
GHS: A Performance System of Grid Computing

Xian-He Sun, Ming Wu
Department of Computer Science

Illinois Institute of Technology
Chicago, Illinois 60616, USA

{sun, wuming}@iit.edu

Abstract
Conventional performance evaluation mechanisms

focus on dedicated distributed systems. Grid computing
infrastructure, on another hand, is a shared collaborative
environment constructed on autonomic virtual
organizations. The non-dedicated characteristic of Grid
computing prevents the leverage of conventional task
scheduling systems. In this study, we present the design
and development of the Grid Harvest Service (GHS)
performance evaluation and task scheduling system for
solving large-scale applications in a shared network
environment. GHS combines stochastic models and
artificial intelligence learning mechanisms with task
scheduling algorithms. It considers both computing and
network contention and supports scheduling for single
task, parallel processing, and meta-tasks. Experimental
results show that GHS provides a satisfactory solution for
performance prediction and task scheduling and has a
real potential.

1. Introduction

With the advance of Internet, many scientists turned
to construct large geographically distributed systems in
recent years. The successes of distributed systems such as
Condor, NetSolve, Globus, and Nimrod inspire and
facilitate the formation of national scale distributed
environments, Grid computing [FoKe04]. While much
progress has been made in standardization of protocols
and interface to facility coordination, the main challenge
of enterprise network computing remains the same:
resource management and task scheduling. There is a big
gap between the potential peak performance and the
delivered performance in Grid computing.

The conventional parallel processing scheduling
methods cannot apply directly to a Grid environment
where computing resources are autonomic shared. The
key to Grid task scheduling is to understand the usage
pattern and predict the availability of computing and
communication resources, and to find their influence on
the application performance. Some latest Grid tools, such
as Network Weather Service (NWS) [WoSH99], have
been developed to meet the need. However, these tools
are for short-term resource availability (generally in tens
of seconds). Another solution is adapting resource
reservation to reduce the complexity of resource
management in a shared environment. This approach

requires resource owners to have good planning on their
own tasks and suffers in system utilization. This approach
is useful for high priority tasks or to show the potential of
Grid computing, it but has difficulties to be employed in a
general enterprise environment. Also, resources
reservation will be more effective if it is based on
resource availability prediction. Supported by the NSF
NGS program, we have been developing a long-term,
application-level performance prediction and task
scheduling system, the Grid Harvest Service (GHS)
system, for Grid computing. The “long-term” signifies
that the system is designed for large applications that need
hours of computations and is in contrast to the current
Grid performance systems such as NWS. By “application-
level” we mean that the goal is to reduce the run-time of
user applications and is in contrast to resource availability
prediction. GHS addresses the performance issues of
computation and communication. It is designed to
integrate novel stochastic and analytical modeling with
newly developed scheduling and rescheduling
methodology to utilize the performance, enhance Quality
of Service (QoS), reliability, and trust of Grid Computing.

2. Grid Harvest Service

A series of technical challenges arise in Grid
computing due to resource availability and heterogeneity.
This includes evaluating resource availability on
application performance, partition and schedule a parallel
application accordingly, and the support of dynamic
scheduling. The Grid Harvest Service system comprises
of five primary subsystems: performance evaluation,
performance measurement, task allocation, task
scheduling, and execution management. Coordinately,
they provide appropriate services to harvest Grid
computing.

2.1. Performance evaluation

The most challenging technical hurdle of task
scheduling in shared environments is to estimate the
resource availability and to find its influence on the
application performance. Analytical modeling in general
has limited success in capturing the effect of “sharing” of
non-dedicated resources. Nonetheless probability and
stochastic modeling are often either too simplified or
cannot reach a meaningful solution for a given

engineering application. Existing models do not match the
complexity of the Grid.

Computation modeling. We have developed a
model for non-dedicated computing [GoSW02]. It was
derived from a combination of rigorous mathematical
analysis and intensive simulation to make it generic and
practically useful. The model considers the heterogeneous
machine utilization and computing capacity,
heterogeneous job arrival rate as well as heterogeneous
service distributions. The effects of machine utilization,
computing power, local job service and task allocation on
the completion time of remote task are individually
identified.

