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Abstract 

 
While resource management and task scheduling are 

identified challenges of Grid computing, current Grid 
scheduling systems mainly focus on CPU and network 
availability. Recent performance improvement of CPU 
and computer network has made memory usage a 
significant factor of overall performance. In this study, we 
consider memory availability as a performance factor and 
introduce memory conscious task partition and 
scheduling. Three task partition policies are discussed. 
They are CPU-based, memory-based, and CPU-memory 
combined partition. We first investigate the three task 
partition policies on dedicated resources and verify the 
effectiveness of the CPU-memory combined partition 
algorithm in finding an optimal solution. We then extend 
the task partition policies in non-dedicated environments 
with the consideration of resource sharing. Analytical and 
experimental results show that the CPU-memory 
combined scheduling approach outperforms either the 
CPU-based or memory-based scheduling approach 
considerably for memory-intensive applications in Grid 
environments.  
 
1. Introduction 

 
In order to provide high performance computation 

power to serve the increasing need of large applications, 
researchers strive to construct distributed systems for 
resource sharing and collaboration. Some of well-known 
existing heterogeneous distributed systems include 
Condor [1], NetSolve [2], Nimrod [3]. In the late 1990’s, 
a much more complex computation environment, Grid 
computing, was emerged [4]. The national scale Grid 
consists of various virtual organizations and has the 
potential to bring unprecedented computing power. 
However delivering this unprecedented computing power 
to the users is still an elusive problem. One of the major 
issues is how to schedule a large application in this 
complex infrastructure [5]. Many heuristic scheduling 

algorithms have been proposed for traditional high 
performance computing. Unfortunately, most of them are 
for dedicated systems and do not consider memory 
constraint in task scheduling. By dedicated, we mean the 
resources are dedicated for a given application. In 
contrary current distributed systems are composed of 
shared resources, where dedicated usage can only be 
achieved through reservation under certain environments. 
An effective scheduling system that can harvest shared 
resources is central to the success of Grid computing [4]. 

The application performance not only depends on CPU 
speed, but also on memory access speed. Compared to the 
rapid development of CPU technology, memory speed 
improvement lags behind the improvement of CPU speed, 
which hinders the further improvement of application 
performance. Some efforts have been made recently on 
efficiently managing memory resources in a distributed 
system. Load sharing policies were proposed to assign 
individual jobs to each node of a cluster system according 
to the combined load index of both CPU cycles and 
memory requirement [6-7]. They aimed to reduce the 
average slowdown of all the jobs where slowdown is the 
ratio between the wall execution time and the CPU 
execution time of a job. In this study, we consider, instead, 
how to partition a Grid application and schedule it on a 
cluster of distributed heterogeneous resources to obtain a 
minimum application execution time with the 
consideration of both CPU resource availability and 
memory resource availability. Research of Grid task 
scheduling is still in its infancy. The effect of CPU 
availability is studied in [5,8-10]. The effect of memory 
availability on task partition and scheduling, has not 
received appropriate attention at this time.  This study 
intends to change this situation. 

The rest of this paper is organized as follows: Section 
2 describes the related work. Section 3 introduces the 
system and application model. Three task partition 
policies on dedicated resources are investigated in this 
section. These policies, then, are extended into a Grid 
environment with the consideration of resource sharing. 
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Experimental results are presented in Section 4. Finally 
we conclude and summarize our work with Section 5. 

 
2. Related work 

 
Traditional work in task scheduling policy was mainly 

focused on dedicated systems, which cannot be assumed 
in non-dedicated computing environment like the Grid. 
New scheduling systems considering resource availability 
are under development [5,8-10]. A resource reservation 
strategy [11] was proposed in GARA to deliver end-to-
end Quality of Service for high-end applications. 
However, reservation tends to lead to low system 
utilization and may conflict with local resource 
management policy. Condor system [1] provides a 
matchmaking mechanism to allocate resources with 
ClassAds. However, its major goal is to improve the 
system throughput instead of parallel application 
performance. Scheduling algorithms in the AppLeS [5,8] 
project are designed for parallel applications. They are 
supported by short-term resource prediction provided by 
NWS services [12]. These algorithms consider CPU and 
Network resource availability. However, their scheduling 
decisions are based on determined estimation of resource 
availability and apt for short-term applications. In contrast, 
a long-term, application-level performance prediction and 
task scheduling system, namely Grid Harvest Service 
(GHS) system, is proposed recently [9]. However, as 
AppLeS, GHS scheduling system ignores the impact of 
memory resource availability on the scheduling decision-
making. In Nimrod/G, the economy is emphasized instead 
of application performance [13].  

