
 1

Abstract— The efforts to construct a national scale Grid

computing environment have brought unprecedented
computing capacity and complicacy. Exploiting this
complex infrastructure requires efficient middleware to
support the execution of distributed applications, which
presents the challenge on how to schedule tasks in shared
heterogeneous systems. Most existing scheduling systems
are based on pre-determined estimation of task completion
time and resources availability. They may not provide
appropriate scheduling if the underlying computing
resources present an abnormal usage pattern during an
application execution. For solving long-running
applications in a large-scale Grid environment, abnormal
usage of some resource may not be uncommon. We have
proposed the development of the Grid Harvest Service
(GHS) performance evaluation and task scheduling system
in our previous work. In this study, we present a novel
dynamic self-adaptive scheduling algorithm and its
implementation under GHS. Scheduling and re-scheduling
algorithms and mechanisms are carefully investigated.
Experimental results show that, equipped with these new
scheduling mechanisms, GHS outperforms existing systems
considerably in scheduling large applications in a non-
dedicated heterogeneous environment.

Index Terms— task scheduling, performance prediction,
shared heterogeneous system.

I. INTRODUCTION
In order to provide high performance computation power to

serve the increasing need of large applications, people strive to
improve a single machine's capacity or construct a distributed
system composed of a scalable set of machines. Compared to
the former, where the improvement is mainly up to the
hardware technology development, the construction of
distributed systems for resource collaboration is more
complex. Some of well-known existing distributed systems
composed of heterogeneous resources are Condor [1],

NetSolve [2], Nimrod [3], Globus, and the Grid computation
environment [4]. These systems, especially the Grid, have
unprecedented computing power. However delivering this
unprecedented computing power to the users is still an elusive
problem. One of the major issues is how to schedule a large
application in these non-dedicated distributed systems [5]. In
general, scheduling applications in a distributed system is a
NP-hard problem [6]. Many heuristic scheduling algorithms
and systems are proposed to address this problem.
Unfortunately, most of scheduling algorithms proposed so far
are for dedicated systems. By dedicated, we mean the
resources are dedicated for a given application. In contrary
most current distributed systems are non-dedicated, shared
environments [7].

Good scheduling in a shared environment involves the
integration of application specific information and system
specific information [8]. We studied a performance-prediction
based task scheduling system, which provides task allocation
and scheduling based on application-level and system-level
performance prediction. The effects of system specific
information, such as utilization, job service rate, job arrival
rate, and application-specific information, such as workload,
divisibility, parallel processing, on the application
performance have been identified. The preliminary results
demonstrate the effectiveness of our scheduling mechanism for
long-term applications [9]. Our earlier work focuses on the
task scheduling for parallel processing, which assumes that the
total workload of a parallel application could be arbitrarily
partitioned. In this study, we extend our scheduling policy for
a class of widely used Grid application, the parameter-sweep
application. It is composed of a set of independent and
indivisible tasks [10].

A key question is that how to maintain an application
performance during its execution? When some of resources
assigned for subtasks of the application represent abnormal
status from their history information, the completion times of
the subtasks are different from the estimation. Thus the whole
application performance will change under the situation of
resource abnormality. There is a fair chance that a resource
may show different usage patterns from its history in a large
distributed system. In this paper, we only consider resources
are overloaded when we mention resource abnormality. If the
application is a long-running job (days or weeks), the

A General Self-adaptive Task Scheduling
System for Non-dedicated Heterogeneous

Computing
Ming Wu, Student Member, IEEE, Xian-He Sun, Senior Member, IEEE

Ming Wu is with the Department of Computer Science, Illinois Institute
of Technology, Chicago, IL 60616 USA (e-mail: wuming@iit.edu).

Xian-He Sun is with the Department of Computer Science, Illinois
Institute of Technology, Chicago, IL 60616 USA (phone: 312-567-5260; fax:
312-567-5067; e-mail: sun@cs.iit.edu).

 2

performance degradation caused by resource abnormality is
unacceptable. To provide a robust task scheduling system
working in a dynamic system, we introduce a self-adaptive
task scheduling algorithm, which monitors the long-running
application progress and detect possible resource abnormality.
The self-adaptive scheduling algorithm selects appropriate
resources and reassigns the subtasks on abnormal machines to
these selected machines based on the application-level
prediction.

Our goal in task scheduling system is to provide a robust
and general-purpose scheduling system. The task scheduling is
divided into three parts, allocator, predictor and scheduler.
Allocator selects appropriate allocation algorithms to partition
or group the subtasks of a divisible application on a number of
machines, where a divisible application refers to an application
that could be partitioned into or composed of a set of subtasks
[11]. Predictor estimates the application execution time
distribution on each machine. Scheduler decides which set of
machines is the best among all possible sets of machines. In
this way, we provide a flexible task scheduling mechanism for
the need of different application-level scheduling scenarios.
The proposed scheduling system is very flexible: on one hand
it could be easily integrated with other scheduling systems,
while on the other hand other people’s work in different
aspects of task scheduling can be easily incorporated into our
work.

The rest of this paper is organized as follows: Section 2
describes the related work. Section 3 introduces our proposed
task-scheduling system design. Various scenarios of task
allocation and scheduling are discussed in this section. A meta-
task scheduling algorithm is presented and a self-adaptive task
scheduling is introduced with three performance metrics.
Experimental results are presented in Section 4. We compare
GHS scheduling system with a well-known scheduling system,
AppLeS, and verify the efficiency of the self-adaptive
scheduling algorithm. Finally we conclude and summarize our
work with section 5.

II. RELATED WORK
Related earlier work in task scheduling policy mainly

focused on dedicated systems, which cannot be assumed in
non-dedicated computing environment like the Grid. A
resource reservation strategy [12] is proposed to address this
problem. Shared resources are reserved in advance for a user's
dedicated occupancy. Reservation is a good way to conduct
experimental testing under current environments. However, the
utilization of a reservation system in general is low. It is quite
often a user has to wait to a few days to get his/her required
resources in current NCSA grid environments. This is not
feasible in a production environment. In addition, private
owners usually don't want their machines reserved for others
and like to access their machines when they need. Task
scheduling on such a shared non-dedicated computing
environment offers a big challenge. A task scheduling

mechanism based on the prediction of machine availability has
been investigated in [8]. This determined method might be
simple and good as it is useful for scheduling short-running
applications in a single machine or a small system. However,
due to the internal limitation of its determined prediction
method, it is not suitable for scheduling a long-running
application in a large distributed system since the prediction
error caused by the fluctuation of resource status increases
with the number of resources running applications. Yan
Alexander Li and John K. Antonio developed a probabilistic
approach to estimate the execution time of a parallel
application in a heterogeneous computing system. However,
their model is based on the assumption that the execution time
distribution of an individual task on a machine is pre-known
[13]. And the effect of system specific information on the
application performance is not reflected in their work.

