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Abstract— The efforts to construct a national scale Grid 

computing environment have brought unprecedented 
computing capacity and complicacy. Exploiting this 
complex infrastructure requires efficient middleware to 
support the execution of distributed applications, which 
presents the challenge on how to schedule tasks in shared 
heterogeneous systems. Most existing scheduling systems 
are based on pre-determined estimation of task completion 
time and resources availability. They may not provide 
appropriate scheduling if the underlying computing 
resources present an abnormal usage pattern during an 
application execution.  For solving long-running 
applications in a large-scale Grid environment, abnormal 
usage of some resource may not be uncommon. We have 
proposed the development of the Grid Harvest Service 
(GHS) performance evaluation and task scheduling system 
in our previous work. In this study, we present a novel 
dynamic self-adaptive scheduling algorithm and its 
implementation under GHS. Scheduling and re-scheduling 
algorithms and mechanisms are carefully investigated. 
Experimental results show that, equipped with these new 
scheduling mechanisms, GHS outperforms existing systems 
considerably in scheduling large applications in a non-
dedicated heterogeneous environment. 
 

Index Terms— task scheduling, performance prediction, 
shared heterogeneous system. 
 

I. INTRODUCTION 
In order to provide high performance computation power to 

serve the increasing need of large applications, people strive to 
improve a single machine's capacity or construct a distributed 
system composed of a scalable set of machines. Compared to 
the former, where the improvement is mainly up to the 
hardware technology development, the construction of 
distributed systems for resource collaboration is more 
complex. Some of well-known existing distributed systems 
composed of heterogeneous resources are Condor [1], 

NetSolve [2], Nimrod [3], Globus, and the Grid computation 
environment [4]. These systems, especially the Grid, have 
unprecedented computing power. However delivering this 
unprecedented computing power to the users is still an elusive 
problem. One of the major issues is how to schedule a large 
application in these non-dedicated distributed systems [5]. In 
general, scheduling applications in a distributed system is a 
NP-hard problem [6]. Many heuristic scheduling algorithms 
and systems are proposed to address this problem. 
Unfortunately, most of scheduling algorithms proposed so far 
are for dedicated systems. By dedicated, we mean the 
resources are dedicated for a given application. In contrary 
most current distributed systems are non-dedicated, shared 
environments [7]. 

Good scheduling in a shared environment involves the 
integration of application specific information and system 
specific information [8]. We studied a performance-prediction 
based task scheduling system, which provides task allocation 
and scheduling based on application-level and system-level 
performance prediction. The effects of system specific 
information, such as utilization, job service rate, job arrival 
rate, and application-specific information, such as workload, 
divisibility, parallel processing, on the application 
performance have been identified. The preliminary results 
demonstrate the effectiveness of our scheduling mechanism for 
long-term applications [9]. Our earlier work focuses on the 
task scheduling for parallel processing, which assumes that the 
total workload of a parallel application could be arbitrarily 
partitioned. In this study, we extend our scheduling policy for 
a class of widely used Grid application, the parameter-sweep 
application. It is composed of a set of independent and 
indivisible tasks [10].  

A key question is that how to maintain an application 
performance during its execution? When some of resources 
assigned for subtasks of the application represent abnormal 
status from their history information, the completion times of 
the subtasks are different from the estimation. Thus the whole 
application performance will change under the situation of 
resource abnormality. There is a fair chance that a resource 
may show different usage patterns from its history in a large 
distributed system. In this paper, we only consider resources 
are overloaded when we mention resource abnormality. If the 
application is a long-running job (days or weeks), the 
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performance degradation caused by resource abnormality is 
unacceptable. To provide a robust task scheduling system 
working in a dynamic system, we introduce a self-adaptive 
task scheduling algorithm, which monitors the long-running 
application progress and detect possible resource abnormality. 
The self-adaptive scheduling algorithm selects appropriate 
resources and reassigns the subtasks on abnormal machines to 
these selected machines based on the application-level 
prediction.  

Our goal in task scheduling system is to provide a robust 
and general-purpose scheduling system. The task scheduling is 
divided into three parts, allocator, predictor and scheduler. 
Allocator selects appropriate allocation algorithms to partition 
or group the subtasks of a divisible application on a number of 
machines, where a divisible application refers to an application 
that could be partitioned into or composed of a set of subtasks 
[11]. Predictor estimates the application execution time 
distribution on each machine. Scheduler decides which set of 
machines is the best among all possible sets of machines. In 
this way, we provide a flexible task scheduling mechanism for 
the need of different application-level scheduling scenarios. 
The proposed scheduling system is very flexible: on one hand 
it could be easily integrated with other scheduling systems, 
while on the other hand other people’s work in different 
aspects of task scheduling can be easily incorporated into our 
work. 

The rest of this paper is organized as follows: Section 2 
describes the related work. Section 3 introduces our proposed 
task-scheduling system design. Various scenarios of task 
allocation and scheduling are discussed in this section. A meta-
task scheduling algorithm is presented and a self-adaptive task 
scheduling is introduced with three performance metrics. 
Experimental results are presented in Section 4. We compare 
GHS scheduling system with a well-known scheduling system, 
AppLeS, and verify the efficiency of the self-adaptive 
scheduling algorithm. Finally we conclude and summarize our 
work with section 5. 
 