We refer the application under scheduling the remote
task and the other competing local processes the local
jobs. As observed and reported by researchers at
Wisconsin-Madison, Berkeley, Maryland, et al, the arrival
of local jobs in machine usage patterns follows a Poisson
distribution with λ , the service time of local jobs follows
a general distribution with mean µ/1 and standard
deviation σ . The cumulative distribution function of the
remote task completion time is derived as:

 ≥>−≤−+

=≤
−−

otherwise
wtifSwtSUee

tT
ww

,0
/),0|/)(Pr()1(

)Pr(
// τττλτλ (1)

where µλρ /= is the machine utilization, σµθ = is the
coefficient of variation of service, τ is the computing
capacity, and w is the workload of the remote task. The
first term on the right-side of equation (1) is the
performance without interruption. The second term,

),0|/)(Pr()1(/ >−≤− − SwtSUe w ττλ is the performance with
the interruptions. Special efforts were made to use
intensive simulations to find the distribution of the second
term so that equation (1) can be used in actual
performance predication. In the case of a parallel
application,)Pr()Pr(tTtT k ≤∏=≤ is used to calculate the
cumulative distribution function of the application
completion time. Initial experimental results confirm the
theoretical finding and show this model is practical and
works well.

Communication modeling. Modeling of end-to-end
network performance is essential for estimating the
communication cost of message transfer between parallel
processes and data transfer among dependent tasks.
Queuing theory has been widely applied in the analysis of
network performance based on the assumption of Poisson
job arrival with exponential service time. However, this
assumption is against the observation of real-world
network traffic, which presents self-similar properties.
Moreover, the end-to-end network path between two
remote nodes may dynamically change to adapt the
variation of network traffic. These characteristics make
network performance modeling extremely challenging.
Existing models do not capture the complicated short and

long-range temporal dependence characteristic of wide-
area network traffic.

We have applied ANN (Artificial Neural Network)
techniques to model network traffic [EsSW05]. The
strengths of ANN are its outstanding learning abilities,
robustness to noise, and need of little prior knowledge. By
online learning, ANN model can take into account the
changes in the environmental conditions and adapt itself
to the changes. Our ANN model predicts network
performance in terms of available bandwidth and latency,
and consists of five basic steps: collecting network traffic
data; setting the right bin size and prediction step;
preparing input parameters for neural network training;
choosing appropriate ANN parameters such as learning
rate, epoch number, and layer structure; and verification
of established ANN model. A challenge in the
construction of neural network model is the tradeoff
between prediction accuracy and cost. After exhaustively
examining all combinations of possible input parameters
derived from the real-world network traffic trace files
provided by WAND, ITA, and MOAT [EsSW05], we
have identified the following parameters as most useful
information for bandwidth prediction: timestamp, average
packet rate, average bit rate, and their past information.
To further improve the prediction accuracy, we examine
the network traffic composition in the trace files. We find
the network traffic in trace file, which is usually
composed of different types of application traffic like
TCP, UDP, ICMP and others. The application traffics
statistics indicate that each type of traffic data presents a
different traffic pattern. Instead of training one neural
network to learn different patterns, we can construct an
individual neural network model for each of them and
then combine the individual prediction results into the
overall traffic prediction.

2.2. Task allocation

Similar to parallel computing, Grid computing
generally involves three steps: task allocation, task
scheduling, and task execution. Task allocation decides
how to partition an application into subtasks and then task
scheduling maps them to a chosen set of resources for
optimal performance. Workload balance approach is
widely used in parallel computing. Conventional parallel
computing tools cannot directly be applied to the Grid due
to its heterogeneous and dynamic resource availability
and capacity. A mean-time task partition algorithm is thus
developed in GHS to distribute the workload of a parallel
program to each resource so that the difference of the
mean of expected execution times of the subtasks is
minimal. A min-min algorithm is implemented to cluster
subtasks of a meta-task and map each set of subtasks to a
resource based on the prediction of the execution time of
each set. The basic idea of these two algorithms is
execution time balance, in contrast of the conventional

workload balance approach. A detailed description of task
partition with respects of CPU, memory, network
resource heterogeneity and resource sharing is given in
[WuSu04].

2.3. Task scheduling

The GHS task scheduling takes the prediction from
the performance evaluation subsystem. It supports
different scheduling scenarios according to the
application’s requirement. Scheduling algorithms are
proposed and tested for sequential task, parallel program,
and meta-task, respectively. A heuristic scheduling
algorithm is proposed to find a near optimal solution with
a reasonable cost based on our computing model
[SuWu03].