Different task scheduling policies are applied in various
heterogeneous computing environments. GASA (Grid
Advance Reservation API) [12] is a subsystem of Globus
project. It provides mechanisms for resource reservation so
that a remote application can receive a certain level of service
from a resource. As we mentioned before, this policy doesn't
favor the privilege of the private owner of a shared resource.
Condor system [1] provides a matchmaking mechanism to
allocate resources with ClassAds. The scheduling strategy is
based on the mapping of the users' ClassAds, which specify the
job requirements and users' preferences, and the machines'
ClassAds, which advertise their characteristics, available time
period, and conditions. Instead of the performance issue, the
economy issue is considered as the evaluation criteria in
Nimrod project. Legion system [14] also supports resource
reservation. It focuses on providing basic mechanisms for
building application-level scheduling algorithms rather than
constructing scheduling algorithm itself. A simple random
selection policy is provided as the default scheduling
mechanism. Currently, scheduling algorithms in the AppLeS
[10], [15] project are supported by the short-term system
prediction provided by NWS services [16], [17]. Although
they did consider resource availability in making the
scheduling decision, none of them fully identifies the effect of
the "shared" characteristic of resources on the execution time
of an application. Instead of submitting all subtasks of an
application at once to the system, people use a loop of task
events to schedule task dynamically. However, it is hard to
define what is enough work for one schedule event. They don't
consider rescheduling during the application execution when
some resources show abnormality. Their system works well
under the assumption that the deterioration of subtask
performance would not affect the whole application
performance, which is not a general case in distributed
computing.

III. TASK SCHEDULING SYSTEM
Prediction of application and system performance is

 3

necessary for a good scheduling [8]. Some of current
scheduling systems do involve some prediction work.
However due to the determined approach of their simple
performance models, the effect of various system parameters
on the application performance is not available in their
systems. The performance prediction in the proposed
scheduling system is based on probabilistic modeling. The
effect of system specific information on application
performance has been identified by our general performance
model [18]. The application performance prediction is
provided by the application-level predictor, which is one of the
major components of our scheduling system. A meta-task
scheduling algorithm was proposed to address the problem of
scheduling a set of independent subtasks in a distributed
environment. A new task allocation method, a min-min task
allocation, has been developed to support meta-task
scheduling. To reduce the performance loss brought by
abnormal resource usage pattern, a self-adaptive scheduling
algorithm has been investigated. We studied the capability of
the self-adaptive scheduling algorithm identifying abnormal
machines and the efficiency of the self-adaptive algorithm in
term of performance loss reduction rate. We focus on
scheduling computation-intensive applications.

A. System architecture
A block diagram of GHS scheduling system design is shown

in Fig. 1. A user submits an application with its characteristics
(application type, workload) to the Task Manager. It inquires
the Task Scheduler for qualified scheduling solution. By
accessing the resource information provided by the Resource
Information Service, the Task Scheduler finds a list of
potential resources. The Task Scheduler searches possible task
allocation plans. The Task Allocator decides how to map
subtasks of an application among resources based on the
prediction of system status provided by the System-level
predictor. The map of subtasks on machines will be forwarded
to the Application-level Predictor to estimate the application
performance. The best scheduling solution satisfying the
evaluation criteria is returned to the Task Manager. When the
user is satisfied with the expected application performance, the
application will be submitted for running in the distributed
computation environment through the Task Execution Service.
The Task Manager monitors the application execution and
may invocate the Task Scheduler to reschedule the application
in the system. The resource information is collected through
various Sensors and stored in the Resource Information
Service, which provides the access of resource information for
the System-level Predictor and the Task Scheduler.

B. Prediction
The goal of application-level predictor is to estimate the

application execution time in a shared distributed system. The
difference between our application-level predictor and existing
scheduling systems [19], [20] is that we estimate the
application make-span based on probabilities analysis instead
of determined approaches used by other scheduling systems.

So the effect of both system specific information and
application specific information on the application
performance are identified in our application-level prediction.
Based on the observation of machine usage pattern [21]-[23],
we assume that the local job processing follows M/G/1
queuing system. The system parameters, λ , ρ and σ , reflect
the system characteristics of a shared resource in a non-
dedicated distributed system. ρ is the system utilization. λ is
the arrival rate of local jobs and σ is the standard deviation
of service time of local jobs. The workload and divisibility of
an application reflect the general characteristics of the
application. If the application is a single indivisible task, the
cumulative distribution function of the application completion
time on a machine can be calculated as [9]:

 ≥>−≤−+

=≤
−−

otherwise
wtifSwtSUee

tT
ww

,0

),0|/)(Pr()1(
)Pr(

// ττλτλ
 (1)

where)(SU is the sum of busy periods of local jobs on the
machine. We denote τ the computing capacity of the machine
and w the workload of the application. If the workload of an
application is divisible, we can use)Pr()Pr(tTtT k ≤∏=≤ to
calculate the cumulative distribution function of the
application completion time (T) where kT is the subtask

completion time on machine kM . The sub-workload on each

machine, kw , is calculated by the Task allocator component.

C. Task allocation
When an application is a single indivisible task, we choose a

machine where the sum of the expectation and variance of the
application execution time is minimal. In general, however, an
application in a distributed system is likely to be solved
concurrently for best performance. This would happen in two
scenarios. The first is that the application can be partitioned
into subtasks arbitrarily. The other scenario is that the
application consists of independent subtasks. These subtasks
cannot be partitioned further. In this scenario, there are two
more situations are worthy of concern. The first one is that the
subtasks have no dependency among each other. We define
such an application as a meta-task. Other situation is that there
are dependencies among subtasks. In this paper, we study

Scheduler

Allocator

Query
Resource lists

Task Manager User

Application characteristics

Resources, tasks

Map tab

Map tab

Estimation

Sensor

Sensor
Sensor

Application-
level Predictor

System-level
Predictor

Resource
Information

Service

Task Execution Service

Resources

Fig. 1. A framework of GHS scheduling system.

 4

meta-task scheduling. An ideal example of such applications is
the class of parameter-sweep applications, which are
composed of a set of independent and indivisible tasks [10].