II. RELATED WORK  
Related earlier work in task scheduling policy mainly 

focused on dedicated systems, which cannot be assumed in 
non-dedicated computing environment like the Grid. A 
resource reservation strategy [12] is proposed to address this 
problem. Shared resources are reserved in advance for a user's 
dedicated occupancy. Reservation is a good way to conduct 
experimental testing under current environments. However, the 
utilization of a reservation system in general is low. It is quite 
often a user has to wait to a few days to get his/her required 
resources in current NCSA grid environments. This is not 
feasible in a production environment. In addition, private 
owners usually don't want their machines reserved for others 
and like to access their machines when they need. Task 
scheduling on such a shared non-dedicated computing 
environment offers a big challenge. A task scheduling 

mechanism based on the prediction of machine availability has 
been investigated in [8]. This determined method might be 
simple and good as it is useful for scheduling short-running 
applications in a single machine or a small system. However, 
due to the internal limitation of its determined prediction 
method, it is not suitable for scheduling a long-running 
application in a large distributed system since the prediction 
error caused by the fluctuation of resource status increases 
with the number of resources running applications. Yan 
Alexander Li and John K. Antonio developed a probabilistic 
approach to estimate the execution time of a parallel 
application in a heterogeneous computing system. However, 
their model is based on the assumption that the execution time 
distribution of an individual task on a machine is pre-known 
[13]. And the effect of system specific information on the 
application performance is not reflected in their work. 

Different task scheduling policies are applied in various 
heterogeneous computing environments. GASA (Grid 
Advance Reservation API) [12] is a subsystem of Globus 
project. It provides mechanisms for resource reservation so 
that a remote application can receive a certain level of service 
from a resource. As we mentioned before, this policy doesn't 
favor the privilege of the private owner of a shared resource. 
Condor system [1] provides a matchmaking mechanism to 
allocate resources with ClassAds. The scheduling strategy is 
based on the mapping of the users' ClassAds, which specify the 
job requirements and users' preferences, and the machines' 
ClassAds, which advertise their characteristics, available time 
period, and conditions. Instead of the performance issue, the 
economy issue is considered as the evaluation criteria in 
Nimrod project. Legion system [14] also supports resource 
reservation. It focuses on providing basic mechanisms for 
building application-level scheduling algorithms rather than 
constructing scheduling algorithm itself. A simple random 
selection policy is provided as the default scheduling 
mechanism. Currently, scheduling algorithms in the AppLeS 
[10], [15] project are supported by the short-term system 
prediction provided by NWS services [16], [17]. Although 
they did consider resource availability in making the 
scheduling decision, none of them fully identifies the effect of 
the "shared" characteristic of resources on the execution time 
of an application. Instead of submitting all subtasks of an 
application at once to the system, people use a loop of task 
events to schedule task dynamically. However, it is hard to 
define what is enough work for one schedule event. They don't 
consider rescheduling during the application execution when 
some resources show abnormality. Their system works well 
under the assumption that the deterioration of subtask 
performance would not affect the whole application 
performance, which is not a general case in distributed 
computing. 

 

III. TASK SCHEDULING SYSTEM  
Prediction of application and system performance is 
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necessary for a good scheduling [8]. Some of current 
scheduling systems do involve some prediction work. 
However due to the determined approach of their simple 
performance models, the effect of various system parameters 
on the application performance is not available in their 
systems. The performance prediction in the proposed 
scheduling system is based on probabilistic modeling. The 
effect of system specific information on application 
performance has been identified by our general performance 
model [18]. The application performance prediction is 
provided by the application-level predictor, which is one of the 
major components of our scheduling system. A meta-task 
scheduling algorithm was proposed to address the problem of 
scheduling a set of independent subtasks in a distributed 
environment. A new task allocation method, a min-min task 
allocation, has been developed to support meta-task 
scheduling. To reduce the performance loss brought by 
abnormal resource usage pattern, a self-adaptive scheduling 
algorithm has been investigated. We studied the capability of 
the self-adaptive scheduling algorithm identifying abnormal 
machines and the efficiency of the self-adaptive algorithm in 
term of performance loss reduction rate. We focus on 
scheduling computation-intensive applications. 

A. System architecture 
A block diagram of GHS scheduling system design is shown 

in Fig. 1. A user submits an application with its characteristics 
(application type, workload) to the Task Manager. It inquires 
the Task Scheduler for qualified scheduling solution. By 
accessing the resource information provided by the Resource 
Information Service, the Task Scheduler finds a list of 
potential resources. The Task Scheduler searches possible task 
allocation plans. The Task Allocator decides how to map 
subtasks of an application among resources based on the 
prediction of system status provided by the System-level 
predictor. The map of subtasks on machines will be forwarded 
to the Application-level Predictor to estimate the application 
performance. The best scheduling solution satisfying the 
evaluation criteria is returned to the Task Manager. When the 
user is satisfied with the expected application performance, the 
application will be submitted for running in the distributed 
computation environment through the Task Execution Service. 
The Task Manager monitors the application execution and 
may invocate the Task Scheduler to reschedule the application 
in the system. The resource information is collected through 
various Sensors and stored in the Resource Information 
Service, which provides the access of resource information for 
the System-level Predictor and the Task Scheduler. 

B. Prediction 
The goal of application-level predictor is to estimate the 

application execution time in a shared distributed system. The 
difference between our application-level predictor and existing 
scheduling systems [19], [20] is that we estimate the 
application make-span based on probabilities analysis instead 
of determined approaches used by other scheduling systems. 

