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Abstract 
Conventional performance evaluation mechanisms 

focus on dedicated distributed systems. Grid computing 
infrastructure, on another hand, is a shared collaborative 
environment constructed on autonomic virtual 
organizations. The non-dedicated characteristic of Grid 
computing prevents the leverage of conventional task 
scheduling systems. In this study, we present the design 
and development of the Grid Harvest Service (GHS) 
performance evaluation and task scheduling system for 
solving large-scale applications in a shared network 
environment. GHS combines stochastic models and 
artificial intelligence learning mechanisms with task 
scheduling algorithms. It considers both computing and 
network contention and supports scheduling for single 
task, parallel processing, and meta-tasks. Experimental 
results show that GHS provides a satisfactory solution for 
performance prediction and task scheduling and has a 
real potential. 
 
1. Introduction 

With the advance of Internet, many scientists turned 
to construct large geographically distributed systems in 
recent years. The successes of distributed systems such as 
Condor, NetSolve, Globus, and Nimrod inspire and 
facilitate the formation of national scale distributed 
environments, Grid computing [FoKe04]. While much 
progress has been made in standardization of protocols 
and interface to facility coordination, the main challenge 
of enterprise network computing remains the same: 
resource management and task scheduling. There is a big 
gap between the potential peak performance and the 
delivered performance in Grid computing. 

The conventional parallel processing scheduling 
methods cannot apply directly to a Grid environment 
where computing resources are autonomic shared. The 
key to Grid task scheduling is to understand the usage 
pattern and predict the availability of computing and 
communication resources, and to find their influence on 
the application performance. Some latest Grid tools, such 
as Network Weather Service (NWS) [WoSH99], have 
been developed to meet the need. However, these tools 
are for short-term resource availability (generally in tens 
of seconds). Another solution is adapting resource 
reservation to reduce the complexity of resource 
management in a shared environment. This approach 

requires resource owners to have good planning on their 
own tasks and suffers in system utilization. This approach 
is useful for high priority tasks or to show the potential of 
Grid computing, it but has difficulties to be employed in a 
general enterprise environment. Also, resources 
reservation will be more effective if it is based on 
resource availability prediction. Supported by the NSF 
NGS program, we have been developing a long-term, 
application-level performance prediction and task 
scheduling system, the Grid Harvest Service (GHS) 
system, for Grid computing. The “long-term” signifies 
that the system is designed for large applications that need 
hours of computations and is in contrast to the current 
Grid performance systems such as NWS. By “application-
level” we mean that the goal is to reduce the run-time of 
user applications and is in contrast to resource availability 
prediction. GHS addresses the performance issues of 
computation and communication. It is designed to 
integrate novel stochastic and analytical modeling with 
newly developed scheduling and rescheduling 
methodology to utilize the performance, enhance Quality 
of Service (QoS), reliability, and trust of Grid Computing. 

 
2. Grid Harvest Service 

A series of technical challenges arise in Grid 
computing due to resource availability and heterogeneity. 
This includes evaluating resource availability on 
application performance, partition and schedule a parallel 
application accordingly, and the support of dynamic 
scheduling. The Grid Harvest Service system comprises 
of five primary subsystems: performance evaluation, 
performance measurement, task allocation, task 
scheduling, and execution management. Coordinately, 
they provide appropriate services to harvest Grid 
computing. 

    
2.1. Performance evaluation 

The most challenging technical hurdle of task 
scheduling in shared environments is to estimate the 
resource availability and to find its influence on the 
application performance. Analytical modeling in general 
has limited success in capturing the effect of “sharing” of 
non-dedicated resources. Nonetheless probability and 
stochastic modeling are often either too simplified or 
cannot reach a meaningful solution for a given 



engineering application. Existing models do not match the 
complexity of the Grid. 

Computation modeling. We have developed a 
model for non-dedicated computing [GoSW02]. It was 
derived from a combination of rigorous mathematical 
analysis and intensive simulation to make it generic and 
practically useful. The model considers the heterogeneous 
machine utilization and computing capacity, 
heterogeneous job arrival rate as well as heterogeneous 
service distributions. The effects of machine utilization, 
computing power, local job service and task allocation on 
the completion time of remote task are individually 
identified. 

