

GHS 1.0

User Manual

Author: Ming Wu
Date: 08/18/2005

Contents

1 Installation and Running .. 3
1.1 Resource Requirement .. 3
1.2 Installation... 3
1.3 Configuration .. 3

2 Introduction of GHS .. 4
3 GHS 1.0 commands ... 5

3.1 smeas: resource measurement ... 6
3.2 syspred: system-level predictor... 6
3.3 apppred: application-level predictor ... 7
3.4 mtsc: meta-task scheduler ... 8
3.5 pgsc: parallel program scheduler .. 10

4 Acknowledgments ... 11

1 Installation and Running

1.1 Resource Requirement

 Software requirement
The current version of GHS 1.0 supports SunOS. The running of GHS measurement
engine requires the system support the lastcomm Unix utility.

 Hardware requirement

GHS 1.0 does not have any specific hardware requirement.

1.2 Installation

 Down-load the source code from (TBA)

 Uncompress the source code

$gzip –d ghs1.tar.gz
$tar –xvf ghs1.tar.gz
$cd ghs1

 Compile the GHS 1.0.
$make

 Install the GHS 1.0
$make install

1.3 Configuration

The GHS 1.0 requires the environment variable GHS_HOME to be set to the
installing directory. For example, you have installed the GHS middleware to
/yourdirectory/ghs1. You need to add the following line

export GHS_HOME = /your_directory/ghs1

to .profile file under your home directory if you are using ksh or sh. For csh, you need
to add the following line

setenv GHS_HOME /your_directory/ghs1

to .cshrc file under your home directory.

After installation, the executables of the GHS 1.0 is located at the sub-directory bin of
your installing path. It should be added into the environment variable PATH. You
need to add the following line

export PATH=$PATH:$GHS_HOME/bin

to .profile file under your home directory if you are using ksh or sh. For csh, you need
to add the following line

setenv PATH ${PATH}:${GHS_HOME}/bin

to .cshrc file under your home directory.

2 Introduction of GHS

Conventional performance evaluation mechanisms focus on dedicated distributed
systems. Grid computing infrastructure, on another hand, is a shared collaborative
environment constructed on virtual organizations. Each organization has its own
resource management policy. The non-dedicated characteristic of Grid computing
prevents the leverage of conventional performance evaluation systems. In this study,
we introduce the Grid Harvest Service (GHS) performance evaluation and task
scheduling system for solving large-scale applications in a shared environment. GHS
is based on a novel performance prediction model and a set of task scheduling
algorithms. GHS supports three classes of task scheduling, single task, parallel
processing and meta-task.

Grid Computing introduces a great challenge in task scheduling: how to partition and
schedule tasks in a large, available but shared, heterogeneous computing system. The
conventional parallel processing scheduling methods cannot apply to a Grid
environment where computing resources are shared and the Grid scheduler has no
control over local virtual organization’s local jobs. The key to Grid task scheduling,
therefore, is to estimate the availability of computing resources and to find its
influence on the application performance. Some latest Grid tools have been
developed to meet the need. However, these tools are for short-term resource

availability. For instance, the well-known Network Weather Service (NWS) system
only predicts the availability of a computing or communication resource for the next
five minutes, and its satisfactory prediction range in general is much less than the
five-minute upper bound.

In this project, we present a prototype implementation of a long-term, application-
level performance prediction and task scheduling system, namely Grid Harvest
Service (GHS) system, for Grid computing. Here long-term means the application
requiring hours or more, in contrast to minutes, sequential execution time; and
application-level performance means the application turn-around time, in contrast to
resource availability.

The Grid Harvest Service system comprises of five primary subsystems: performance
evaluation, performance measurement, task allocation, task scheduling, and execution
management. Coordinately, they provide appropriate services to harvest Grid
computing. GHS performance evaluation is based on a new performance model,
which is derived from a combination of stochastic analysis and direct-numerical
simulation. Unlike other stochastic models, this model individually identifies the
effects of machine utilization, computing power, local job service, and task allocation
on the completion time of a parallel application. It is theoretically sound and
practically feasible.

Utilizing the performance prediction, various partition and scheduling algorithms are
developed and adopted in the partition and scheduling component, for single
sequential task, single parallel task with a given number of sub-tasks, optimal parallel
processing, as well as meta-task composed of a group of independent tasks. A
heuristic task scheduling algorithm is proposed to find an acceptable solution with a
reasonable cost. GHS uses an adaptive measurement methodology to monitor
resource usage pattern, where the measurement frequency is dynamically updated
according to the previous measurement history. This method reduces monitoring
overhead considerably.