So the effect of both system specific information and 
application specific information on the application 
performance are identified in our application-level prediction. 
Based on the observation of machine usage pattern [21]-[23], 
we assume that the local job processing follows M/G/1 
queuing system. The system parameters, λ , ρ  and σ , reflect 
the system characteristics of a shared resource in a non-
dedicated distributed system. ρ  is the system utilization. λ  is 
the arrival rate of local jobs and σ  is the standard deviation 
of service time of local jobs. The workload and divisibility of 
an application reflect the general characteristics of the 
application. If the application is a single indivisible task, the 
cumulative distribution function of the application completion 
time on a machine can be calculated as [9]: 
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where )(SU  is the sum of busy periods of local jobs on the 
machine. We denote τ  the computing capacity of the machine 
and w  the workload of the application. If the workload of an 
application is divisible, we can use )Pr()Pr( tTtT k ≤∏=≤ to 
calculate the cumulative distribution function of the 
application completion time (T) where kT  is the subtask 

completion time on machine kM . The sub-workload on each 

machine, kw , is calculated by the Task allocator component. 

C. Task allocation 
When an application is a single indivisible task, we choose a 

machine where the sum of the expectation and variance of the 
application execution time is minimal. In general, however, an 
application in a distributed system is likely to be solved 
concurrently for best performance. This would happen in two 
scenarios. The first is that the application can be partitioned 
into subtasks arbitrarily. The other scenario is that the 
application consists of independent subtasks. These subtasks 
cannot be partitioned further. In this scenario, there are two 
more situations are worthy of concern. The first one is that the 
subtasks have no dependency among each other. We define 
such an application as a meta-task. Other situation is that there 
are dependencies among subtasks. In this paper, we study 
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Fig. 1.  A framework of GHS scheduling system. 
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meta-task scheduling. An ideal example of such applications is 
the class of parameter-sweep applications, which are 
composed of a set of independent and indivisible tasks [10]. 

For a given set of resources, the Task Allocator decides how 
to partition/group subtasks of an application. If the workload 
of an application is divisible, the task allocation is a partition 
problem. If an application is a meta-task, the task allocation 
becomes a task grouping issue. We have developed two 
allocation algorithms respectively for the two classes of 
applications. In the former situation, a mean-time allocation 
algorithm is applied. The workload is assigned to each 
resource so that the expected mean execution time of subtasks 
on each resource is the same.  

When an application is composed of independent indivisible 
subtasks, the Task Allocator group the subtasks and map each 
subtask group to one of resources for optimal performance 
based on the estimation of subtask execution time.  Assume 
that we have a meta-task composed of a number of 
independent tasks, },...,,{ 21 pTTT  with workload 

},...,,{ 21 pwww , a list of machines },...,,{ 21 qMMM , and a 

task allocation solution },,{ 21 qTGTGTG �  where kTG  is the 

set of subtasks on machine kM . the cumulative distribution 
function of the application completion time on a machine is 
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where kw = {the sum of workloads of all subtasks on machine 

kM }.   
Our goal is to find a task allocation solution so that the 

mean completion time of the meta-task is the minimum. This is 
a NP-hard problem. Heuristic methods are applied. We 
propose a min-min task group allocation algorithm. The basic 
idea is similar to the mean-time allocation algorithm. The 
subtasks of a meta-task is first grouped and then each subtask 
group is mapped to resources so that the difference of the 
expected execution time of subtasks on each resource is the 
minimum.  Fig. 2 shows the min-min task group allocation 
algorithm in details. 

D. Scheduling algorithms 
1) Meta-task scheduling: The Task Scheduler is responsible 

for finding a potential machine set for users' applications in a 
heterogeneous environment. It is supported by the Task 
Allocator and the Application-Level Predictor. The Task 
Scheduler supports different scheduling scenarios according to 
the application characteristics. Our earlier work studied single 
sequential task scheduling and optimal scheduling for parallel 
program. If the application can be partitioned into any number 
of subtasks, we have to search n2  possible degree of 
parallelisms and machine combinations. To reduce the 
scheduling cost when the machine set is large, a corresponding 
heuristic task-scheduling algorithm was therefore proposed to 
find an acceptable solution with a reasonable cost. In this 
study, we extend our earlier scheduling algorithm for a meta-

task, which is composed of independent subtasks. A good 
example of meta-task is the parameter sweep application, a 
widely used grid application. 

The parameter-sweep application is composed of a set of 
subtasks. Each subtask is independent of each other and is 
indivisible. A subtask reads data from input files, computes 
data, and generates an output file. This process doesn’t need to 
coordinate with other subtasks. The relationship between 
subtasks is that some of them may share a same input file. 
AppLeS system has been used to schedule the parameter 
sweep application in Grid computation environment. However 
it is based on the estimation of the mean execution time of 
subtask on a single machine. Our scheduling decision is based 
on the estimation of the performance of the whole parameter 
sweep application on a set of machines. Fig. 3. gives the 
optimal meta-task scheduling algorithm for parameter-sweep 
applications. Please notice a similar heuristic method could be 
applied in searching possible scheduling plans to reduce the 
cost of scheduling in a large-scale system. 