We refer the application under scheduling the remote 
task and the other competing local processes the local 
jobs. As observed and reported by researchers at 
Wisconsin-Madison, Berkeley, Maryland, et al, the arrival 
of local jobs in machine usage patterns follows a Poisson 
distribution with λ , the service time of local jobs follows 
a general distribution with mean µ/1  and standard 
deviation σ . The cumulative distribution function of the 
remote task completion time is derived as: 
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where µλρ /=  is the machine utilization, σµθ =  is the 
coefficient of variation of service, τ  is the computing 
capacity, and w  is the workload of the remote task. The 
first term on the right-side of equation (1) is the 
performance without interruption. The second term, 

),0|/)(Pr()1( / >−≤− − SwtSUe w ττλ  is the performance with 
the interruptions. Special efforts were made to use 
intensive simulations to find the distribution of the second 
term so that equation (1) can be used in actual 
performance predication. In the case of a parallel 
application, )Pr()Pr( tTtT k ≤∏=≤ is used to calculate the 
cumulative distribution function of the application 
completion time. Initial experimental results confirm the 
theoretical finding and show this model is practical and 
works well. 

Communication modeling. Modeling of end-to-end 
network performance is essential for estimating the 
communication cost of message transfer between parallel 
processes and data transfer among dependent tasks. 
Queuing theory has been widely applied in the analysis of 
network performance based on the assumption of Poisson 
job arrival with exponential service time. However, this 
assumption is against the observation of real-world 
network traffic, which presents self-similar properties. 
Moreover, the end-to-end network path between two 
remote nodes may dynamically change to adapt the 
variation of network traffic. These characteristics make 
network performance modeling extremely challenging. 
Existing models do not capture the complicated short and 

long-range temporal dependence characteristic of wide-
area network traffic. 

We have applied ANN (Artificial Neural Network) 
techniques to model network traffic [EsSW05]. The 
strengths of ANN are its outstanding learning abilities, 
robustness to noise, and need of little prior knowledge. By 
online learning, ANN model can take into account the 
changes in the environmental conditions and adapt itself 
to the changes. Our ANN model predicts network 
performance in terms of available bandwidth and latency, 
and consists of five basic steps: collecting network traffic 
data; setting the right bin size and prediction step; 
preparing input parameters for neural network training; 
choosing appropriate ANN parameters such as learning 
rate, epoch number, and layer structure; and verification 
of established ANN model. A challenge in the 
construction of neural network model is the tradeoff 
between prediction accuracy and cost. After exhaustively 
examining all combinations of possible input parameters 
derived from the real-world network traffic trace files 
provided by WAND, ITA, and MOAT [EsSW05], we 
have identified the following parameters as most useful 
information for bandwidth prediction: timestamp, average 
packet rate, average bit rate, and their past information. 
To further improve the prediction accuracy, we examine 
the network traffic composition in the trace files. We find 
the network traffic in trace file, which is usually 
composed of different types of application traffic like 
TCP, UDP, ICMP and others. The application traffics 
statistics indicate that each type of traffic data presents a 
different traffic pattern. Instead of training one neural 
network to learn different patterns, we can construct an 
individual neural network model for each of them and 
then combine the individual prediction results into the 
overall traffic prediction. 

 
2.2. Task allocation 

Similar to parallel computing, Grid computing 
generally involves three steps: task allocation, task 
scheduling, and task execution. Task allocation decides 
how to partition an application into subtasks and then task 
scheduling maps them to a chosen set of resources for 
optimal performance. Workload balance approach is 
widely used in parallel computing. Conventional parallel 
computing tools cannot directly be applied to the Grid due 
to its heterogeneous and dynamic resource availability 
and capacity. A mean-time task partition algorithm is thus 
developed in GHS to distribute the workload of a parallel 
program to each resource so that the difference of the 
mean of expected execution times of the subtasks is 
minimal. A min-min algorithm is implemented to cluster 
subtasks of a meta-task and map each set of subtasks to a 
resource based on the prediction of the execution time of 
each set. The basic idea of these two algorithms is 
execution time balance, in contrast of the conventional 



workload balance approach. A detailed description of task 
partition with respects of CPU, memory, network 
resource heterogeneity and resource sharing is given in 
[WuSu04]. 