Several studies have been reported on task allocation 
for load balance in a cluster computation environment 
considering memory resource constraints. An opportunity 
cost approach proposed in [6] converts the usage of 
resources including CPU and memory to a single 
homogeneous cost. Based on the cost, task is assigned or 
reassigned to each node for load balance. Load sharing 
policies with the consideration of effective usage of 
global memory were studied in [7]. They consider two 
types of application workload, known memory demands 
and unknown memory demands. However, both systems 
mainly target at load balance in cluster computing. Their 
major concern is how to reduce the average slowdown of 
all individual jobs in the system, instead of how to 
schedule a parallel application to achieve its best 
performance. A page replacement policy has been studied 
in [14] to impose the hard bounds on the available 
memory space for guest processes. This work provides 
technical support for memory resource reservation. 

 
3. Task partition and scheduling 

 

In this section, we first introduce the system and 
application model. Second, we investigate CPU-based, 
memory-based, and CPU-memory combined partition 
policies for dedicated systems. These policies are then 
extended to shared environments. 

 
3.1. System and application model 

 
We assume the system is composed of a set of 

machines },...,,{ 21 nmmm connected through general 
network infrastructure. Each machine in the system has its 
own computing capacity and memory space. It could be 
either a dedicated resource or a shared resource. If a 
machine is a shared resource, we name the machine 
owner’s sequential jobs as local jobs. The task to be 
scheduled is named as a Grid application. We assume that 
local job processing follows M/G/1 queuing system. This 
assumption is based on the observation of shared machine 
usage pattern [15-16]. We list the notion to be used 
through out this paper in the following. 

iτ : Computing capacity of machine im . 

ia : Available physical memory space for a Grid 
application at machine im . 

iλ : Arrival rate of local jobs at machine im . 

iρ : System utilization at machine im . 

iσ : Standard deviation of service time of local jobs on 
machine im .  

ji ,γ : link bandwidth between machine im  and machine 

jm . 
In this study, we focus on iterative parallel applications. 
In this application model, the application workload is 
distributed to a group of subtasks during each iteration. 
Subtasks are executed on a set of processors. After all 
subtasks are completed, the results are collected for the 
calculation of the application workload at the next 
iteration. To adapt the possible application workload 
change or system dynamics, the application workload 
may be redistributed among processors. This process is 
repeated until the completion of the application. The 
execution of an iterative parallel application usually 
follows a master-worker paradigm. A master process 
iteratively generates worker processes and assigns them to 
available resources. Iterative parallel applications are 
receiving increased attention because they have the 
potential to be executed adaptively in a dynamic 
environment such as Grid computing. Iterative parallel 
application have been widely used in solving a number of 
problems such as image processing applications, N-body 
simulations and computational fluid dynamics [17]. The 
application execution time on each machine in an iteration 
is composed of two parts: computation cost and 
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communication cost. The computation cost is the time 
required to finish the subtask workload and the 
communication cost is the time required for data transfer 
between the master process and worker process. A 
specific example of master-worker application that has 
been widely studied in Grid environments is meta-task, 
which is composed of a set of independent indivisible 
subtasks. The task partition and scheduling of a meta-task 
will be discussed in details in subsection 3.4. In this 
paper, we assume a subtask cannot be executed on a 
machine if its memory demand can be satisfied. This 
assumption could be lifted with a complex memory model 
[7] but it is out of the scope of this paper. 
 
3.2 Task partition on dedicated resources 

 
Scheduling of a single task in a Grid environment with 

consideration of memory constraint is simple: find all 
machines satisfying the task memory demand and then 
choose the machine whose expected task completion time 
is the shortest. In this study, we focus on parallel 
processing. In parallel processing, when there is a set of 
resources available, it is desirable to partition a large 
application into a group of relatively small subtasks and 
then assign subtasks to different available resources so 
that the application execution time can be minimized. 
How to distribute the application workload to subtasks 
and then map subtasks to available resources is the issue 
we need to address. 