3 GHS 1.0 commands

GHS 1.0 includes five Unix commands to support the resource measurement (smeas),
the system-level prediction (syspred), the application-level prediction (apppred), the
meta-task scheduling (mtsc), and the parallel program scheduling (pgsc). The usage
and format of these commands are given as follows.

3.1 smeas: resource measurement

Usage: smeas is a program which measures the resource availability in terms of
resource utilization, job arrival rate, job service time, job service time standard
deviation. The resource utilization means how much percent of resource is occupied
by local jobs (We name the application to be scheduled as a remote task, in contrast
to local jobs which are submitted by local users). The job arrival rate means how
many jobs arrive per second during a time of period, the job service time means what
is the average job length during a time of period, and the job service time standard
deviation means what is the standard deviation of job length during a time of period.
The collected resource information is stored in a file which default name is
ghsmeasure.log. Each line records the time stamp (in hour unit) and the values of the
above resource parameters during the past hour. You can set your own log file name
in the ghs_config.dat.

Format: smeas

Example:
bash-2.05$ cat ghsmeasure.log | more
date meanUtil meanLambda meanServ meanStd
312111 0.252000 0.025000 14.152857 7.622611
312112 0.441240 0.013566 43.611036 3.203194
312113 0.370390 0.018182 10.270175 1.556747
312114 0.531585 0.017683 9.243261 10.244799
312115 0.410000 0.013194 8.175294 10.005561
…

3.2 syspred: system-level predictor

Usage: syspred is a program which estimates the resource availability in terms of
resource utilization, job arrival rate, job service time, job service time standard
deviation in a given period.

Format: syspred utilization|arrival|service|std period filename

The first parameter of syspred (utilization|arrival|service|std) gives which resource
availability you want to estimate. The second parameter gives what time period in the
next you want to estimate a given resource availability. The third parameter gives the
log file name where the syspred read the performance data.

Example:
bash-2.05$ syspred arrival 10

0.079083
The above example shows the estimated job arrival rate for the next 10 hours is
0.09083. If the log file name is not given, the syspred will read the resource
measurement history from ghsmeasure.log.

3.3 apppred: application-level predictor

Usage: apppred is a program which estimate the application execution time in terms
of expected value and its standard deviation. It also gives the CDF of application
execution time.

Format: apppred mapinfo.txt result.txt

The first parameter of apppred (mapinfo.txt) gives the name of a file where the map
information is stored. The mapinfo.txt file describes how the workload of a remote
task is distributed into resources and the resource information. The following is an
example of a mapfile.

bash-2.05$ cat mapinfo.txt
hpc-01 0.225 0.015 83.49 1 500
hpc-02 0.225 0.015 83.49 1 500
hpc-03 0.225 0.015 83.49 1 500
hpc-04 0.225 0.015 83.49 3 1000
hpc-05 0.225 0.015 83.49 1 500
hpc-06 0.225 0.015 83.49 1 500
hpc-07 0.225 0.015 83.49 1 500
hpc-08 0.225 0.015 83.49 3 1000
hpc-09 0.225 0.015 83.49 1 500
hpc-10 0.225 0.015 83.49 1 500
hpc-11 0.225 0.015 83.49 1 500
hpc-12 0.225 0.015 83.49 3 1000
hpc-13 0.225 0.015 83.49 1 500
hpc-14 0.225 0.015 83.49 1 500
hpc-15 0.225 0.015 83.49 1 500
hpc-16 0.225 0.015 83.49 3 1000

In this mapfile, the workload of a remote task is distributed into 16 nodes, from hpc-
01 to hpc-16. Each line denotes one resource. It gives the resource name, utilization,
job arrival rate, job service time standard deviation, computing capacity (relative
speed), and the workload of subtasks allocated to this resource.

The second parameter gives the name of a file where the prediction result is stored.

Example:

bash-2.05$ apppred mapinfo.txt predictionresult.txt
bash-2.05$ cat predictionresult.txt
1445.359092 686.959758
750.000000 0.090448
1000.000000 0.286710
1250.000000 0.481067
1500.000000 0.635845
1750.000000 0.748737
2000.000000 0.827856
2250.000000 0.882294
2500.000000 0.919458
2750.000000 0.944772
3000.000000 0.962026
3250.000000 0.973811
3500.000000 0.981884
3750.000000 0.987432
4000.000000 0.991256
4250.000000 0.993902
The above example shows the estimate result of application execution time for a
given map information. In the predresult.txt file, the first line gives the expected
application execution time and its standard deviation. From the second line to the last
line, it gives the CDF of the application execution time. For example, the seventh line
is “2000.000000, 0.827856”. That means the possibility of application execution less
than 2000 is 0.827856.