In this study, we focus on scheduling computation-intensive 
applications. Thus we assume that the communication cost of 
transferring initial input files to each site is relatively small 
compared with the computation time of a cluster of subtasks 
on each site. We utilize NWS to predict the file transferring 
time in the application execution initialization because NWS 
supports the prediction of the data communication time up to 5 
minutes. The estimate of the communication time for file 
transfers provided by NWS could be easily integrated into the 
scheduling algorithm in Fig. 3 to predict the completion time 
of a meta-task. The similar method has been applied in 
AppLeS. Interested readers can refer to [10] for details.  

 Assumption: a meta-task composed of a number of 
independent subtasks, },...,,{ 21 pTTT  and a list of machines 

},...,,{ 21 qMMM . Each subtask is indivisible. 
Objective:  find a task group },...,,{

21 qkkkk TTTTG = for 
machine kM  )1( qk ≤≤ . 
------------------------------------------------------------------------- 
Begin 
/* kW  means the current workload on machine kM  */ 

0=kW ; φ=kTG ; )1( qk ≤≤ ; 1=i ; 
While pi <   
     1=j ; 
     While qj <  

)]1(*/[)( , jjiji wTE ρτ −= ; 1+= jj ; 
     End While 
     Choose machine kM ′  where 

)()]1(*/[ ,kikkk TEW ′′′′ +− ρτ is minimal.  
     }{ ikk TTGTG ∪= ′′ ,  
     ikk wWW += ′′ ; 1+= ii ; 
End While 
Return kTG  and kW  )1( qk ≤≤ ; 
End 

Fig. 2.  Min-min task group allocation algorithm. 
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2) Self-adaptive scheduling: In the grid computation 
environment, most of resources are shared. There is a fair 
chance that some of resource may represent abnormal 
performance from their historical records, especially when the 
size of machine set is large. If the performance of some 
resources running subtasks of the scheduled application is 
degraded, the completion time of the application will increase. 
How to decide whether we should reschedule the application 
and which resource we should choose are the problems of 
consideration. A self-adaptive task scheduling algorithm is 
thus proposed to address this issue. The basic idea is to assign 
subtasks on a resource showing abnormal performance to other 
appropriate resources so that the application performance 
degradation could be reduced. The subtasks could be either 
migrated or restarted on the selected machine, which is up to 
the migration cost and whether a migration is possible. The 
selection of machines is decided based on the estimation of the 
whole application completion time on the updated machine set. 
The criterion of introducing a new scheduling plan is whether 
the new plan brings benefit for the application performance. 
Because there is no general performance model to estimate the 
migration cost and the communication cost of process 
migration may be overlapped with the computation of 
subtasks, we ignore the effect of the migration cost on the 
rescheduling decision at this time. When the user can estimate 
that cost, the cost can be added into our self-adaptive 
scheduling directly. 

The estimation of application performance is based on the 
measurement of system parameters. The details of measuring 
mechanism have been given in our previous work [9]. We use 
the same techniques to measure kλ , kσ  and kτ  because the 
running of the scheduled application doesn’t affect these 
system parameters. However, for system utilization, kρ , we 
can not use vmstat utility to measure it since the resource 
utilization is theoretically close to 100% during the application 
execution. We use the ps utility to measure the subtask CPU 
time. The ratio of the subtask CPU time and its real system 
time will be used as the estimate of kρ . 

To decide whether the rescheduling plan benefit the 
application performance, we need to calculate the application 
execution time in both situations: with and without 
rescheduling. An extension of (1) is used to calculate the 
cumulative distribution function of the application execution 
time in both situations: 
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it  denotes the execution time of subtasks on machine i  so far 

and '
iw  denotes the workload of subtasks on machine i  that 

haven’t been completed. }{max '
max ii wtmumw += . 

During the execution of the application, we check running 

information of subtasks on each machine periodically. We 
compare the difference between the expected kρ  and the real 

kρ . If the difference is more than a threshold, we assume the 
resource suffers abnormality. The set of the monitor period is 
related to the set of the threshold. In the next section, we 
conducted experiments with different monitor periods and 
thresholds. Using (2), we calculate the mean of the completion 
time of the scheduled application with and without 
reassignment in the new situation. We denote the former as 

)( reassignTE  and the latter )( originalTE . If 

0)()( >− reassignoriginal TETE , that indicates move/migration will 

benefit the application performance. We select resources that 
can bring the most benefit if we assign subtasks on an 
abnormal resource to them. A detailed description of the self-
adaptive scheduling algorithm is given in Fig. 4. In this 
algorithm, we assume that there are two situations of task 
reallocation. The first is one-to-one task reallocation, which 
means that all uncompleted subtasks on an abnormal machine 
will be moved as a unit to another machine if the reallocation 
can benefit the application running time. The second is one-to-
all task reallocation, which means that the uncompleted 
subtasks on an abnormal machine could be moved separately 
to any possible machine to favor application make-span. In this 
situation, we invoke the min-min task group allocation 
algorithm discussed in Section 4.3 to map the uncompleted 
subtasks on an abnormal machine into other machines. We set 

Assumption: a meta-task is composed of a number of 
independent subtasks. These subtasks are indivisible. 
Objective: Scheduling a meta-task 
--------------------------------------------------------------------------
Begin 
List a set of idle machines that are lightly loaded over an 
observed time period, },...,,{ 21 qMMMM = ; 

1=′p ; 1=′k ; 
1=p ; 