A natural task partition strategy is to assign each 
machine a certain amount of workload so that subtasks on 
different machines are finished at the same time. However, 
this may be constrained by physical limitations, such as 
the available memory space on each machine. Our 
objective is to balance the workload of subtasks as much 
as possible while satisfying the memory constraint. The 
task partition problem of an iterative parallel application 
can be formulated as minimizing the difference between 
the maximum subtask completion time and the minimum 
subtask completion time over all possible partition plans 
subject to )1(, qiar ii ≤≤<  where ir  denotes the 
subtask’s memory usage on machine im  and q  is the 
number of machines. In this subsection, we assume that 
the application workload can be arbitrarily partitioned in 
each iteration. In subsection 3.4, we will discuss how to 
extend these policies to meta-task partition. 

CPU-only partition: the CPU-only method is a mean-
time partition. It partitions the workload of a parallel 
application so that subtasks on different machines are 
finished at the same time. Let b  denotes the subtask 
completion time. It includes the subtask execution time 
and the data transfer time between the master process (we 
assume it is on 0m ) and the worker process that executes 
the assigned subtask. We assume that the size of the 

transferred data ( iD ) is proportional to the subtask 
workload iw  ( ii cwD = ) and the communication delay is 
ignorable in data transfer cost. Thus, 

iiii cwwb ,0// γτ +=  

)1( qi ≤≤ . kw  is the subtask’s workload on machine im . 
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After getting the subtask workload kw , we calculate the 
subtask memory usage requirement, kr , on each machine. 
If there exists a machine im  where )1(, qiar ii ≤≤> in 
a task partition plan on a given machine set, this partition 
plan is considered invalid. A failure signal is returned to 
the task scheduling algorithm. 

Memory-only partition: the memory-only method 
partitions the workload of an iterative parallel application 
according to each machine’s memory availability in a 
given machine set. A machine is assigned with a 
workload proportional to its available memory space. The 
workload of a subtask on a machine can be calculated as 

kq

i
i

k a
a
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∑
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    (2) 

After obtaining the subtask workload kw  on machine km , 
we also check whether the subtask memory usage 
requirement kr  can be satisfied. If there is a machine im  
where )1(, qiar ii ≤≤> , the task partition plan is 
considered as invalid. The scheduling algorithm will 
choose other possible resource sets for task partition. 

CPU-memory combined partition: the CPU-memory 
combined partition method for an iterative parallel 
application is given in Figure 1. Let rM  denote the 
machine set where ii ar <  is satisfied for all machines. 
The basic structure of this algorithm is a loop of two 
steps. The first step is to apply a mean-time partition to 
calculate the subtask workload on a machine km . We 
then check the memory demand of its subtask. If the 
subtask memory demand cannot be satisfied by the available 
memory space on the machine, the workload of its 
subtask will be reduced to the maximum workload that 

km  can support in its available memory space. We then 
set kk ar =  and remove km  from rM . In this way, all 
machines are assigned with appropriate workloads. After 
that, we calculate the sum of assigned workloads. The left 
workload will be redistributed among machines in rM  in 
the next time-step. This process will be repeated until the 
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sum of left workloads is equal to 0 or 0|| =rM  which 
indicates no machine is available for task partition in the 
next time-step. If the left workload is larger than 0 and 

0|| =rM  after the loop ends, there is no solution for task 
partition on this machine set. A failure signal will be 
returned to the task scheduling algorithm. )( kwf  in 
Figure 1 is a function calculating the memory usage of a 
subtask with a given workload. )( kaF  is a function 
calculating the maximum workload that a machine can 
support in its available memory space. 

We now proceed to prove that the CPU-memory 
combined partition algorithm given by Figure 1 can find 
an optimal solution for the defined task partition problem.  