A challenge of task scheduling in Grid computing is
to handle different abnormal situations, such as abnormal
computing and I/O performance, system shut down, un-
trusted system behavior, failure of Globus software
package, and undermined security. To provide reliable
scheduling, we implement a trigger system that uses the
GHS performance measurement subsystem to collect
information and automatically trigger rescheduling
[DGSS04]. The trigger system is rule-based and can add
in new abnormal conditions. A task-rescheduling
algorithm and associated environment is developed
[WuSu04]. The subtasks on resources showing abnormal
performance are assigned to other appropriate resources
based on a re-estimation of the application completion
time. A variant of formula (1) is used to calculate the
cumulative distribution function of the application
execution time in this situation.

 ≥≤
=≤ ∏

=

otherwise

wtiftT
tT

m

i
i

,0

,)Pr((
)Pr(max

1

 (2)

where)0|/)(Pr()1()Pr('// ''

>−−≤−+=≤ −−
iiiii

ww
i SwttSUeetT iiiiii ττλτλ .

it denotes the execution time of subtasks on machine i by
so far and '

iw denotes the workload of subtasks on
machine i that haven’t been completed.

}max{ '
max ii wtw += .

2.4. Execution Management

Execution management subsystem carries the task
partition, scheduling, and re-scheduling policies. It
consists of two parts: task management and execution
engine. The task management maintains the map of
application’s subtasks among resources and their running
status. The execution engine serves job submission,
monitoring, and task re-scheduling. It also cooperates
with the performance evaluation subsystem to identify
abnormalities. When either a subtask is finished or a
performance abnormality is identified, the execution
engine reports it to the task management component. In
the latter case, a task re-scheduling will be triggered and

task re-scheduling algorithms will be invoked to find
where and when the subtasks should be moved or
migrated. Funded by the NSF Middleware Initiative (NMI)
program, we have developed a process migration system,
named the High Performance Computing Mobility
(HPCM) [HPCM03, DuSC03], which supports run-time
process migration of native codes written in C or Fortran
in a heterogeneous Grid environment between different
virtual organizations. HPCM provides the infrastructure
for actual run-time dynamic scheduling and task
reallocation.

3. Software Architecture

The Grid Harvest Service system is designed based
on the novel prediction, partition, and scheduling
mechanisms discussed above.. Its software architecture is
depicted in Figure 1. Its major components include
performance measurement engines, system-level
predictors, an application-level predictor, a task allocator,
a task scheduler, execution engines, as well as a task
manager. The performance evaluation subsystem is
designed with an application-level predictor and system-
level predictors component that are distributed on each
resource. The execution management subsystem consists
of a task manager and an execution engines component.

The life cycle of a meta-task scheduling with GHS is
presented as follows to illustrate how each GHS
component collaborates to enable the running of
applications in shared environments.
1. A user uses a task editor to compose the meta-task he
wants to submit. He can select a group of machines for his
application running or leaving it to the task manager. The
task manager will collect the resource information and
decide which set of machines is appropriate.
2. The task manager sends a task scheduling request to
the task scheduler, which includes the application
information and resource information. Based on the
request, the task scheduler consults the system-level
predictor on correspondent resources to get the estimated
resource availability. The task scheduler then contacts the
task allocator and the application-level predictor to find an
optimal plan that satisfies the user’s requirement.
3. The task manager records the mapping information of
subtasks among resources returned by the task scheduler.
After that, the task manager sends subtasks and their input
and output files to the execution engines on correspondent
resources according to the map information through scp or
the GridFTP service.
4. After receiving the subtask allocation information, the
execution engine (EE) consults the local resource
management system to submit application’s subtasks. It
monitors the subtask running and maintains the status of
subtasks. When a subtask is completed, the execution
engine sends a message to update the application status in
the task manager.

5. During the execution of subtasks, the performance
measurement engine (PME) monitors the resource status
and the execution engine collect the application running
information. The execution engine periodically compares
the observed resource behavior and the expected resource
behavior obtained through the system-level predictor
(SLP). If abnormal situations are detected, a rescheduling
request is sent to the task manager.
6. The task manager collects the latest status of tasks and
resources in the system and sends the information to the
task scheduler for task reallocation. Based on the
generated rescheduling plan, the HPCM is invoked to
move the application’s subtasks from abnormal resources
to appropriate machines.