While qp <  
     List all the possible sets of machines, 

},,{ 21
p

z
ppp SSSS …= , MS p

i ⊂  and pS p
i =|| ; 

   For each machine set p
kS )1( zk ≤≤ , 

          Use task group allocation algorithm to group subtasks 
to each   machine in p

kS ; 
    Calculate )).(1)(( p

k
p

k SS
TCoeTE + ; 

    If   )).(1)(( p
k

p
k SS TCoeTE ′

′
′

′
+  > )).(1)(( p

k
p

k SS TCoeTE + , 
Then pp =′ ; kk =′ ; 

End If 
   End For 
   1+= pp ; 

End While 
Assign the meta-task to the machine set p

kS ′
′ ; 

End 

Fig. 3.  Optimal meta-task scheduling algorithm. 
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0=kW , φ=kTG  for the identified abnormal machines and 

=kW {the sum of workload of completed subtasks} and 

=kTG {the set of completed subtasks} for other machines. The 
cost of the self-adaptive scheduling algorithm is mainly 
decided by the cost of the search of an appropriate machine set 
for task reallocation. We have proposed a heuristic scheduling 
algorithm to search a near-optimal solution [9]. The earlier 
experiment data demonstrated its cost is ignorable. 

3) Performance metrics: We have discussed how to 
reschedule when we find resources showing irregular status. 
To evaluate the performance of the self-adaptive scheduling 
algorithms, we have to answer the following questions:  

a. Whether the algorithm can identify the abnormal 
machine? What is the error rate? 
b. Whether the self-adaptive scheduling algorithm can 
reduce the application performance loss due to resource 
abnormality? 
c. What is the appropriate utilization threshold to benefit 
the application performance? 
The key to a successful reschedule is that the self-adaptive 

task scheduling algorithm can rightly identify the abnormal 
machines where the performance degradation happens. The 
difficulty in identifying abnormal machines in a shared 
environment is that resource usage is dynamically changing. It 
is natural that a normal machine may present a high-level 
resource utilization during some periods and in the other hand, 
an abnormal machine may present a low-level resource 
utilization sometimes. Thus there is a possibility that we may 
identify an abnormal machine as a normal machine or a normal 
machine as an abnormal machine sometimes. Both situations 
will lead to a false rescheduling plan and thus an application 
performance deterioration. This is inevitable in a shared 
environment. Our aim is to find an appropriate utilization 
threshold so the wrong identification rate could be kept in a 
low level. 

A perfect identification of abnormal machines means that 
we successfully identify all abnormal machines while we don't 
make any mistake to take any normal machine as an abnormal 
machine. We use two metrics to describe the capability of the 
self-adaptive scheduling algorithm identifying abnormal 
machines, right identification of abnormal machine rate 
(RIAM) and right identification of normal machine rate 
(RINM). RIAM denotes the ratio of the number of rightly 
identified abnormal machines to the number of actual 
abnormal machines. RINM is defined as 

nf NN /1−  where 
fN  

denotes the number of identified abnormal machines that are 
actually normal machines and nN  denotes the number of 
normal machines. nf NN /  could be viewed as the error rate of 

identification of normal machine. To evaluate the efficiency of 
the self-adaptive algorithm in reducing the completion time of 
an application in the case of machines showing abnormal, we 
define the performance loss reduction rate (PLRR) as 

regularadaptiveselfregular TTT /)( −− .  adaptiveselfT −  denotes the 

completion time of a scheduled application with the self-
adaptive algorithm. 

regularT  denotes the completion time of the 

scheduled application without the consideration of 
rescheduling during application execution. 

 

IV. EXPERIMENT RESULTS 
To verify the efficiency of the proposed scheduling 

algorithms, we compared GHS scheduling with the AppLeS 
scheduling, a currently widely used task scheduling system in 
Grid computing. Experiments were conducted to test the 
performance of AppLeS task scheduling and GHS task 
scheduling mechanism for long-term applications. The results 
show the proposed scheduling system outperforms AppLeS for 
scheduling long-running applications and it requires less 
number of resources running the scheduled application than 
AppLeS. We then examined the efficiency of the self-adaptive 
scheduling algorithm. Simulation results show the self-
adaptive algorithm can identify the abnormality of resources 

Objective: Monitor the execution of an application in a set of 
machines and reallocate subtasks of the application if necessary.
---------------------------------------------------------------------------- 
Begin 
Repeat 
Measure the prediction error of the system utilization, kPU , on 
machine kM . 
If  ThresholdPU k >  then  
   Calculate )( originalTE ; 
   List a set of machines that are current lightly loaded,  

},...,,{ 21 qMMM ; 
   If reallocation is one-to-one then 
      For each machine, iM , suppose it is the machine which 

subtasks on kM  will be assigned.  
   Calculate i

reassignTE )(  with formula (2) 
      End For 
      Find the machine jM , which has the maximum 

j
reassignor iginal TETE )()( −  

      If  0)(()( >− j
reassignoriginal TETE  then  

         Migrate the subtask on machine kM  to machine jM . 
      End If 
   End If 
   If reallocation is one-to-all then 
      Sort the list of idle machines in a decreasing order with 

kk τρ )1( − , 
      Use bi-section search to find appropriate machine set P, 

which has the maximum P
reassignoriginal TETE )()( −  

      If  0)(()( >− P
reassignoriginal TETE  then  

      Migrate subtasks on machine kM  to the machine set P . 
      End If 
   End If 
End If 
Until the application is completed 
End

Fig. 4.  Self-adaptive task scheduling algorithm. 
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and reduce the make-span of the scheduled application through 
dynamically reassigning subtasks during the application 
execution. Finally we investigated different factors that affect 
the selection of an appropriate utilization threshold. 