LEMMA 1. Let q  be the number of a machine set 

},...,,{ 21 qmmm and },...,,{ **
2

*
1

*
qwww=ψ  denote a 

partition plan where *
iw  is the worker process workload 

on machine im . Let 
imt denote the worker process 

execution time on machine im  under partition *ψ , 

},...,,{ 21 qwww=ψ  be the task partition plan we obtain 
using the proposed algorithm and }...,,{ ,21 pmmm ′′′  denote 
those machines where ii ar <  under the partition plan ψ . 
If a task partition plan *ψ  is optimal, then 

*** ...
21 pmmm ttt ′′′ === . 

PROOF: If *** ...
21 pmmm ttt ′′′ === does not hold, suppose 

**** ...min{
21 pi mmmm tttt ′′′′ ====  and 

**** ...max{
21 pj mmmm tttt ′′′′ ==== . It is obvious that 

**
ji mm tt ′′ ≠ . According to the CPU-memory combined 

algorithm, the worker process completion time on those 
machines }...,,{ ,21 pmmm ′′′  is the same because we use the 
mean-time partition method at each step. We denote it as 

pt . If *ψ  is optimal, pm tt
i

≤′
* . Thus 

ii mm ww ′′ ≤* . So 

ii mm ar ′′ <  also holds under partition *ψ . Then we can 
relocate part of workload from the worker process on 
machine 

jm′  to the worker process on machine im′  to get 
a new task partition plan, ψ′ . In this way, the difference 
between the maximum worker process execution time and 
the minimum worker process execution time in ψ′  is less 
than *ψ . This is against the assumption that *ψ  is an 
optimal partition plan. Q.E.D. 

THEOREM 1: The CPU-memory combined partition 
algorithm shown in Figure 1 can find an optimal task 
partition plan on a given machine set if it exists. 

It is obvious that if there exists an optimal task 
partition plan, we can obtain a task partition plan using 

the proposed algorithm because it fails only on the 
condition that all machines available memory are used up 
and there is still some workload left. Suppose oψ  is an 
optimal task partition plan for a parallel program with 
workload W and },...,,{ 21 qwww=ψ  is the task partition 
plan we obtain using the proposed algorithm. 

}...,,{ ,21 rmmm  denotes those machines with ii ar =  under 

ψ  which indicates no more workload can be assigned 
without breaking the memory availability constraint. 
Obviously, the workloads on machines, }...,,{ ,21 rmmm , 
under ψ  and oψ  are the same. The left machines, 

}...,,{ ,21 pmmm ′′′ , are machines where ii ar < . From Lemma 
1, we know that the worker process completion time on 
these machines is the same under oψ . Suppose it is )( ot ψ . 
According to the CPU-memory combined partition 
algorithm, for }...,,{ ,21 pmmm ′′′ , their worker process 
completion time are also the same. Suppose it is )(ψt . 

)()( ψψ tt o = . Otherwise )()( ψψ WW o ≠ . So the 
workloads on these machines under ψ  and oψ  are also 
the same. oψψ = . ψ  is an optimal task partition plan for 
a given machine set.  Q.E.D. 

 
3.3. Task partition on shared resources 

 
Utilizing only dedicated resources for Grid 

applications confines the fully delivery of Grid potential 
computing power because many resources in Grid 
computing are shared resources. 

How to evaluate the effect of local jobs on a Grid 
application execution in the situation of resource sharing? 
In subsection 3.1, we define three parameters, λ , ρ , and 
σ  to describe a machine’s local jobs usage pattern. When 
the memory usage of a Grid application can be satisfied 
by the available memory space of a resource, the 
cumulative distribution function of the application 
execution time on a machine can be calculated as [18]: 





 ≥>−≤−+

=≤
−−

otherwise
wtifSwtSUee

tT
ww

,0

/),0|/)(Pr()1(
)Pr(

// τττλτλ  (3) 

The mean of the Grid application execution time is: 

τρ
wTE

−
=

1
1)(     (4) 

To partition a Grid application in a shared environment, 
the same strategy as that of dedicated environment is 
applied. Our objective is to balance the workload of the 
Grid application as much as possible while satisfying the 
memory constraint. For an iterative parallel application, 
the task partition problem can be formulated as 
minimizing the difference between the maximum 
expected subtask completion time and the minimum 
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expected subtask completion time over all possible 
partition plans subject to )1(, qiar ii ≤≤< . The three 
task partition policies considering resource sharing are 
given as follows: 

CPU-only partition: the CPU-only method partitions 
the workload of an iterative parallel application so that the 
expected subtask completion time on different shared 
machines is the same. Let b  denote the worker process 
completion time. From formula (4), we know 

i
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i cwwb
,0)1( γτρ

+
−

=  (Here ji ,γ  denotes the available link 

bandwidth between machine im  and machine jm ). Using 
the same deriving method, we can obtain the subtask 
workload on km : 
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Please notice that formula (1) is a simple form of formula 
(5). If 0=iρ  is put (dedicated machine’s utilization) into 
formula (5), formula (1) is generated. NWS [12], a 
network prediction tool, is applied to estimate the 
available link bandwidth ji ,γ . 