For a given set of resources, the Task Allocator decides how
to partition/group subtasks of an application. If the workload
of an application is divisible, the task allocation is a partition
problem. If an application is a meta-task, the task allocation
becomes a task grouping issue. We have developed two
allocation algorithms respectively for the two classes of
applications. In the former situation, a mean-time allocation
algorithm is applied. The workload is assigned to each
resource so that the expected mean execution time of subtasks
on each resource is the same.

When an application is composed of independent indivisible
subtasks, the Task Allocator group the subtasks and map each
subtask group to one of resources for optimal performance
based on the estimation of subtask execution time. Assume
that we have a meta-task composed of a number of
independent tasks, },...,,{ 21 pTTT with workload

},...,,{ 21 pwww , a list of machines },...,,{ 21 qMMM , and a

task allocation solution },,{ 21 qTGTGTG � where kTG is the

set of subtasks on machine kM . the cumulative distribution
function of the application completion time on a machine is

 ≥>−≤−+

∏=≤
−−

otherwise
wtifSwtSUee

tT kk
ww kk

,0
),0|/)(Pr()1(

)Pr(
// ττλτλ

where kw = {the sum of workloads of all subtasks on machine

kM }.
Our goal is to find a task allocation solution so that the

mean completion time of the meta-task is the minimum. This is
a NP-hard problem. Heuristic methods are applied. We
propose a min-min task group allocation algorithm. The basic
idea is similar to the mean-time allocation algorithm. The
subtasks of a meta-task is first grouped and then each subtask
group is mapped to resources so that the difference of the
expected execution time of subtasks on each resource is the
minimum. Fig. 2 shows the min-min task group allocation
algorithm in details.

D. Scheduling algorithms
1) Meta-task scheduling: The Task Scheduler is responsible

for finding a potential machine set for users' applications in a
heterogeneous environment. It is supported by the Task
Allocator and the Application-Level Predictor. The Task
Scheduler supports different scheduling scenarios according to
the application characteristics. Our earlier work studied single
sequential task scheduling and optimal scheduling for parallel
program. If the application can be partitioned into any number
of subtasks, we have to search n2 possible degree of
parallelisms and machine combinations. To reduce the
scheduling cost when the machine set is large, a corresponding
heuristic task-scheduling algorithm was therefore proposed to
find an acceptable solution with a reasonable cost. In this
study, we extend our earlier scheduling algorithm for a meta-

task, which is composed of independent subtasks. A good
example of meta-task is the parameter sweep application, a
widely used grid application.

The parameter-sweep application is composed of a set of
subtasks. Each subtask is independent of each other and is
indivisible. A subtask reads data from input files, computes
data, and generates an output file. This process doesn’t need to
coordinate with other subtasks. The relationship between
subtasks is that some of them may share a same input file.
AppLeS system has been used to schedule the parameter
sweep application in Grid computation environment. However
it is based on the estimation of the mean execution time of
subtask on a single machine. Our scheduling decision is based
on the estimation of the performance of the whole parameter
sweep application on a set of machines. Fig. 3. gives the
optimal meta-task scheduling algorithm for parameter-sweep
applications. Please notice a similar heuristic method could be
applied in searching possible scheduling plans to reduce the
cost of scheduling in a large-scale system.

In this study, we focus on scheduling computation-intensive
applications. Thus we assume that the communication cost of
transferring initial input files to each site is relatively small
compared with the computation time of a cluster of subtasks
on each site. We utilize NWS to predict the file transferring
time in the application execution initialization because NWS
supports the prediction of the data communication time up to 5
minutes. The estimate of the communication time for file
transfers provided by NWS could be easily integrated into the
scheduling algorithm in Fig. 3 to predict the completion time
of a meta-task. The similar method has been applied in
AppLeS. Interested readers can refer to [10] for details.

 Assumption: a meta-task composed of a number of
independent subtasks, },...,,{ 21 pTTT and a list of machines

},...,,{ 21 qMMM . Each subtask is indivisible.
Objective: find a task group },...,,{

21 qkkkk TTTTG = for
machine kM)1(qk ≤≤ .

Begin
/* kW means the current workload on machine kM */

0=kW ; φ=kTG ;)1(qk ≤≤ ; 1=i ;
While pi <
 1=j ;
 While qj <

)]1(*/[)(, jjiji wTE ρτ −= ; 1+= jj ;
 End While
 Choose machine kM ′ where

)()]1(*/[,kikkk TEW ′′′′ +− ρτ is minimal.
 }{ ikk TTGTG ∪= ′′ ,
 ikk wWW += ′′ ; 1+= ii ;
End While
Return kTG and kW)1(qk ≤≤ ;
End

Fig. 2. Min-min task group allocation algorithm.

 5

2) Self-adaptive scheduling: In the grid computation
environment, most of resources are shared. There is a fair
chance that some of resource may represent abnormal
performance from their historical records, especially when the
size of machine set is large. If the performance of some
resources running subtasks of the scheduled application is
degraded, the completion time of the application will increase.
How to decide whether we should reschedule the application
and which resource we should choose are the problems of
consideration. A self-adaptive task scheduling algorithm is
thus proposed to address this issue. The basic idea is to assign
subtasks on a resource showing abnormal performance to other
appropriate resources so that the application performance
degradation could be reduced. The subtasks could be either
migrated or restarted on the selected machine, which is up to
the migration cost and whether a migration is possible. The
selection of machines is decided based on the estimation of the
whole application completion time on the updated machine set.
The criterion of introducing a new scheduling plan is whether
the new plan brings benefit for the application performance.
Because there is no general performance model to estimate the
migration cost and the communication cost of process
migration may be overlapped with the computation of
subtasks, we ignore the effect of the migration cost on the
rescheduling decision at this time. When the user can estimate
that cost, the cost can be added into our self-adaptive
scheduling directly.

The estimation of application performance is based on the
measurement of system parameters. The details of measuring
mechanism have been given in our previous work [9]. We use
the same techniques to measure kλ , kσ and kτ because the
running of the scheduled application doesn’t affect these
system parameters. However, for system utilization, kρ , we
can not use vmstat utility to measure it since the resource
utilization is theoretically close to 100% during the application
execution. We use the ps utility to measure the subtask CPU
time. The ratio of the subtask CPU time and its real system
time will be used as the estimate of kρ .

To decide whether the rescheduling plan benefit the
application performance, we need to calculate the application
execution time in both situations: with and without
rescheduling. An extension of (1) is used to calculate the
cumulative distribution function of the application execution
time in both situations:

 ≥≤
=≤ ∏

=

otherwise

wtiftT
tT

m

i
i

,0

,)Pr((
)Pr(max

1
 (2)

where
)0|/)(Pr()1()Pr('// ''

>−−≤−+=≤ −−
iiiii

ww
i SwttSUeetT iiiiii ττλτλ .

it denotes the execution time of subtasks on machine i so far

and '
iw denotes the workload of subtasks on machine i that

haven’t been completed. }{max '
max ii wtmumw += .