 
2.3. Task scheduling 

The GHS task scheduling takes the prediction from 
the performance evaluation subsystem. It supports 
different scheduling scenarios according to the 
application’s requirement. Scheduling algorithms are 
proposed and tested for sequential task, parallel program, 
and meta-task, respectively. A heuristic scheduling 
algorithm is proposed to find a near optimal solution with 
a reasonable cost based on our computing model 
[SuWu03]. 

A challenge of task scheduling in Grid computing is 
to handle different abnormal situations, such as abnormal 
computing and I/O performance, system shut down, un-
trusted system behavior, failure of Globus software 
package, and undermined security. To provide reliable 
scheduling, we implement a trigger system that uses the 
GHS performance measurement subsystem to collect 
information and automatically trigger rescheduling 
[DGSS04]. The trigger system is rule-based and can add 
in new abnormal conditions. A task-rescheduling 
algorithm and associated environment is developed 
[WuSu04]. The subtasks on resources showing abnormal 
performance are assigned to other appropriate resources 
based on a re-estimation of the application completion 
time. A variant of formula (1) is used to calculate the 
cumulative distribution function of the application 
execution time in this situation.  
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it  denotes the execution time of subtasks on machine i  by 
so far and '

iw  denotes the workload of subtasks on 
machine i  that haven’t been completed. 

}max{ '
max ii wtw += . 

 
2.4. Execution Management 

Execution management subsystem carries the task 
partition, scheduling, and re-scheduling policies. It 
consists of two parts: task management and execution 
engine. The task management maintains the map of 
application’s subtasks among resources and their running 
status. The execution engine serves job submission, 
monitoring, and task re-scheduling. It also cooperates 
with the performance evaluation subsystem to identify 
abnormalities. When either a subtask is finished or a 
performance abnormality is identified, the execution 
engine reports it to the task management component. In 
the latter case, a task re-scheduling will be triggered and 

task re-scheduling algorithms will be invoked to find 
where and when the subtasks should be moved or 
migrated. Funded by the NSF Middleware Initiative (NMI) 
program, we have developed a process migration system, 
named the High Performance Computing Mobility 
(HPCM) [HPCM03, DuSC03], which supports run-time 
process migration of native codes written in C or Fortran 
in a heterogeneous Grid environment between different 
virtual organizations. HPCM provides the infrastructure 
for actual run-time dynamic scheduling and task 
reallocation. 

 
3. Software Architecture 

The Grid Harvest Service system is designed based 
on the novel prediction, partition, and scheduling 
mechanisms discussed above.. Its software architecture is 
depicted in Figure 1. Its major components include 
performance measurement engines, system-level 
predictors, an application-level predictor, a task allocator, 
a task scheduler, execution engines, as well as a task 
manager. The performance evaluation subsystem is 
designed with an application-level predictor and system-
level predictors component that are distributed on each 
resource. The execution management subsystem consists 
of a task manager and an execution engines component. 

The life cycle of a meta-task scheduling with GHS is 
presented as follows to illustrate how each GHS 
component collaborates to enable the running of 
applications in shared environments. 
1. A user uses a task editor to compose the meta-task he 
wants to submit. He can select a group of machines for his 
application running or leaving it to the task manager. The 
task manager will collect the resource information and 
decide which set of machines is appropriate. 
2. The task manager sends a task scheduling request to 
the task scheduler, which includes the application 
information and resource information. Based on the 
request, the task scheduler consults the system-level 
predictor on correspondent resources to get the estimated 
resource availability. The task scheduler then contacts the 
task allocator and the application-level predictor to find an 
optimal plan that satisfies the user’s requirement. 
3. The task manager records the mapping information of 
subtasks among resources returned by the task scheduler. 
After that, the task manager sends subtasks and their input 
and output files to the execution engines on correspondent 
resources according to the map information through scp or 
the GridFTP service. 
4. After receiving the subtask allocation information, the 
execution engine (EE) consults the local resource 
management system to submit application’s subtasks. It 
monitors the subtask running and maintains the status of 
subtasks. When a subtask is completed, the execution 
engine sends a message to update the application status in 
the task manager. 