Memory-only partition: the memory-only method 
partitions the workload of an iterative parallel application 
according to each machine’s available memory space in a 
given machine set. It is the same as the memory-only 
partition method in a dedicated environment. Formula (2) 
is used to calculate the subtask workload on km . 

CPU-memory combined partition: The CPU-
memory partition algorithm discussed in subsection 3.2 is 
modified to calculate the subtask workload on each 
machine considering resource sharing. In the while loop, 

formula (5) is used to calculate the subtask workload 
instead of formula (1). Since we use the same CPU-
memory combined partition strategy, THEOREM 1 also 
holds for the task partition problem on shared resources. 
 
3.4. Task partition of meta-task 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. CPU-memory combined partition algorithm 

for a meta-task 

Assumption: a meta-task is composed of a number of 
independent subtasks, },...,,{ 21 pT tttS = . Each subtask is 

has a memory usage requirement kr  )1( pk ≤≤ .  
Objective:  find a task group },...,,{

21 nkkkk tttG =  mapped 

on machine km  )1( qk ≤≤  
-------------------------------------------------------------------------
Begin 
/* kC  denotes the current estimated completion time of the 

assigned subtasks on machine km */ 

0=kC , φ=kG , )1( qk ≤≤ ; 1=i ; 
While φ≠TS  
  For each Ti St ∈  Do 
    1=j ; 
    While qj <  
          If 

ji ar ≤  
jijjiji wTE ,, )]1(*/[)( δρτ +−= ; 

          /* )( , jiTE  is the expected execution time of task it  

on machine 
jm */ 

          1+= jj ; 
    End While 
    Find machine km  where )( ,kik TEC + is minimal; 

Use formula (6) to calculate ),( ki mtPRIORITY ;  
  End For 
  Find a map of ),( vu mt  where ),( vu mtPRIORITY  is the   

maximum. 
  }{ uvv TGG ∪= ; )( ,vuvv TECC += ;  

  ikk raa −= , Update if necessary 
End While 
Return kG  and kW  )1( qk ≤≤ ; 
End 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. The CPU-memory combined partition 
algorithm for an iterative parallel application 

Assumption: The application workload, W , can be 
arbitrarily partitioned. Each machine in },...,,{ 21 qmmm has 

an available memory space ka )1( qk ≤≤ . 

Objective:  find the subtask workload on machine km  
)1( qk ≤≤  

-------------------------------------------------------------------------
Begin 

WWl = , 0=ckw , )1( qk ≤≤ ; 

},...,,{ 21 qr mmmM =  

While 0≠lW  and 0|| ≠rM  

     For all machine in rM  
          Using formula (1) to calculate kw ; 

          kckck www += ; 

          Calculate )( ckk wfr = ; 

          If kk ar > , Then  

)( kk aFw = , kk ar = , }{ krr mMM −= ; 
     End For 

∑
=

=
q

k
ckassign wW

1

; 
assignll WWW −= ; 

End While 
If 0≠lW  and 0|| =rM , Then return failure signal; 
End
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In Grid computing, task scheduling of a specific class 
of distributed application, meta-task, has been widely 
studied [5,8-10]. A meta-task is composed of independent 
indivisible subtasks, which may share some input files [8]. 
To adapt the dynamics of Grid environments, a meta-task 
is iteratively scheduled until its completion. The scheduler 
itself can be viewed as a master process. The question for 
meta-task scheduling is how to group subtasks into 
clusters and assign clusters of subtasks to available 
machines. The key to task partition of a meta-task is also 
balancing the workload of subtasks on each machine as 
much as possible while memory constraint is satisfied. 
However, because subtasks cannot be further partitioned, 
we cannot directly apply the above optimal CPU-memory 
combined partition method, which is based on the 
assumption that the application workload can be 
arbitrarily partitioned during each iteration. In general, 
task scheduling of a meta-task is NP-complete. A 
heuristic algorithm is thus proposed. Figure 2 gives the 
max-min CPU-memory combined partition algorithm for 
a meta-task. The intuition behind this heuristic is two-fold: 
a long subtask scheduled in the end would delay the 
whole execution; a subtask with a large memory demand 
scheduled in the end would introduce uneven workload 
distribution. The basic process of this algorithm includes 
two steps. In the first step, for each subtask, it , we find its 
favorite machine, km , where the subtask can be 
completed earliest. In the second step, we find a map of 