During the execution of the application, we check running

information of subtasks on each machine periodically. We
compare the difference between the expected kρ and the real

kρ . If the difference is more than a threshold, we assume the
resource suffers abnormality. The set of the monitor period is
related to the set of the threshold. In the next section, we
conducted experiments with different monitor periods and
thresholds. Using (2), we calculate the mean of the completion
time of the scheduled application with and without
reassignment in the new situation. We denote the former as

)(reassignTE and the latter)(originalTE . If

0)()(>− reassignoriginal TETE , that indicates move/migration will

benefit the application performance. We select resources that
can bring the most benefit if we assign subtasks on an
abnormal resource to them. A detailed description of the self-
adaptive scheduling algorithm is given in Fig. 4. In this
algorithm, we assume that there are two situations of task
reallocation. The first is one-to-one task reallocation, which
means that all uncompleted subtasks on an abnormal machine
will be moved as a unit to another machine if the reallocation
can benefit the application running time. The second is one-to-
all task reallocation, which means that the uncompleted
subtasks on an abnormal machine could be moved separately
to any possible machine to favor application make-span. In this
situation, we invoke the min-min task group allocation
algorithm discussed in Section 4.3 to map the uncompleted
subtasks on an abnormal machine into other machines. We set

Assumption: a meta-task is composed of a number of
independent subtasks. These subtasks are indivisible.
Objective: Scheduling a meta-task
--
Begin
List a set of idle machines that are lightly loaded over an
observed time period, },...,,{ 21 qMMMM = ;

1=′p ; 1=′k ;
1=p ;

While qp <
 List all the possible sets of machines,

},,{ 21
p

z
ppp SSSS …= , MS p

i ⊂ and pS p
i =|| ;

 For each machine set p
kS)1(zk ≤≤ ,

 Use task group allocation algorithm to group subtasks
to each machine in p

kS ;
 Calculate)).(1)((p

k
p

k SS
TCoeTE + ;

 If)).(1)((p
k

p
k SS TCoeTE ′

′
′

′
+ >)).(1)((p

k
p

k SS TCoeTE + ,
Then pp =′ ; kk =′ ;

End If
 End For
 1+= pp ;

End While
Assign the meta-task to the machine set p

kS ′
′ ;

End

Fig. 3. Optimal meta-task scheduling algorithm.

 6

0=kW , φ=kTG for the identified abnormal machines and

=kW {the sum of workload of completed subtasks} and

=kTG {the set of completed subtasks} for other machines. The
cost of the self-adaptive scheduling algorithm is mainly
decided by the cost of the search of an appropriate machine set
for task reallocation. We have proposed a heuristic scheduling
algorithm to search a near-optimal solution [9]. The earlier
experiment data demonstrated its cost is ignorable.

3) Performance metrics: We have discussed how to
reschedule when we find resources showing irregular status.
To evaluate the performance of the self-adaptive scheduling
algorithms, we have to answer the following questions:

a. Whether the algorithm can identify the abnormal
machine? What is the error rate?
b. Whether the self-adaptive scheduling algorithm can
reduce the application performance loss due to resource
abnormality?
c. What is the appropriate utilization threshold to benefit
the application performance?
The key to a successful reschedule is that the self-adaptive

task scheduling algorithm can rightly identify the abnormal
machines where the performance degradation happens. The
difficulty in identifying abnormal machines in a shared
environment is that resource usage is dynamically changing. It
is natural that a normal machine may present a high-level
resource utilization during some periods and in the other hand,
an abnormal machine may present a low-level resource
utilization sometimes. Thus there is a possibility that we may
identify an abnormal machine as a normal machine or a normal
machine as an abnormal machine sometimes. Both situations
will lead to a false rescheduling plan and thus an application
performance deterioration. This is inevitable in a shared
environment. Our aim is to find an appropriate utilization
threshold so the wrong identification rate could be kept in a
low level.

A perfect identification of abnormal machines means that
we successfully identify all abnormal machines while we don't
make any mistake to take any normal machine as an abnormal
machine. We use two metrics to describe the capability of the
self-adaptive scheduling algorithm identifying abnormal
machines, right identification of abnormal machine rate
(RIAM) and right identification of normal machine rate
(RINM). RIAM denotes the ratio of the number of rightly
identified abnormal machines to the number of actual
abnormal machines. RINM is defined as

nf NN /1− where
fN

denotes the number of identified abnormal machines that are
actually normal machines and nN denotes the number of
normal machines. nf NN / could be viewed as the error rate of

identification of normal machine. To evaluate the efficiency of
the self-adaptive algorithm in reducing the completion time of
an application in the case of machines showing abnormal, we
define the performance loss reduction rate (PLRR) as

regularadaptiveselfregular TTT /)(−− . adaptiveselfT − denotes the

completion time of a scheduled application with the self-
adaptive algorithm.

regularT denotes the completion time of the

scheduled application without the consideration of
rescheduling during application execution.

IV. EXPERIMENT RESULTS
To verify the efficiency of the proposed scheduling

algorithms, we compared GHS scheduling with the AppLeS
scheduling, a currently widely used task scheduling system in
Grid computing. Experiments were conducted to test the
performance of AppLeS task scheduling and GHS task
scheduling mechanism for long-term applications. The results
show the proposed scheduling system outperforms AppLeS for
scheduling long-running applications and it requires less
number of resources running the scheduled application than
AppLeS. We then examined the efficiency of the self-adaptive
scheduling algorithm. Simulation results show the self-
adaptive algorithm can identify the abnormality of resources

Objective: Monitor the execution of an application in a set of
machines and reallocate subtasks of the application if necessary.
--
Begin
Repeat
Measure the prediction error of the system utilization, kPU , on
machine kM .
If ThresholdPU k > then
 Calculate)(originalTE ;
 List a set of machines that are current lightly loaded,

},...,,{ 21 qMMM ;
 If reallocation is one-to-one then
 For each machine, iM , suppose it is the machine which

subtasks on kM will be assigned.
 Calculate i

reassignTE)(with formula (2)
 End For
 Find the machine jM , which has the maximum

j
reassignor iginal TETE)()(−

 If 0)(()(>− j
reassignoriginal TETE then

 Migrate the subtask on machine kM to machine jM .
 End If
 End If
 If reallocation is one-to-all then
 Sort the list of idle machines in a decreasing order with

kk τρ)1(− ,
 Use bi-section search to find appropriate machine set P,

which has the maximum P
reassignoriginal TETE)()(−

 If 0)(()(>− P
reassignoriginal TETE then

 Migrate subtasks on machine kM to the machine set P .
 End If
 End If
End If
Until the application is completed
End

Fig. 4. Self-adaptive task scheduling algorithm.