A. Comparison of GHS scheduling and AppLeS scheduling 
AppLeS is probably the best known scheduling system in 

the Grid computation environment. It is based on NWS 
prediction system, which monitors and forecasts the resource 
performance on-line. AppLeS makes scheduling decision by 
estimating the mean of short-term subtask execution time 
based on resource availability provided by NWS. The effects 
of other system specific factors on the application completion 
time are not analyzed due to the inherent limitation of its 
methods. Our task scheduling system provides long-term 
application-level performance prediction in a heterogeneous 
non-dedicated distributed computation environment. The 
effects of machine utilization, computing power, local job 
service, and parallel processing on the completion time of 
parallel task are individually identified. 

To compare the performance of AppLeS task scheduling 
and the proposed task scheduling for long-term applications, 
we conducted experiments to test the completion time of 
applications under each task scheduling system. Here we 
consider the parameter sweep application because AppLeS 
doesn't support optimal parallel processing. Our initial 
experimental results have demonstrated that the System-level 
Predictor in our system outperforms NWS for long-term 
system-level prediction although NWS is still an effective tool 
for what it was designed, short-term prediction. To remove the 
performance loss caused by NWS prediction, we let AppLeS 
make scheduling decision based on the prediction provided by 
our system. In this way, we focus on the comparison of the 
scheduling algorithm performance of both systems. The 
comparison of the application completion time (seconds) and 
the number of machine set with the two different scheduling 
systems is given in Table 1. The experiment results show that 
the application completion time with our proposed scheduling 
system is reduced by 10%-20% compared with that with 
AppLeS system while only about one half of machines used in 
AppLeS system are required for task scheduling in our system. 
It indicates that the GHS scheduling system can identify a 
smaller set of machines to solve a large application in a shorter 
time. 

B. Self-adaptive scheduling 
We discuss the self-adaptive scheduling algorithm and three 

performance metrics in section 3.4.2. A simulation 
environment was set up to evaluate the rescheduling algorithm 
in a non-dedicated heterogeneous computation system. In our 
simulation environment, the arrival rate of local jobs on each 
machine follows Poisson distribution. The local jobs’ lifetime 
is simulated with x/0.2  [24], which follows the observation of 
real-life processes in [25]. x  is a random number between 0 
and 1. The local job arrival rate and the job service rate on 
each machine are randomly generated in an adjustable range. 

The resource utilization of each machine is thus different. 
Each machine is simulated with different computing capacity, 
randomly generated between 1 and 5. In our experiment, the 
utilization of a normal machine is located in a certain range 
and the utilization of an abnormal machine is in another certain 
range. Both ranges are adjustable. During the execution of the 
application, we randomly select some machines and “mute” 
their local job arrival rates and service rates to make them 
become abnormal machines. The number of machines showing 
abnormality during the application execution could be also 
adjusted. 

1) Self-adaptive scheduling of meta-tasks: A series of 
simulations have been conducted to verify the capability of the 
self-adaptive scheduling algorithm identifying normal and 
abnormal machines and the efficiency of the self-adaptive 
algorithm in term of performance loss reduction rate. The 
performance metrics were measured during these simulations. 
We studied RIAM, RINM and PLRR of the self-adaptive task 
scheduling with different monitor periods, different utilization 
thresholds, and different resource availabilities. 

Table 2 give measured RIAM, RINM and PLRR with 
different utilization thresholds for two system monitor periods, 
one hour and two hours. The meta-task to be scheduled is 
composed of 4000 subtasks. The maximum workload of a 
subtask is 4000 seconds (the computation time on the slowest 
machine). The average local job service rate is 10 for both 
normal and abnormal machines. The arrival rate of local jobs 
on normal machines is between 0.015 and 0.04. Thus the 
utilization of a normal machine is between 15% and 40%. The 
arrival rate of local jobs on abnormal machines is between 
0.065 and 0.085. So the utilization of an abnormal machine is 
between 60% and 85%. The size of the machine set is 20. Two 
machines are randomly selected to become irregular from a 
random time during the application running. For each 
parameter setting, we run simulation 30 times.  

The simulation results show that RIAM decrease with the 
increase of utilization threshold whereas the RINM increase 
with the increase of utilization threshold. When the utilization 
threshold is low (5% or 10%), the self-adaptive scheduling 
algorithm can identify all abnormal machines. Meanwhile, 
many normal machines are identified as abnormal machines. 
When the utilization threshold is large (50% or 60%), none of 
normal machines are identified as abnormal machines. 
However, some of abnormal machines are not identified. This 

TABLE I 
COMPARISON OF TASK COMPLETION TIME AND THE NUMBER OF MACHINES 
USED BY APPLES TASK SCHEDULING SYSTEM AND OUR TASK  SCHEDULING 

SYSTEM 
Workload 

(Maximum machine number) 
13801.7 

(25) 
27619.2 

(50) 
53779.5 

(100) 
108642.5 

(200) 
215141.0 

(400) 
Task completion 

time (s) 496.4 557.7 712.8 874.5 1140.4 
GHS 

Number of 
machine set 13 26 57 99 113 

Task completion 
time (s) 547.4 637.4 818.3 1022.7 1266 

AppLeS 
Number of 
machine set 25 50 100 200 400 
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leads the reduction of PLRR. 
From Table 2 and Table 3, we can find that the self-adaptive 

algorithm efficiently reduce the application performance loss 
in most situations although the application performance may 
get worse in a few extreme situations. It works best when the 
utilization threshold is set between 20%-30%. When the 
utilization threshold is out of this range, either low or high, the 
gain is comparably smaller. We notice that in this appropriate 
utilization threshold area, both of RIAM and RINM are close 
to 1.0, which indicate that the self-adaptive scheduling 
algorithm works best when it can rightly identify both the 
normal machines and the abnormal machines. 