),( vu mt  where ),( vu mtPRIORITY  is the maximum. The 
),( ji mtPRIORITY  is defined as: 

ijiji rTmtPRIORITY **),( , βα +=  (6) 

where 
jiT ,
 is the expected completion time of it  on jm  

and 1=+ βα . In this algorithm, 
ji,δ  denotes the file 

transfer time of subtask it  on machine 
jm . The file 

transfer time depends on the file size and the available 
bandwidth between machine 0m  and machine im . For 
more details on the calculation of 

ji,δ , people can refer to 
[8]. We implement the CPU-only partition policy for a 
meta-task by extending the min-min task group algorithm 
[10] with the addition of memory usage check after each 
subtask assignment. In the memory-only partition method 
for a meta-task, each machines is assigned with a cluster 
of subtasks. The sum of these subtasks’ workloads is 
proportional to the machine’s available memory space. 

 
4. Experiment Result 

 
We verify the efficiency of the proposed scheduling 

algorithms in a simulation environment and an actual 
distributed system. The application is scheduled in both 
environments with different task partition approaches. We 

use the application completion time to evaluate the 
performance of task scheduling algorithm. 

In this simulation environment, the arrival rate of local 
jobs on each machine’s follows Poisson distributions. The 
local job’s lifetime is simulated with x/0.2  [6], which 
follows the observation of real-life processes in [19]. x  is 
a random number between 0 and 1. The job arrival rate 
and service rate are randomly generated on each machine 
so that different machines have different CPU usage 
patterns. We simulate three categories of machines with 
different ranges of available memory space: machines 
with high available memory space (400M~2G), machines 
with medium available memory space (100M~400M), and 
machines with low available memory space (0~100M). A 
machine’s available memory space is randomly generated 
in these three ranges. Because the scheduling process 
during each iteration of a Grid application execution is the 
same, we test the performance of task scheduling 
algorithm in one iteration in our environment. 

Figure 3 presents the average of the application 
execution time of an iterative parallel application 
scheduled with different task partition policies. The 
number of machines is 20. The simulation is executed 20 
times. The min and max of the application running time 
are given. We can see that the CPU-memory combined 
scheduling approach outperforms either the CPU-based or 
memory-based scheduling approach considerably. The 
performance gain of the CPU-memory combined 
approach is around 23% and 53% compared to CPU-
based and the memory-based approach, respectively. 

The effect of memory availability on the performance 
of task scheduling algorithm is shown in Figure 4. In the 
above simulation, the three different ranges of memory 
space availability can be represented with a triple (100, 
400, 2000). We adjust the range of available memory 
space and measure the average of the application 
execution time with the three partition policies. The 
numbers on the X-axis stand for five different memory 
resource availabilities: (50, 200, 1000), (75, 300, 1500), 
(100, 400, 2000), (150, 600, 3000), and (200, 800, 4000). 
The experiment results show that CPU-only partition is 
much sensitive to memory resource availability compared 
with other partition policies. When the available memory 

0
5000

10000
15000
20000
25000
30000
35000
40000
45000

execution
time

cpu-only  mem-only  cpu-mem

minimum
average
maximum

Figure 3. The Average, Minimum, and Maximum 
Performance of an iterative parallel application



 

space is reduced to some extent, the average application 
running time is increased dramatically. However, with the 
increase of available memory space, the performance of 
the scheduling algorithm with the CPU-only partition is 
approaching to CPU-memory combined scheduling 
approach while the performance of the memory-only 
partition approach is still low. This conforms our analysis 
that when the available memory space on each machine is 
large enough to accommodate any assigned workload, the 
CPU-only approach is the same as the CPU-memory 
approach. 