 7

and reduce the make-span of the scheduled application through
dynamically reassigning subtasks during the application
execution. Finally we investigated different factors that affect
the selection of an appropriate utilization threshold.

A. Comparison of GHS scheduling and AppLeS scheduling
AppLeS is probably the best known scheduling system in

the Grid computation environment. It is based on NWS
prediction system, which monitors and forecasts the resource
performance on-line. AppLeS makes scheduling decision by
estimating the mean of short-term subtask execution time
based on resource availability provided by NWS. The effects
of other system specific factors on the application completion
time are not analyzed due to the inherent limitation of its
methods. Our task scheduling system provides long-term
application-level performance prediction in a heterogeneous
non-dedicated distributed computation environment. The
effects of machine utilization, computing power, local job
service, and parallel processing on the completion time of
parallel task are individually identified.

To compare the performance of AppLeS task scheduling
and the proposed task scheduling for long-term applications,
we conducted experiments to test the completion time of
applications under each task scheduling system. Here we
consider the parameter sweep application because AppLeS
doesn't support optimal parallel processing. Our initial
experimental results have demonstrated that the System-level
Predictor in our system outperforms NWS for long-term
system-level prediction although NWS is still an effective tool
for what it was designed, short-term prediction. To remove the
performance loss caused by NWS prediction, we let AppLeS
make scheduling decision based on the prediction provided by
our system. In this way, we focus on the comparison of the
scheduling algorithm performance of both systems. The
comparison of the application completion time (seconds) and
the number of machine set with the two different scheduling
systems is given in Table 1. The experiment results show that
the application completion time with our proposed scheduling
system is reduced by 10%-20% compared with that with
AppLeS system while only about one half of machines used in
AppLeS system are required for task scheduling in our system.
It indicates that the GHS scheduling system can identify a
smaller set of machines to solve a large application in a shorter
time.

B. Self-adaptive scheduling
We discuss the self-adaptive scheduling algorithm and three

performance metrics in section 3.4.2. A simulation
environment was set up to evaluate the rescheduling algorithm
in a non-dedicated heterogeneous computation system. In our
simulation environment, the arrival rate of local jobs on each
machine follows Poisson distribution. The local jobs’ lifetime
is simulated with x/0.2 [24], which follows the observation of
real-life processes in [25]. x is a random number between 0
and 1. The local job arrival rate and the job service rate on
each machine are randomly generated in an adjustable range.

The resource utilization of each machine is thus different.
Each machine is simulated with different computing capacity,
randomly generated between 1 and 5. In our experiment, the
utilization of a normal machine is located in a certain range
and the utilization of an abnormal machine is in another certain
range. Both ranges are adjustable. During the execution of the
application, we randomly select some machines and “mute”
their local job arrival rates and service rates to make them
become abnormal machines. The number of machines showing
abnormality during the application execution could be also
adjusted.

1) Self-adaptive scheduling of meta-tasks: A series of
simulations have been conducted to verify the capability of the
self-adaptive scheduling algorithm identifying normal and
abnormal machines and the efficiency of the self-adaptive
algorithm in term of performance loss reduction rate. The
performance metrics were measured during these simulations.
We studied RIAM, RINM and PLRR of the self-adaptive task
scheduling with different monitor periods, different utilization
thresholds, and different resource availabilities.

Table 2 give measured RIAM, RINM and PLRR with
different utilization thresholds for two system monitor periods,
one hour and two hours. The meta-task to be scheduled is
composed of 4000 subtasks. The maximum workload of a
subtask is 4000 seconds (the computation time on the slowest
machine). The average local job service rate is 10 for both
normal and abnormal machines. The arrival rate of local jobs
on normal machines is between 0.015 and 0.04. Thus the
utilization of a normal machine is between 15% and 40%. The
arrival rate of local jobs on abnormal machines is between
0.065 and 0.085. So the utilization of an abnormal machine is
between 60% and 85%. The size of the machine set is 20. Two
machines are randomly selected to become irregular from a
random time during the application running. For each
parameter setting, we run simulation 30 times.

The simulation results show that RIAM decrease with the
increase of utilization threshold whereas the RINM increase
with the increase of utilization threshold. When the utilization
threshold is low (5% or 10%), the self-adaptive scheduling
algorithm can identify all abnormal machines. Meanwhile,
many normal machines are identified as abnormal machines.
When the utilization threshold is large (50% or 60%), none of
normal machines are identified as abnormal machines.
However, some of abnormal machines are not identified. This

TABLE I
COMPARISON OF TASK COMPLETION TIME AND THE NUMBER OF MACHINES
USED BY APPLES TASK SCHEDULING SYSTEM AND OUR TASK SCHEDULING

SYSTEM
Workload

(Maximum machine number)
13801.7

(25)
27619.2

(50)
53779.5

(100)
108642.5

(200)
215141.0

(400)
Task completion

time (s) 496.4 557.7 712.8 874.5 1140.4
GHS

Number of
machine set 13 26 57 99 113

Task completion
time (s) 547.4 637.4 818.3 1022.7 1266

AppLeS
Number of
machine set 25 50 100 200 400

 8

leads the reduction of PLRR.
From Table 2 and Table 3, we can find that the self-adaptive

algorithm efficiently reduce the application performance loss
in most situations although the application performance may
get worse in a few extreme situations. It works best when the
utilization threshold is set between 20%-30%. When the
utilization threshold is out of this range, either low or high, the
gain is comparably smaller. We notice that in this appropriate
utilization threshold area, both of RIAM and RINM are close
to 1.0, which indicate that the self-adaptive scheduling
algorithm works best when it can rightly identify both the
normal machines and the abnormal machines.

We also measured RIAM, RINM and PLRR when the
system monitor periods are set as four hours and half an hour.
We keep other simulation parameter setting the same as the
above. The simulation results are illustrated in Table 4 and
Table 5. We find that in both situations the self-adaptive
algorithm benefits the application performance. In the former
situation, the PLRR is better when the utilization threshold is
10% or 20% while the PLRR is better when the utilization
threshold is 30% or 40% for the latter. This indicates that
when we increase the system monitor period, even a small

threshold could benefit the application performance. If the
system monitor period is short, for example, half an hour, we
have to choose a high utilization threshold so that the self-
adaptive task scheduling algorithm can efficiently reduce the
performance loss caused by machine mutation.