Step 4 – Step 6 are repeated until the completion of a
Grid meta-task.

The above software architecture allows seamless
integration of GHS components with Grid services to
enable efficient performance evaluation and task
scheduling. The Grid Information Service can be used by
the task manager to locate potential available resources.
The Grid FTP service can be used to handle the transfer
of applications and their data files and the GRAM can be
used in execution engines to dispatch subtasks on
resources. Following OGSA, the task scheduler and the
application predictor can be represented as Grid services
so that they can serve other Grid Services, such as the
Grid-enabled Programming System (GEPS), Problem
Solving Environment (PSE), in a Grid runtime system.

4. Experimental results

We have partially implemented the GHS system as a
proof of concept. Initial experimental results, collected at
the Argonne and Oak Ridge national laboratories, as well
as at IIT, are very encouraging. They confirm the GHS
design principle and its potential. We have compared the
prediction error of GHS and NWS [WoSH99] and the
performance of GHS scheduling and AppLeS [BWCC03]
scheduling for long-term applications [SuWu03,
EsSW05]. We consider NWS and AppLeS, as they are the
best-used performance prediction and task scheduling
system, respectively, in current Grid computing practice.

Performance Evaluation. The Network Weather
Service [WoSH99] provides short-term system-level
performance prediction based on various simple
forecasting methods. As it claims, it is suitable for jobs of
five minutes time span or less. To evaluate the accuracy
of the prediction model, we define the prediction error as

|
Pr

|
tMeasuremen

tMeasuremenedictionperiod − . Figure 2 shows an

experiment conducted on the 64-node Sun ComputeFarm,
named Sunwulf, at IIT. The application is a replication of
NAS Serial Benchmarks. The class type of these
benchmarks is “A” or “W”. The local job’s lifetime is
simulated with the observation of real-life processes

[SuWu03].
prediction
and 5 m
respectively
NWS rema
on GHS
workload. T
is fundam
application

Figure
prediction
with diffe
sequential
Each node
expectation
smaller wit
the predicti
3 (b) show
completion
Argonne

Figure

50

100

150

pr
ed

ic
tio

n
er

ro
r

(%
)

F

Task Scheduler

Application-
level Predictor

Grid Information
Service

Application Layer

GEPS

Collective Layer

Task Editor

Task Allocator

Task Manager

Fabric Layer

GRAM
Resource Layer

Internet GSI Connectivity Layer

GridFTP

PME

RTS
Sensor

SLP
Sensor

Senso
EE PME

RTS
Sensor

SLP
Sensor

Senso
EE

PSE
igure 1. Software structure of
Grid Harvest System
 The three predictions are based on NWS
in terms of 10 seconds (default set of NWS)
inutes, and prediction provided by GHS,
. It shows that the prediction error based on

ins very high while the prediction error based
decreases with the increase in application
his comparison shows that the GHS approach
entally more appropriate for long-term

s.

 3 (a) gives the expectation and variance of the
error on the parallel program completion time
rent task demands (from 4 to 256 hours
processing time) on 32 nodes of the Sunwulf.
is simulated with different usage patterns. The
 and variance of the prediction error get
h the increase in job length. We also evaluate
on model on actual Grid environments. Figure
s the prediction error of a remote parallel task
 time on Pitcairn, a productive Grid node at
National Laboratory. Pitcairn is a

2. Mean of the prediction error of NWS
and GHS

0
1 2 4 8 16 24

remote task demand
(hours)

NWS (10 seconds)

NWS (5 minutes)

GHS

multiprocessor with 8 250MHz UltrasparcII processors
and 1GB of shared memory. It is a Grid node shared by
many users. The result again shows that the expectation
and variance of the prediction error get smaller as the
demand of remote task increases.

To verify the efficiency of the proposed Neural
Network based prediction approach for network
performance estimation, comparison is made with that of
NWS. Figure 4 shows the performance comparisons of
ANN and NWS for varying bin sizes for one-step
prediction of AUCKLAND IV and II traces [NLAN04].
From the graph we can see that the prediction results of
ANN supersede those of NWS for each bin size,
illustrating the performance of the ANN mechanism is
noticeably better than that of NWS. Compared with the
prediction error of NWS, the performance gain of ANN
prediction is 26.1% for AUCKLAND IV and 34.4% for
AUCKLAND II. ANN is even more powerful for a given
network application due its ability to learn [EsSW05].