We also measured RIAM, RINM and PLRR when the 
system monitor periods are set as four hours and half an hour. 
We keep other simulation parameter setting the same as the 
above. The simulation results are illustrated in Table 4 and 
Table 5. We find that in both situations the self-adaptive 
algorithm benefits the application performance. In the former 
situation, the PLRR is better when the utilization threshold is 
10% or 20% while the PLRR is better when the utilization 
threshold is 30% or 40% for the latter. This indicates that 
when we increase the system monitor period, even a small 

threshold could benefit the application performance. If the 
system monitor period is short, for example, half an hour, we 
have to choose a high utilization threshold so that the self-
adaptive task scheduling algorithm can efficiently reduce the 
performance loss caused by machine mutation. 

Is there any other factor that affects the selection of an 
appropriate utilization threshold besides the system monitor 
period? We conducted a series of simulations to study this 
problem. We tested the efficiency of the self-adaptive 
scheduling algorithm with different resource availability 
variation and various utilization differences between abnormal 
machines and normal machines. We observed different 
appropriate threshold range in these simulations. However we 
find that both RIAM and RINM are close to 1.0 for all 
appropriate threshold ranges. 

Fig. 5 gives the PLRR of meta-task scheduling under 
various average utilization differences between abnormal 
machines and normal machines (20%, 30%, 40%, 50%). For 
each utilization difference, we measured the PLRR in four 
utilization thresholds, 0.1, 0.2, 0.3, and 0.4. The monitor 
period is two hours. The PLRR is the average of 30 times of 
running simulation. The simulation results show that the 

TABLE II 
THE MEASURED RIAM, RINM AND PLRR OF META-TASK RESCHEDULING 

WITH DIFFERENT UTILIZATION THRESHOLDS WHEN THE MONITOR PERIODS IS 
TWO-HOUR 

Utilization 
threshold 

RIAM 
(aver) 

RINM 
(aver) 

PLRR 
(aver) 

PLRR 
(min) 

PLRR 
(max) 

5% 1.0 0.01 0.24 -0.28 0.49 

10% 1.0 0.56 0.24 -0.33 0.61 

20% 1.0 1.0 0.51 0.0 0.74 

30% 0.93 1.0 0.47 0.0 0.71 

40% 0.78 1.0 0.41 0.0 0.71 

50% 0.51 1.0 0.29 0.0 0.62 

60% 0.31 1.0 0.17 0.0 0.17 

 

TABLE IV 
THE MEASURED RIAM, RINM AND PLRR OF META-TASK RESCHEDULING 
WITH DIFFERENT UTILIZATION THRESHOLDS WHEN THE MONITOR PERIOD IS 

FOUR-HOUR 
Utilization 
threshold 

RIAM
(aver) 

RINM 
(aver) 

PLRR 
(aver) 

PLRR 
(min) 

PLRR 
(max) 

5% 1.0 0.07 -0.28 -1.25 0.48 

10% 1.0 0.92 0.47 0.0 0.73 

20% 0.98 1.0 0.48 0.0 0.71 

30% 0.91 1.0 0.45 0.0 0.71 

40% 0.70 1.0 0.37 0.0 0.65 

50% 0.43 1.0 0.24 0.0 0.62 

60% 0.17 1.0 0.1 0.0 0.62 

 
TABLE III 

THE MEASURED RIAM, RINM AND PLRR OF META-TASK RESCHEDULING 
WITH DIFFERENT UTILIZATION THRESHOLDS WHEN THE MONITOR PERIOD IS 

ONE-HOUR  
Utilization 
threshold 

RIAM 
(aver) 

RINM 
(aver) 

PLRR 
(aver) 

PLRR 
(min) 

PLRR 
(max) 

5% 1.0 0.00 -0.38 -0.53 0.59 

10% 1.0 0.07 0.25 -0.16 0.61 

20% 1.0 0.98 0.48 0.0 0.72 

30% 0.98 1.0 0.53 0.0 0.75 

40% 0.91 1.0 0.46 0.0 0.75 

50% 0.73 1.0 0.37 0.0 0.65 

60% 0.48 1.0 0.25 0.0 0.62 

 

TABLE V 
THE MEASURED RIAM, RINM AND PLRR OF META-TASK RESCHEDULING 
WITH DIFFERENT UTILIZATION THRESHOLDS WHEN THE MONITOR PERIOD IS 

HALF-AN-HOUR 
Utilization 
threshold 

RIAM
(aver) 

RINM 
(aver) 

PLRR 
(aver) 

PLRR 
(min) 

PLRR 
(max) 