Is there any other factor that affects the selection of an
appropriate utilization threshold besides the system monitor
period? We conducted a series of simulations to study this
problem. We tested the efficiency of the self-adaptive
scheduling algorithm with different resource availability
variation and various utilization differences between abnormal
machines and normal machines. We observed different
appropriate threshold range in these simulations. However we
find that both RIAM and RINM are close to 1.0 for all
appropriate threshold ranges.

Fig. 5 gives the PLRR of meta-task scheduling under
various average utilization differences between abnormal
machines and normal machines (20%, 30%, 40%, 50%). For
each utilization difference, we measured the PLRR in four
utilization thresholds, 0.1, 0.2, 0.3, and 0.4. The monitor
period is two hours. The PLRR is the average of 30 times of
running simulation. The simulation results show that the

TABLE II
THE MEASURED RIAM, RINM AND PLRR OF META-TASK RESCHEDULING

WITH DIFFERENT UTILIZATION THRESHOLDS WHEN THE MONITOR PERIODS IS
TWO-HOUR

Utilization
threshold

RIAM
(aver)

RINM
(aver)

PLRR
(aver)

PLRR
(min)

PLRR
(max)

5% 1.0 0.01 0.24 -0.28 0.49

10% 1.0 0.56 0.24 -0.33 0.61

20% 1.0 1.0 0.51 0.0 0.74

30% 0.93 1.0 0.47 0.0 0.71

40% 0.78 1.0 0.41 0.0 0.71

50% 0.51 1.0 0.29 0.0 0.62

60% 0.31 1.0 0.17 0.0 0.17

TABLE IV
THE MEASURED RIAM, RINM AND PLRR OF META-TASK RESCHEDULING
WITH DIFFERENT UTILIZATION THRESHOLDS WHEN THE MONITOR PERIOD IS

FOUR-HOUR
Utilization
threshold

RIAM
(aver)

RINM
(aver)

PLRR
(aver)

PLRR
(min)

PLRR
(max)

5% 1.0 0.07 -0.28 -1.25 0.48

10% 1.0 0.92 0.47 0.0 0.73

20% 0.98 1.0 0.48 0.0 0.71

30% 0.91 1.0 0.45 0.0 0.71

40% 0.70 1.0 0.37 0.0 0.65

50% 0.43 1.0 0.24 0.0 0.62

60% 0.17 1.0 0.1 0.0 0.62

TABLE III

THE MEASURED RIAM, RINM AND PLRR OF META-TASK RESCHEDULING
WITH DIFFERENT UTILIZATION THRESHOLDS WHEN THE MONITOR PERIOD IS

ONE-HOUR
Utilization
threshold

RIAM
(aver)

RINM
(aver)

PLRR
(aver)

PLRR
(min)

PLRR
(max)

5% 1.0 0.00 -0.38 -0.53 0.59

10% 1.0 0.07 0.25 -0.16 0.61

20% 1.0 0.98 0.48 0.0 0.72

30% 0.98 1.0 0.53 0.0 0.75

40% 0.91 1.0 0.46 0.0 0.75

50% 0.73 1.0 0.37 0.0 0.65

60% 0.48 1.0 0.25 0.0 0.62

TABLE V
THE MEASURED RIAM, RINM AND PLRR OF META-TASK RESCHEDULING
WITH DIFFERENT UTILIZATION THRESHOLDS WHEN THE MONITOR PERIOD IS

HALF-AN-HOUR
Utilization
threshold

RIAM
(aver)

RINM
(aver)

PLRR
(aver)

PLRR
(min)

PLRR
(max)

5% 1.0 0.0 0.28 0.0 0.80

10% 1.0 0.0 0.12 -0.14 0.66

20% 1.0 0.98 0.02 -0.75 0.51

30% 1.0 0.97 0.49 0.0 0.73

40% 0.98 0.99 0.49 0.0 0.75

50% 0.91 1.0 0.48 0.0 0.71

60% 0.73 1.0 0.39 0.0 0.66

 9

difference of PLRRs under four thresholds is getting smaller
when the average utilization difference increases. We can find
when the average utilization difference is 50% the PLRR is
good even the threshold is set as 0.1. This indicates that the
more the average utilization difference between abnormal
machines and normal machines, the wider the appropriate
threshold range. The simulation results also show that there is
a constant improvement of PLRR for each threshold with the
increase of utilization difference. We find that the PLRR
increase around 40% when we increase the average utilization
difference from 20% to 50% when the utilization threshold is
set as 20%.

In our experiment, we simulated local jobs’ lifetime with
2.0/x where x is a randomly generated number between 0 and
1. [24]. This distribution follows the observation of real-life
processes [25]. Let Z denotes the maximum lifetime of local
jobs. The variance of job lifetime is calculated as

2))2ln)(ln
2

2(()1(
2

2 −
−

−−
−

Z
Z

ZZ
Z

Z . The more Z is, the bigger

variance of job lifetime and thus the variance of resource
utilization. Fig. 6 gives the measured PLRR with various local
job lifetime variances. We set the maximum lifetime of local
jobs from 120s to 3600s. The simulation results show that with
the increase of job lifetime variance, the appropriate threshold
range tends to move from the low level to the high level. When
the maximum lifetime of local jobs is small (120s), the
appropriate threshold is between 0.1 and 0.4. When the
maximum lifetime of local jobs is large (3600s), the
appropriate threshold is between 0.4 and 0.6. This simulation
indicates that in the situation of high variance of resource
availability, a large utilization threshold is preferred for a
better performance gain.

2) Self-adaptive scheduling of a parallel program: We
evaluate the efficiency of the self-adaptive scheduling
algorithm for parallel programs. Table 4 gives the measured
RIAM, RINM and PLRR of parallel program rescheduling
with different utilization thresholds when the monitor periods
are one hour and two-hours respectively. We used the same
simulation setting as above. The utilization of a normal

machine is between 15% and 40%. The utilization of an
abnormal machine is between 60% and 85%. We observed the
same results as previous experiments for meta-task scheduling.
The simulation results show that the self-adaptive algorithm
can effectively reduce the application performance loss and it
works best when RIAM and RINM are close to 1.0. In Table 6
and Table 7, we find that the self-adaptive scheduling
algorithm introduces more performance loss for parallel
program rescheduling than meta-task rescheduling when the
utilization threshold is set as a small value, such as 0.1. This
reason is that because in the process of rescheduling a parallel
program we do not consider further partition the workload of
the subtask on the identified abnormal machine (we apply one-
to-one reallocation), the performance loss caused by wrong
identification of abnormal machine is bigger than that of a
meta-task where the subtasks on the wrong identified abnormal
machine will be distributed to all possible normal machines.
We also investigated the relationship among the appropriate
threshold range, the average utilization difference between
normal machines and abnormal machines, and the resource
utilization variance for parallel program rescheduling. We
observed the similar results as meta-task rescheduling.