Experiments are conducted to evaluate the meta-task 
scheduling in a simulation environment and an actual 
system. We measure the completion time of a meta-task 
scheduled with the three partition approaches in a 
simulation environment similar to that in [8]. We assume 
that the system is composed of a group of clusters. Each 
cluster has a file server. Each subtask of a meta-task has 
some input files. The input files of a subtask must be 
transferred to the machine where the subtask is assigned 
before its execution. Because the effect of link bandwidth 
heterogeneity on the application scheduling decision is 
not the focus of this work, we assume that all link 
capacity is the same in our simulation environment. The 
map of files and subtasks is randomly generated during 
each simulation. We also observed that CPU-memory 
combined scheduling approach outperforms either the 
CPU-based or memory-based scheduling approach 
considerably in two classes of memory availabilities: (100, 
400, 2000) and (200, 800, 4000). Table 1 shows that the 
average performance gain of the CPU-memory combined 
approach is around 49% and 57% compared to the CPU-
based and memory-based approach, respectively. 

An actual heterogeneous computing environment is 
used to examine the performance of three scheduling 
methodologies for meta-task scheduling in different 
system configurations. The distributed system is 
composed of two clusters (Sunwulf and Ares) and two 
servers (Scala and Meta). Sunwulf is composed of a 
server (Sun-enterprise 450, 4G physical memory space, 
SunOS 5.8) and 64 computational nodes (Sun-blade 100, 
128M physical memory space, SunOS 5.8). The server 
and 5 nodes are used in our experiment. Ares is an IBM-
xSeries 1350 on Linux OS, composed of a server and 14 
computational nodes. All of them have 4G physical 
memory spaces. The server and 5 nodes are used in our 
experiment. The two other servers are Scala (Sun-ultra 10, 
256 physical memory space, SunOS 5.7) and Meta (Sun-
fire 280, 1G physical memory space, SunOS 5.8). The 
available memory space on each of these machines is 
random generated within their physical memory spaces. 
The meta-task to be scheduled is composed of a series of 
NAS Benchmarks (BT, CG, LU, MG, IS and SP). The 
class types of these benchmarks are, in general, “B”, “A”, 
and “W”. We assume that 10 input files are needed for 
these benchmarks. The available bandwidth from the 
meta-task submission machine to Sunwulf, Ares, Scala, 
and Meta are around 110Mbps, 110Mbps, 560Mbps, and 
110Mbps respectively. Figure 5 shows the execution time 
of a meta-task with three scheduling approaches. In all the 
three system scenarios, dedicated, shared, and mixed (two 
cluster servers are dedicated while others are shared), the 
CPU-memory combined scheduling approach 
outperforms either the CPU-based or memory-based 
scheduling approach. 

In our experiment, the task partition and scheduling 
algorithm are executed on a Pentium 2.66GHz PC. The 
cost of task partition is too small to be noticeable. We 
measure the cost of task scheduling of an iterative parallel 
program in finding an optimal solution with a branch-and-
bound method. The cost is around 11 seconds when the 
system size is 20. When the system size is beyond 20, a 
heuristic algorithm proposed in our previous work [9] can 
be applied to further reduce the scheduling cost. 

 
 
 
 
 
 
 
 
 

Figure 5. Meta-task completion time under three 
system configurations 
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Experiment result shows that the heuristic task scheduling 
cost is only 4.3 seconds when the system size is 80. 
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5. Conclusion 
 
In this study, we investigate memory-conscious task 

scheduling for iterative parallel applications in Grid 
environments. A specific class of iterative parallel 
applications, meta-task, is also investigated. Three task 
partition policies are discussed. Analytical analysis is 
given to confirm the correctness and effectiveness of the 
proposed CPU-memory combined partition. In our 
experiments in both a simulation environment and an 
actual distributed system, we observed that the average 
performance gain of the CPU-memory combined 
approach is around 23% and 49% compared to CPU-
based and 53% and 57% compared to the memory-based 
approach for task scheduling of a parallel application and 
a meta-task, respectively. 

The newly proposed memory-conscious task 
scheduling approach is a complement of existing task 
scheduling systems. It can be integrated into existing 
toolkits [5,9] for more appropriate task scheduling for 
memory intensive applications. Like most existing task 
scheduling systems, the current implementation of the 
proposed scheduling system has its limitations. For 
instance, the estimate of communication costs for data 
transfer among processes is relatively simple. More 
analysis of system communication architecture is needed 
to improve the prediction accuracy. To enable memory-
conscious scheduling in Grid environments, we plan to 
integrate the proposed task partition and scheduling 
approaches into Grid resource management and job 
submission services [20] to investigate it further on large 
engineering applications. 
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