5. During the execution of subtasks, the performance 
measurement engine (PME) monitors the resource status 
and the execution engine collect the application running 
information. The execution engine periodically compares 
the observed resource behavior and the expected resource 
behavior obtained through the system-level predictor 
(SLP). If abnormal situations are detected, a rescheduling 
request is sent to the task manager.  
6. The task manager collects the latest status of tasks and 
resources in the system and sends the information to the 
task scheduler for task reallocation. Based on the 
generated rescheduling plan, the HPCM is invoked to 
move the application’s subtasks from abnormal resources 
to appropriate machines. 

Step 4 – Step 6 are repeated until the completion of a 
Grid meta-task. 

The above software architecture allows seamless 
integration of GHS components with Grid services to 
enable efficient performance evaluation and task 
scheduling. The Grid Information Service can be used by 
the task manager to locate potential available resources. 
The Grid FTP service can be used to handle the transfer 
of applications and their data files and the GRAM can be 
used in execution engines to dispatch subtasks on 
resources. Following OGSA, the task scheduler and the 
application predictor can be represented as Grid services 
so that they can serve other Grid Services, such as the 
Grid-enabled Programming System (GEPS), Problem 
Solving Environment (PSE), in a Grid runtime system. 

 
4. Experimental results 

We have partially implemented the GHS system as a 
proof of concept. Initial experimental results, collected at 
the Argonne and Oak Ridge national laboratories, as well 
as at IIT, are very encouraging. They confirm the GHS 
design principle and its potential. We have compared the 
prediction error of GHS and NWS [WoSH99] and the 
performance of GHS scheduling and AppLeS [BWCC03] 
scheduling for long-term applications [SuWu03, 
EsSW05]. We consider NWS and AppLeS, as they are the 
best-used performance prediction and task scheduling 
system, respectively, in current Grid computing practice. 

Performance Evaluation. The Network Weather 
Service [WoSH99] provides short-term system-level 
performance prediction based on various simple 
forecasting methods. As it claims, it is suitable for jobs of 
five minutes time span or less. To evaluate the accuracy 
of the prediction model, we define the prediction error as 
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experiment conducted on the 64-node Sun ComputeFarm, 
named Sunwulf, at IIT. The application is a replication of 
NAS Serial Benchmarks. The class type of these 
benchmarks is “A” or “W”. The local job’s lifetime is 
simulated with the observation of real-life processes 
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multiprocessor with 8 250MHz UltrasparcII processors 
and 1GB of shared memory. It is a Grid node shared by 
many users. The result again shows that the expectation 
and variance of the prediction error get smaller as the 
demand of remote task increases. 

To verify the efficiency of the proposed Neural 
Network based prediction approach for network 
performance estimation, comparison is made with that of 
NWS. Figure 4 shows the performance comparisons of 
ANN and NWS for varying bin sizes for one-step 
prediction of AUCKLAND IV and II traces [NLAN04]. 
From the graph we can see that the prediction results of 
ANN supersede those of NWS for each bin size, 
illustrating the performance of the ANN mechanism is 
noticeably better than that of NWS. Compared with the 
prediction error of NWS, the performance gain of ANN 
prediction is 26.1% for AUCKLAND IV and 34.4% for 
AUCKLAND II. ANN is even more powerful for a given 
network application due its ability to learn [EsSW05]. 

Task scheduling. AppLeS makes scheduling 
decision through estimating the mean of subtask 
execution time based on the prediction of resource 
utilization provided by NWS. Other system specific 
factors are not analyzed due to the inherent limitation of 
these methods. The GHS task scheduling system provides 
long-term application-level performance prediction. The 
effects of machine utilization, computing power, local job 
service, and parallel processing on the completion time of 
parallel task are considered. 