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
pe

rfo
rm

an
ce

 lo
ss

 re
du

ct
io

n
ra

te

0.2 0.3 0.4 0.5

utilization difference

threshold=0.1
threshold=0.2
threshold=0.3
threshold=0.4

Fig. 5. The measured PLRR of meta-task rescheduling with various
average resource utilization differences.

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

120 300 600 1200 2400 3600

maximum local job lifetime (s)

P
er

fo
rm

an
ce

 re
du

ct
io

n
ra

te

threshold=0.1
threshold=0.2
threshold=0.3
threshold=0.4
threshold=0.5
threshold=0.6

Fig. 6. The measured PLRR of meta-task rescheduling with various local
job lifetime variances.

TABLE VI
THE MEASURED RIAM, RINM AND PLRR OF PARALLEL PROGRAM

RESCHEDULING WITH DIFFERENT UTILIZATION THRESHOLDS WHEN THE
MONITOR PERIOD IS TWO-HOUR

Utilization
threshold

RIAM
(aver)

RINM
(aver)

PLRR
(aver)

PLRR
(min)

PLRR
(max)

5% 1.0 0.00 -0.23 -6.35 0.49

10% 1.0 0.38 0.11 -3.92 0.65

20% 1.0 0.99 0.40 0.0 0.67

30% 1.0 1.0 0.36 -0.67 0.67

40% 0.93 1.0 0.35 -0.67 0.64

50% 0.76 1.0 0.18 -1.79 0.64

60% 0.43 1.0 0.08 -0.66 0.64

 10

V. CONCLUSI

 In this paper, we study
and meta-tasks in a heter
present the system design o
system. A task group a
scheduling algorithm are i
To reduce performance
"mutation", a self-adapti
developed and three perfor
experimental tests were con
IIT to compare GHS task s
performance prediction b
results show that the propo
appropriate general-purpos
term applications. The dy
algorithm we proposed ade
of distributed computing
scheduling by reallocating
abnormalities, which is no
systems. The performance
We have investigated sever
an appropriate threshold. T
that GHS scheduling syst
scheduling long-term ap
heterogeneous computing
time with our scheduling
compared with that with A
about one half of mach
required for application r
system.

We proposed and impl
application-level task
heterogeneous computing
approaches. It is a sati
performance evaluation an
components of our task s
and predictor, can be easily
better service. To furthe

accuracy of the proposed task scheduling system, the
communication and the migration cost in task allocation will
be investigated. We also want to study the task scheduling of
multiple applications with the consideration of QoS in the
future.

ACKNOWLEDGMENT
This research was supported in part by National Science

Foundation under NSF grant EIA-0130673, ANI-0123930,
and by Army Research Office under ARO grant DAAD19-01-
1-0432.

REFERENCES
[1] Michael Litzkow, Miron Livny, and Matt Mutka, "Condor - a hunter of

idle workstations," Proceedings of the 8th International Conference of

THE MEASURED RIAM, RIN
RESCHEDULING WITH DIFFERE

MONITOR

Utilization
threshold

RIAM
(aver)

5% 1.0

10% 1.0

20% 1.0

30% 1.0

40% 0.93

50% 0.76

60% 0.43
TABLE VII
M AND PLRR OF PARALLEL PROGRAM
NT UTILIZATION THRESHOLDS WHEN THE

 PERIOD IS ONE-HOUR
RINM
(aver)

PLRR
(aver)

PLRR
(min)

PLRR
(max)

0.00 -0.61 -7.49 0.42

0.02 -0.64 -8.19 0.48

0.91 0.38 0.0 0.67

0.99 0.36 -0.70 0.68

1.0 0.36 -0.61 0.68

1.0 0.10 -3.42 0.64

1.0 0.05 -0.84 0.65
ON AND FUTURE WORK
task scheduling of parallel programs
ogeneous shared environment. We
f a general-purpose task scheduling

llocation method and an optimal
ntroduced for meta-task scheduling.
loss caused by possible machine
ve task scheduling algorithm is
mance metrics are proposed. Initial
ducted on the Sun ComputeFarm at
cheduling system with other current
ased task scheduling system. The
sed scheduling system provides an
e scheduling mechanism for long-

namic and self-adaptive scheduling
quately captures the dynamic nature
and therefore provides a robust

 tasks in the presence of resource
t addressed by current scheduling

 loss can be reduced by 50%-60%.
al factors that affect the selection of
he experiment results demonstrate

em outperforms current systems in
plications in a homogeneous or
environment. The task completion
 system decreases by 10%-20%

ppLeS scheduling system while only
ines used in AppLeS system are
unning in the proposed scheduling

emented a prototype of long-term,
scheduling system for shared
environment based on probabilistic
sfactory complement of existing
d task scheduling tools. The three

cheduling, task allocator, scheduler
 integrated into existing toolkits for
r improve the applicability and

Distributed Computing Systems, pp. 104-111, June 1988.
[2] Henri Casanova and Jack Dongarra, "NetSolve: a network server for

solving computational science problems," The International Journal of
Supercomputer Applications and High Performance Computing, vol.
11, no. 3, pp. 212-223, Fall 1997.

[3] Abramson D., Sosic R., Giddy J., and Hall B., "Nimrod: a tool for
performing parametised simulations using distributed workstations,"
The 4th IEEE Symposium on High Performance Distributed
Computing, Virginia, Aug. 1995.

[4] Ian Foster and Carl Kesselman, The Grid: Blueprint for a New
Computing Infrastructure. ISBN 1-55860-475-8, July 1998.

[5] H. Dail, H. Casanova, and F. Berman, "A decoupled scheduling
approach for the GrADS environment," Proceedings of SC 2002,
Baltimore, Nov. 2002.

[6] O. H. Ibarra and C. E. Kim, "Heuristic algorithms for scheduling
independent tasks on nonindentical processors," Journal of the ACM,
24(2): 280-289, Apr. 1977.

[7] Ian Foster and Adriana Iamnitchi, "On death, taxes, and the convergence
of peer-to-peer and grid computing," 2nd International Workshop on
Peer-to-Peer Systems, Feb. 2003.