5% 1.0 0.0 0.28 0.0 0.80 

10% 1.0 0.0 0.12 -0.14 0.66 

20% 1.0 0.98 0.02 -0.75 0.51 

30% 1.0 0.97 0.49 0.0 0.73 

40% 0.98 0.99 0.49 0.0 0.75 

50% 0.91 1.0 0.48 0.0 0.71 

60% 0.73 1.0 0.39 0.0 0.66 
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difference of PLRRs under four thresholds is getting smaller 
when the average utilization difference increases. We can find 
when the average utilization difference is 50% the PLRR is 
good even the threshold is set as 0.1. This indicates that the 
more the average utilization difference between abnormal 
machines and normal machines, the wider the appropriate 
threshold range. The simulation results also show that there is 
a constant improvement of PLRR for each threshold with the 
increase of utilization difference. We find that the PLRR 
increase around 40% when we increase the average utilization 
difference from 20% to 50% when the utilization threshold is 
set as 20%. 

In our experiment, we simulated local jobs’ lifetime with 
2.0/x where x is a randomly generated number between 0 and 
1. [24]. This distribution follows the observation of real-life 
processes [25]. Let Z denotes the maximum lifetime of local 
jobs. The variance of job lifetime is calculated as 

2))2ln)(ln
2

2(()1(
2

2 −
−

−−
−

Z
Z

ZZ
Z

Z . The more Z is, the bigger 

variance of job lifetime and thus the variance of resource 
utilization. Fig. 6 gives the measured PLRR with various local 
job lifetime variances. We set the maximum lifetime of local 
jobs from 120s to 3600s. The simulation results show that with 
the increase of job lifetime variance, the appropriate threshold 
range tends to move from the low level to the high level. When 
the maximum lifetime of local jobs is small (120s), the 
appropriate threshold is between 0.1 and 0.4. When the 
maximum lifetime of local jobs is large (3600s), the 
appropriate threshold is between 0.4 and 0.6. This simulation 
indicates that in the situation of high variance of resource 
availability, a large utilization threshold is preferred for a 
better performance gain. 

2) Self-adaptive scheduling of a parallel program: We 
evaluate the efficiency of the self-adaptive scheduling 
algorithm for parallel programs. Table 4 gives the measured 
RIAM, RINM and PLRR of parallel program rescheduling 
with different utilization thresholds when the monitor periods 
are one hour and two-hours respectively. We used the same 
simulation setting as above. The utilization of a normal 

machine is between 15% and 40%. The utilization of an 
abnormal machine is between 60% and 85%. We observed the 
same results as previous experiments for meta-task scheduling. 
The simulation results show that the self-adaptive algorithm 
can effectively reduce the application performance loss and it 
works best when RIAM and RINM are close to 1.0. In Table 6 
and Table 7, we find that the self-adaptive scheduling 
algorithm introduces more performance loss for parallel 
program rescheduling than meta-task rescheduling when the 
utilization threshold is set as a small value, such as 0.1. This 
reason is that because in the process of rescheduling a parallel 
program we do not consider further partition the workload of 
the subtask on the identified abnormal machine (we apply one-
to-one reallocation), the performance loss caused by wrong 
identification of abnormal machine is bigger than that of a 
meta-task where the subtasks on the wrong identified abnormal 
machine will be distributed to all possible normal machines. 
We also investigated the relationship among the appropriate 
threshold range, the average utilization difference between 
normal machines and abnormal machines, and the resource 
utilization variance for parallel program rescheduling. We 
observed the similar results as meta-task rescheduling. 
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TABLE VI 
THE MEASURED RIAM, RINM AND PLRR OF PARALLEL PROGRAM 

RESCHEDULING WITH DIFFERENT UTILIZATION THRESHOLDS WHEN THE 
MONITOR PERIOD IS TWO-HOUR 

Utilization 
threshold 

RIAM
(aver) 

RINM 
(aver) 

PLRR 
(aver) 

PLRR 
(min) 

PLRR 
(max) 

5% 1.0 0.00 -0.23 -6.35 0.49 

10% 1.0 0.38 0.11 -3.92 0.65 

20% 1.0 0.99 0.40 0.0 0.67 

30% 1.0 1.0 0.36 -0.67 0.67 

40% 0.93 1.0 0.35 -0.67 0.64 

50% 0.76 1.0 0.18 -1.79 0.64 

60% 0.43 1.0 0.08 -0.66 0.64 
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V. CONCLUSI

 In this paper, we study 
and meta-tasks in a heter
present the system design o
system. A task group a
scheduling algorithm are i
To reduce performance 
"mutation", a self-adapti
developed and three perfor
experimental tests were con
IIT to compare GHS task s
performance prediction b
results show that the propo
appropriate general-purpos
term applications. The dy
algorithm we proposed ade
of distributed computing 
scheduling by reallocating
abnormalities, which is no
systems. The performance
We have investigated sever
an appropriate threshold. T
that GHS scheduling syst
scheduling long-term ap
heterogeneous computing 
time with our scheduling
compared with that with A
about one half of mach
required for application r
system. 

We proposed and impl
application-level task 
heterogeneous computing 
approaches. It is a sati
performance evaluation an
components of our task s
and predictor, can be easily
better service. To furthe

accuracy of the proposed task scheduling system, the 
communication and the migration cost in task allocation will 
be investigated. We also want to study the task scheduling of 
multiple applications with the consideration of QoS in the 
future. 
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