We choose the parameter sweep application to 
compare AppLeS and GHS because AppLeS only 

supports meta-task scheduling but not general parallel 
processing. Since we have proven NWS does not work for 
long-term predictions, for a fair comparison, we have 
modified AppLeS to let it access GHS’ prediction. The 
comparison of application completion time (seconds) and 
the number of machine set with the two different 
scheduling systems in a simulated Grid environment is 
given in Table 1. Simulation results show that the 
application completion time with GHS is 10%-20% less 
compared with that of AppLeS while only uses about one-
half of the number of machines used by AppLeS. The 
GHS scheduling uses fewer machines and finishes in a 
shorter time than AppLeS for large applications. The 
reason is that GHS scheduling considers the effect of 
machine availabilities on parallel processing while 
AppLeS does not. GHS scheduling is designed for shared, 
dynamic systems. It has a real potential. 

Table 1. A Comparison of AppLeS and GHS 
scheduling (machine number and task completion 

time) 
Workload 

(Max. machine number)
13801.7

(25) 
27619.2 

(50) 
53779.5 

(100) 
108642.5

(200)
215141.0

(400)
task time (s) 496.4 557.7 712.8 874.5 1140.4

GHS
number 13 26 57 99 113 

task time (s) 547.4 637.4 818.3 1022.7 1266
AppLeS

number 25 50 100 200 400 
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Figure 3. Expectation and variance of 
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Performance evaluation techniques have been widely 
used in parallel and distributed programming 
environments. Some well-known systems include Paradyn, 
TAU, Prophesy, and SCALEA [SuWu03]. These 
performance evaluation tools measure and analyze the 
application performance. However, they focus on 
application performance in a dedicated parallel system 
instead of a non-dedicated distributed environment. They 
don’t provide performance prediction based on resource 
availability. The NWS [WoSH99] monitors and forecasts 
resource performance on-line. RPS Toolkit [DiHa99] 
predicts the CPU availability of a Unix system over a 
small time range with the time series techniques. These 
works are for non-dedicated environments. However, they 
only predict the short-term (five minutes or less, with a 
good prediction around 30 seconds) availability of non-
dedicated resources. There is no application-level 
performance analysis and long-term prediction. 

Most scheduling methodologies in distributed 
systems concern on application performance or system 
load balance issues. They are based on either current 
system usage or advanced resource reservation 
mechanism. Reservation asks resource owners giving up 
their privilege and may suffer in system utilization. It 
might be useful for high priority tasks or to show the 
potential of Grid computing, but has difficulties to be 
fully employed in a general enterprise environment. The 
experience in the development of the GrADS project 
[BCCD01] and other Grid projects has demonstrated that 
the integration of performance evaluation mechanism 
with application is pivotal to the success of Grid 
environments. 

 

6. Conclusions 
We have presented the mechanisms and design of the 

GHS system for Grid performance prediction and task 
scheduling. A prototype of GHS is under development, 
which consists of performance evaluation, performance 
measurement, task allocation, task scheduling, and 
execution management subsystems. Initial experimental 
testing is conducted on production machines at Argonne 
National Laboratory, Oak Ridge National Laboratory, and 
IIT and on real wide-area network traffic collected by 
WAND, ITA, and MOAT. Experimental results show that 
GHS adequately captures the dynamic nature of Grid 
computing. The performance gain of GHS prediction 
significantly supersedes other prediction systems such as 
NWS. Experimental results also show that, in scheduling 
of large applications on a non-dedicated heterogeneous 
environment, GHS scheduling decreases the task 
completion time by 10%-20% than that of AppLeS, while 
using only about one-half of the machines used by 
AppLeS. 

Current GHS implementation separates the 
computing consideration with communication 

consideration, and is only for the proof of concept. 
Supported by the NSF NGS program, we are working to 
fully implement the GHS program. We plan to release a 
prototype GHS system for computing intensive 
applications in 2005. With continued funding, we plan to 
extend the computing-only GHS to support 
communication intensive application as well, and 
embedded GHS into Grid environment seamlessly via 
Java CoG Kit as Grid service.   
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