[8] Fran Berman, Richard Wolski, Silvia Figueira, Jennifer Schopf, and
Gary Shao, “Application-level scheduling on distributed heterogeneous
networks," Supercomputing'96, Nov. 1996.

[9] X. -H. Sun and M. Wu, "A performance prediction and task scheduling
system for grid computing," Proc. of 2003 IEEE International Parallel
and Distributed Processing Symposium (IPDPS 2003), Nice, France,
Apr. 2003.

[10] Henri Casanova, Graziano Obertelli, Francine Berman, and Rich
Wolski, "The AppLeS parameter sweep template: user-level middleware
for the grid," Proceedings of SC 2000, Nov. 2000.

[11] Y. Yang and H. Casanova, "UMR: a multi-round algorithm for
scheduling divisible workloads," Proceedings of the International
Parallel and Distributed Processing Symposium, Nice, France, Apr.
2003.

[12] I. Foster, A. Roy, and V. Sander, "A quality of service architecture that
combines resource reservation and application adaptation,"
International Workshop on Quality of Service, pp. 181-188, June 2000.

[13] Y. A. Li and J. K. Antonio, "Estimating the execution time distribution
for a task graph in a heterogeneous computing system," 6th
Heterogeneous Computing Workshop, Geneva, Switzerland, Apr. 1997.

[14] Steve Chapin, Dimitrios Katramatos, John Karpovich, and Andrew
Grimshaw, “The legion resource management system,” Proceedings of
the 5th Workshop on Job Scheduling Strategies for Parallel Processing
(JSSPP '99), San Juan, Puerto Rico, April 1999.

[15] Henri Casanova, MyungHo Kim, James S. Plank, and Jack Dongarra,
"Adaptive scheduling for task farming with grid middleware," The
International Journal of High Performance Computing, vol. 13, no. 3,
pp. 231-240, Fall 1999.

[16] Richard Wolski, "Dynamically forecasting network performance using
the network weather service," Journal of Cluster Computing, vol. 1, no.
1, pp. 119-132, Jan. 1998.

[17] Richard Wolski, Neil T. Spring, and Jim Hayes, "The network weather
service: a distributed resource performance forecasting service for

 11

metacomputing," Journal of Future Generation Computing Systems,
vol. 15, no. 5-6, pp. 757-768, Oct. 1999.

[18] Linguo Gong, Xian-He Sun, and Edward F. Waston, "Performance
modeling and prediction of non-dedicated network computing," IEEE
Trans. on Computer, vol. 51, no 9, Sept. 2002.

[19] F. Berman, R. Wolski, H. Casanova, W. Cirne, et al. “Adaptive
Computing on the Grid Using AppLeS,” IEEE Transactions on Parallel
and Distributed Systems, vol. 14, no. 4, pp. 369--382, 2003.

[20] P. Dinda and D. O'Hallaron, "An extensible toolkit for resource
prediction in distributed systems," Technical Report CMU-CS-99-138,
School of Computer Science, Carnegie Mellon University, July 1999.

[21] Mutka, M. and M. Livny, "The available capacity of a privately owned
machine environment," Performance Evaluation, vol. 12, no. 4, pp.
269-284, 1991.

[22] Remzi H. Arpaci, Andrea C. Dusseau, Amin M. Vahdat, Liu, Lok T.,
Anderson, Thomas E., and Patterson, David A., "The interaction of
parallel and sequential workloads on a network of machines," Proc. of
ACM SIGMETRICS/Performance Joint International Conference on
Measurement and Modeling of Computer Systems, pp. 267-278, May
1995.

[23] A. Acharya, G. Edjlali, and J. Saltz, "The utility of exploiting idle
workstations for parallel computation," Proc. SIGMETRICS, pp. 225-
236, June 1997.

[24] Yair Amir, Baruch Awerbuch, Amnon Barak, R. Sean Borgstrom, and
Arie Keren, "An opportunity cost approach for job assignment in a
scalable computing cluster," IEEE Transactions on Parallel and
Distributed Systems, vol. 11, no. 7, July 2000.

[25] M. Harchol-Balter and A. Downey, "Exploiting process lifetime
distributions for dynamic load balancing," Proc. ACM Sigmetrics Conf.
Measurement and Modeling of Computer Systems, 1996.

Ming Wu is currently a Ph.D. candidate in the Department of Computer
Science at Illinois Institute of Technology. He received his bachelor of
Engineering from Xidian University, China, in 1994 and the Master degree of
Science from the University of Science and Technology of China, in 1997.
His research focuses on the design and development of performance
evaluation and task scheduling systems for distributed computing
environment, with specific interests in Grid computing.

Xian-He Sun received the BS degree in mathematics from Beijing Normal
University, Beijing, China, in 1982, the MS degree in mathematics, and the
MS and PhD degrees in computer science from Michigan State University,
East Lansing, in 1985, 1987, and 1990, respectively. He was a staff scientist
at ICASE, NASA Langley Research Center and was an associate professor in
the Computer Science Department at Louisiana State University, Baton
Rouge. He has been serving as a faculty member of the Computer Science
Department at the Illinois Institute of Technology (IIT), Chicago, since 1999.
Currently, he is a professor and the director of the Scalable Computing
Software Laboratory in the Computer Science Department at IIT, and is a
guest faculty member at the Argonne National Laboratory. Dr. Sun’s research
interests include grid and cluster computing, software system, pervasive
computing, performance evaluation, and scientific computing. He has
published intensively in the field and his research has been supported by
DoD, DoE, NASA, US National Science Foundation, and other government
agencies. He is a senior member of the IEEE, a member of the ACM, New
York Academy of Science, PHI KAPPA PHI, and has served and is serving as
the chairman or on the program committee for a number of international
conferences and workshops, including current service as the general co-chair
of the Grid and Cooperative Computing (GCC03) workshop, area chair of the
technical committee of the IEEE SuperComputing (SC03) conference, vice
chair of the programming committee of the International Conference on
Parallel Processing (ICPP04), and vice president of the Society of Chinese
American Professors and Scientists. He received the ONR and ASEE
Certificate of Recognition award in 1999, and received the Best Paper Award
from the International Conference on Parallel Processing (ICPP01) in 2001.

	INTRODUCTION
	Related Work
	Task Scheduling System
	System architecture
	Prediction
	Task allocation
	Scheduling algorithms

	Experiment Results
	Comparison of GHS scheduling and AppLeS scheduling
	Self-adaptive scheduling

	Conclusion and Future Work