Task scheduling. AppLeS makes scheduling
decision through estimating the mean of subtask
execution time based on the prediction of resource
utilization provided by NWS. Other system specific
factors are not analyzed due to the inherent limitation of
these methods. The GHS task scheduling system provides
long-term application-level performance prediction. The
effects of machine utilization, computing power, local job
service, and parallel processing on the completion time of
parallel task are considered.

We choose the parameter sweep application to
compare AppLeS and GHS because AppLeS only

supports meta-task scheduling but not general parallel
processing. Since we have proven NWS does not work for
long-term predictions, for a fair comparison, we have
modified AppLeS to let it access GHS’ prediction. The
comparison of application completion time (seconds) and
the number of machine set with the two different
scheduling systems in a simulated Grid environment is
given in Table 1. Simulation results show that the
application completion time with GHS is 10%-20% less
compared with that of AppLeS while only uses about one-
half of the number of machines used by AppLeS. The
GHS scheduling uses fewer machines and finishes in a
shorter time than AppLeS for large applications. The
reason is that GHS scheduling considers the effect of
machine availabilities on parallel processing while
AppLeS does not. GHS scheduling is designed for shared,
dynamic systems. It has a real potential.

Table 1. A Comparison of AppLeS and GHS
scheduling (machine number and task completion

time)
Workload

(Max. machine number)
13801.7

(25)
27619.2

(50)
53779.5

(100)
108642.5

(200)
215141.0

(400)
task time (s) 496.4 557.7 712.8 874.5 1140.4

GHS
number 13 26 57 99 113

task time (s) 547.4 637.4 818.3 1022.7 1266
AppLeS

number 25 50 100 200 400

5. Related work

Figure 3. Expectation and variance of
prediction error on parallel machines

0

10

20

30

40

50

0. 25 0. 5 1 2 4 8
parallel task demand (hours)

pr
ed

ic
tio

n
er

ro
r

(%
)

expectation
variance

0
2
4
6
8

10
12

pr
ed

ic
tio

n
er

ro
r

(%
)

0.5 1 2

parallel task demand
(hours)

expectation
variance

(a)

(b)

8.00%

10.00%

12.00%

14.00%

16.00%

18.00%

10 60 100 300 600

Bin Size (s)

M
ea

n
Er

ro
r (

%
)

ANN
NWS

8.00%

11.00%

14.00%

17.00%

20.00%

23.00%

10 60 100 300 600

Bin Size (s)

M
ea

n
Er

ro
r (

%
)

ANN

NWS

(a) AUCKLAND IV

(b) AUCKLAND II
Figure 4. Performance comparison of
ANN and NWS for one step prediction

Performance evaluation techniques have been widely
used in parallel and distributed programming
environments. Some well-known systems include Paradyn,
TAU, Prophesy, and SCALEA [SuWu03]. These
performance evaluation tools measure and analyze the
application performance. However, they focus on
application performance in a dedicated parallel system
instead of a non-dedicated distributed environment. They
don’t provide performance prediction based on resource
availability. The NWS [WoSH99] monitors and forecasts
resource performance on-line. RPS Toolkit [DiHa99]
predicts the CPU availability of a Unix system over a
small time range with the time series techniques. These
works are for non-dedicated environments. However, they
only predict the short-term (five minutes or less, with a
good prediction around 30 seconds) availability of non-
dedicated resources. There is no application-level
performance analysis and long-term prediction.

Most scheduling methodologies in distributed
systems concern on application performance or system
load balance issues. They are based on either current
system usage or advanced resource reservation
mechanism. Reservation asks resource owners giving up
their privilege and may suffer in system utilization. It
might be useful for high priority tasks or to show the
potential of Grid computing, but has difficulties to be
fully employed in a general enterprise environment. The
experience in the development of the GrADS project
[BCCD01] and other Grid projects has demonstrated that
the integration of performance evaluation mechanism
with application is pivotal to the success of Grid
environments.

