
system. The workload we used in our experiments consists of two different files that are fed into our
OrangeFS setup via a benchmark tool called IOR. We selected IOR due to its accuracy in measuring
the performance of an I/O application [4] and its nature of being suitable for parameterization through
a configuration file. Two types of workloads that are run in 8 repetitions:

1GB workload with 1MB transfers in 16MB blocks over 64 segments
8GB workload with 1MB transfers in 64MB blocks over 128 segments

3. Testbed: Chameleon is our experiment platform and it provides a configurable environment for
large-scale cloud research. We specifically used its compute nodes called “Haswell”, with each having
dual Intel® Xeon® E5-2670 CPU running at 2.3GHz with a total of 24 cores, and 128GB of RAM.
The compute nodes are connected to each other via a 10 Gbps Ethernet network.

Results

(a) Bare metal (b) Singularity (c) Docker

(d) LXC (e) Podman (f) Charliecloud

Figure 1: CPU Utilization

Figure 1 shows the CPU utilization with average values of idle (orange), steal (blue), iowait (purple), and
nice priority in user space (green). They all seem to behave similarly in how they use CPU against all
workloads. We merely observe small spikes on Docker and LXC, but they may be interpreted as a sign of
potential risk. Podman seems to produce the less overhead under various workloads.

Results

(a) Bare metal (b) Singularity (c) Docker

(d) LXC (e) Podman (f) Charliecloud

Figure 2: Disk I/O Throughput

Figure 2 shows the sum of the total number of requests at a given time. Docker outperforms other
containers by producing more throughput in a longer time. LXC seems to reach larger numbers from time
to time but the overall result seems to be inconsistent and noisy. Singularity performs similarly to bare
metal with barely 10% overhead.

(a) Singularity (b) Docker

Figure 3: Network Bandwidth

Figure 3 shows plot of network bandwidth comparison between Singularity and Docker. Bandwidth for
read is in red and for transmit is in blue. Apart from Docker, all other solutions behave similarly in terms
of network utilization and they seem to use a similar amount of bandwidth against all workloads. Docker
seems to consume almost twice network bandwidth for the same workload.

Conclusions

We have presented our empirical analysis on the I/O performance of container solutions for HPC envi-
ronments with their comparison to bare metal. We studied five container solutions: Singularity, Docker,
LXC, Podman and Charliecloud. Our evaluations show that Singularity suits such environments and
overall performs better than other container solutions. More importantly, our study proves that Or-
angeFS can work within any container and can perform the tasks that it was designed to do and that
we can still interact with OrangeFS and work with its API while it is hosted in a container. This is
promising and opens ways to further explore the area and think about the possibilities.

SC21, St. Louis, MO iyildirim@hawk.iit.edu

mailto:iyildirim@hawk.iit.edu