3.4 mtsc: meta-task scheduler

Usage: mtsc is a program which generates a scheduling plan for a given resource set
and a given meta-task.

Format: mtsc resopara.txt taskpara.txt result.txt schetag(0/1)

The first parameter of mtsc (resopara.txt) gives the name of a file where the resource
information (resource name, availability, computing capacity) is described. An
example of resopara.txt is given as follows.

bash-2.05$ cat resopara.txt
hpc-01 0.225 0.015 83.49 1
hpc-02 0.225 0.015 83.49 1
hpc-03 0.225 0.015 83.49 1
hpc-04 0.225 0.015 83.49 1
hpc-74 0.325 0.01 103.49 2

Each line describes one resource. It gives the resource name, utilization, job arrival
rate, job service time standard deviation, and its computing capacity (relative speed).
The second parameter of mtsc (taskpara.txt) gives the name of a file where a meta-
task is described. Here is an example of taskpara.txt.

bash-2.05$ cat taskpara.txt
task-1 10000
task-2 10000
task-3 10000
task-4 10000
task-5 10000
task-6 10000
task-7 10000
task-8 10000
task-9 10000
task-10 10000
task-11 10000

The given meta-task is composed of 11 subtask. Each line gives the subtask name and
its workload in terms of second.

The third parameter gives the file name where the scheduling plan is stored. The
fourth parameters indicated whether the optimal scheduling algorithm or the heuristic
algorithm would be used in task scheduling. 0 stands optimal scheduling and 1 stands
heuristic scheduling.

Example:
bash-2.05$ mtsc resopara.txt taskpara.txt scheduleresult.txt 1
bash-2.05$ cat scheduleresult.txt
hpc-01: 20000.000000
 task-2
 task-8
hpc-02: 20000.000000
 task-3
 task-9
hpc-03: 20000.000000
 task-4
 task-10
hpc-04: 20000.000000
 task-5
 task-11
hpc-74: 30000.000000
 task-1
 task-6
 task-7
bash-2.05$

The above example shows the scheduling plan generated by mtsc (heuristic
scheduling algorithm is used). In the scheduleresult.txt file, a list of resources and the
subtasks allocated to these resources are given. From the schedule plan, we can see
hpc-74 is allocated with three subtasks of the given meta-task, task-1, task-6, and
task-7. The sum of the three subtasks is 30000 second.

3.5 pgsc: parallel program scheduler

Usage: pgsc is a program which generates a scheduling plan for a given resource set
and a given meta-task.

Format: pgsc resopara.txt workload result.txt schetag(0/1)
The first parameter of pgsc (resopara.txt) gives the name of a file where the resource
information (resource name, availability, computing capacity) is described. An
example of resopara.txt is given as follows.

bash-2.05$ cat resopara.txt
hpc-01 0.225 0.015 83.49 1
hpc-02 0.225 0.015 83.49 1
hpc-03 0.225 0.015 83.49 1
hpc-04 0.225 0.015 83.49 1
hpc-74 0.325 0.01 103.49 2

Each line describes one resource. It gives the resource name, utilization, job arrival
rate, job service time standard deviation, and its computing capacity (relative speed).

The second parameter of pgsc gives the total workload of this parallel program.

The third parameter gives the file name where the scheduling plan is stored. The
fourth parameters indicated whether the optimal scheduling algorithm or the heuristic
algorithm would be used in task scheduling. 0 stands optimal scheduling and 1 stands
heuristic scheduling.

Example:
bash-2.05$ pgsc resopara.txt 10000 scheduleresult.txt 1
bash-2.05$ cat scheduleresult.txt
hpc-01: 1741.573028
hpc-02: 1741.573028
hpc-03: 1741.573028
hpc-04: 1741.573028
hpc-74: 3033.707886
bash-2.05$

The above example shows the scheduling plan generated by pgsc (heuristic
scheduling algorithm is used). In the scheduleresult.txt file, a list of resources and the
subworkloads allocated to these resources are given. From the schedule plan, we can
see hpc-74 is allocated with a subworkload of 3033.707886. The other three machines
are assigned with a subworkload of 1741.573028.

4 Acknowledgments

This research was supported in part by national science foundation under NSF
grant CNS-0406328, ANI-0123930, and EIA-0224377.

	Installation and Running
	Resource Requirement
	Installation
	Configuration

	Introduction of GHS
	GHS 1.0 commands
	smeas: resource measurement
	syspred: system-level predictor
	apppred: application-level predictor
	mtsc: meta-task scheduler
	pgsc: parallel program scheduler

	Acknowledgments