6. Conclusions
We have presented the mechanisms and design of the

GHS system for Grid performance prediction and task
scheduling. A prototype of GHS is under development,
which consists of performance evaluation, performance
measurement, task allocation, task scheduling, and
execution management subsystems. Initial experimental
testing is conducted on production machines at Argonne
National Laboratory, Oak Ridge National Laboratory, and
IIT and on real wide-area network traffic collected by
WAND, ITA, and MOAT. Experimental results show that
GHS adequately captures the dynamic nature of Grid
computing. The performance gain of GHS prediction
significantly supersedes other prediction systems such as
NWS. Experimental results also show that, in scheduling
of large applications on a non-dedicated heterogeneous
environment, GHS scheduling decreases the task
completion time by 10%-20% than that of AppLeS, while
using only about one-half of the machines used by
AppLeS.

Current GHS implementation separates the
computing consideration with communication

consideration, and is only for the proof of concept.
Supported by the NSF NGS program, we are working to
fully implement the GHS program. We plan to release a
prototype GHS system for computing intensive
applications in 2005. With continued funding, we plan to
extend the computing-only GHS to support
communication intensive application as well, and
embedded GHS into Grid environment seamlessly via
Java CoG Kit as Grid service.

Acknowledgments
This research was supported in part by national

science foundation under NSF grant CNS-0406328, ANI-
0123930, and EIA-0224377.

References
[BCCD01] F. Berman, A. Chien, K. Cooper, J. Dongarra, et al,
“The GrADS Project: Software Support for High-Level Grid
Application Development”, International Journal of High
Performance Computing Applications, Vol. 15, No. 4, pp. 327-
344, 2001.
[BWCC03] F. Berman, R. Wolski, H. Casanova, W. Cirne, et al,
“Adaptive Computing on the Grid Using AppLeS”, IEEE
Transactions on Parallel and Distributed Systems, Vol. 14, No. 4,
pp 369-382, 2003.
[DGSS04] C. Du, S. Ghosh, S. Shankar, and X.-H. Sun, “A
Runtime System for Autonomic Rescheduling of MPI
Programs,” in the Proc. of the 33rd International Conf. of
Parallel Processing, Montreal, Canada, August 2004.
[DiHa99] P. Dinda, D. O'Hallaron, “An Extensible Toolkit for
Resource Prediction In Distributed Systems”, Technical Report
CMU-CS-99-138, School of Computer Science, Carnegie
Mellon University, July 1999.
[DuSC03] C. Du, X.-H.Sun, and K. Chanchio, “HPCM: A Pre-
compiler Aided Middleware for the Mobility of Legacy Code,”
in the Proc. of IEEE International Conf. on Cluster Computing,
2003, Hong Kong, Dec. 2003.
[EsSW05] A. Eswaradass, X.-H.Sun, M. Wu, “A Neural
Network Based Predictive System for Available Bandwidth,”
accepted to IPDPS2005, 2005.
[FoKe04] I. Foster and C. Kesselman, The Grid2: Blueprint for a
New Computing Infrastructure, Morgan-Kaufman, 2004.
[GoSW02] L. Gong, X.H. Sun, and E. F. Waston, “Performance
Modeling and Prediction of Non-Dedicated Network
Computing,” IEEE Trans. on Computers, Vol. 51, No. 9, pp.
1041-1055, September, 2002.
[HPCM03] HPCM: High Performance Computing Mobility,
http://www.nsf-middleware.org/NMIR4/contrib/download.asp.
[SuWu03] X.-H. Sun and M. Wu, “Grid Harvest Service: A
System for Long-Term, Application-Level Task Scheduling,” in
Proc. of 2003 IEEE International Parallel and Distributed
Processing Symposium (IPDPS 2003), Nice, France, April, 2003.
[WoSH99] R. Wolski, N. T. Spring, J. Hayes, “The network
weather service: a distributed resource performance forecasting
service for metacomputing,” J. Future Generation Computing
Systems, Vol. 15, No. 5-6, pp. 757-768, 1999.
[WuSu04] M. Wu, and X.-H. Sun, “Memory Conscious Task
Partition and Scheduling in Grid Environments”, in the Proc. of
5th IEEE/ACM International Workshop on Grid Computing (in
conjunction with SC 2004), Pittsburgh, Nov. 2004.

	References

