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Sparse Power Efficient Topology for Wireless Networks 
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Abstract 

We consider how to construct power efficient wireless ad 
hoc networks. We propose two different methods combin- 
ing several well-known proximity graphs including Gabriel 
graph and Yao graph, which can be constructed locally and 
efficiently. Firstly, we combine the Gabriel structure and 
the Yao structure. The constructed topology has at most 
O(n) edges and each node has a bounded out-degree. Sec- 
ondly, we use the Yao structure and then using the reverse 
of the Yao structure. The constructed topology is guaran- 
teed to be connected if the original unit disk graph is con- 
nected. Every node has a bounded degree. The experimental 
results show that it has a bounded unicasting and broadcast- 
ing power stretch factor in practice. 

Keywords: Wireless ad hoc networks, topology 
control, power consumption, network optimization. 

1 Introduction 

Due to the nodes’ limited resource in wireless ad hoc 
networks, the scalability is crucial for network oper- 
ations. One effective approach is to maintain only 
a linear number of links using a localized construc- 
tion method. However, this sparseness of the con- 
structed network topology should not compromise too 
much on the power consumptions on both unicast and 
broadcast/multicast communications. In this paper, 
we study how to construct a sparse network topology 
efficiently for a set of static wireless nodes such that ev- 
ery unicast route in the constructed network topology 
is power efficient. Here a route is power e&ient for 
unicasting if its energy consumption is no more than a 
constant factor of the least energy needed to connect 
the source and the destination. A network topology is 
said to be power efficient if there is a power efficient 
route to connect any two nodes. 

We consider a wireless ad hoc network consist- 
ing of a set V of wireless nodes distributed in a two- 
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dimensional plane. Each wireless node has an omnidi- 
rectional antenna. This is attractive for a single trans- 
mission of a node can be received by many nodes within 
its vicinity. In the most common power-attenuation 
model, the power needed to support a link uw is ]]uw 110, 
where ]]uw I] is the distance between u and w, /3 is a real 
constant between 2 and 4 dependent on the wireless 
transmission environment. By a proper scaling, we as- 
sume that all nodes have the maximum transmission 
range equal to one unit. These wireless nodes define a 
unit disk graph UDG(V) in which there is an edge be- 
tween two nodes if and only if their Euclidean distance 
is at most one. The size of the unit disk graph could be 
as large as the square order of the number of network 
nodes. Given a unicasting or multicasting request, the 
power e&cient routing problem is to find a route whose 
energy consumption is within a small constant factor 
of the optimum route. Notice that the time complexity 
of computing the shortest path connecting two nodes is 
proportional to O(m + n log n), where m is the number 
of links in the network and n is the number of nodes if a 
centralized algorithm is used. Consequently the power 
efficient routing over this unit disk graph is unscalable 
because here m could be as large as 0(n”). 

Recently, Rodoplu and Meng [ll] described a dis- 
tributed protocol to construct a topology, which is 
guaranteed to contain the least energy path connect- 
ing any pair of nodes in the unit disk graph. However, 
their protocol is not time and space efficient. Recently, 
[9] improved their result by giving an efficient localized 
algorithm to construct a new network topology that is 
guaranteed to be a subgraph of the graph constructed 
by Rodoplu and Meng [ll]. They proved that the con- 
structed topology is sparse, i.e., it has a linear number 
of edges. 

A further trade-off can be made between the 
sparseness of the topology and its power efficiency. Re- 
cently, Wattenhofer et al. [16] tried to address this 
trade-off. Unfortunately, their algorithm is problem- 
atic and their result is erroneous which was discussed 
in detail in [lo]. In [lo], Li et al. studied the power effi- 
ciency property of several well-known proximity graphs 
including the relative neighborhood graph, the Gabriel 
0 (c) 2002 IEEE 1
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graph and the Yao graph. These graphs are sparse and 
can be constructed locally in an efficient way. They 
showed that the power stretch factor of the Gabriel 
graph is always one, and the power stretch factor of the 
Yao graph is bounded from above by a real constant 
while the power stretch factor of the relative neighbor- 
hood graph could be as large as the network size minus 
one. Notice that all of these graphs do not have con- 
stant bounded node degrees. They further proposed 
another sparse topology, namely the sink structure, 
that has both a constant bounded node degree and a 
constant bounded power stretch factor. An efficient lo- 
calized algorithm [lo] is presented for constructing this 
topology. 

In this paper, we present some new localized algo- 
rithms to construct sparse and power efficient topolo- 
gies. We show that several combinations of the Yao 
graph and the Gabriel graph are power-efficient and 
have at most O(n) edges while each node has a bounded 
out-degree. In addition, we show that the topology 
constructed by using the Yao structure and the reverse 
of the Yao structure is a connected graph if the unit 
disk graph is connected. We also conduct experiments 
to show that this topology is power efficient in practice. 

The rest of the paper is organized as follows. In 
Section 2, we first give some definitions and review 
some results related to the network topology control. 
In Section 3, we propose two methods to combine 
some well-known geometry structures to construct net- 
work topologies. One method guarantees a bounded 
power stretch factor in theory, the other guarantees a 
bounded node degree in theory. We found that both 
structures have a bounded power stretch factor and 
a bounded node degree in practice. In addition, the 
broadcasting schemes based on these two structures 
consume energy no more than a constant factor of the 
minimum necessary in practice. We conclude our paper 
in Section 4 by discussing some possible future works. 

2 Preliminaries 

2.1 Geometry Structures 

Let V be a set of n wireless nodes distributed in a two- 
dimensional plane. These nodes define a unit disk graph 
UDG(V) in which there is an edge between two nodes 
if and only if their Euclidean distance is at most one. 
We say a node u can see another node w in a graph G if 
edge uw E G and the Euclidean distance I IUW I I between 
u and w is less than 1. Notice that here G could be 
a directed graph so edge uw could also be a directed 
edge. The constrained relative neighborhood graph over 
a (directed) graph G, denoted by RNG(G), is defined 
0-7695-1435-9/02 $17.
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as follows. It has an (directed) edge uw iff uw E G and 
there is no point w E V such that u can see w and w can 
see w. The constrained Gabriel graph over a (directed) 
graph G, denoted by GG(G), has an (directed) edge 
uw iff uw E G and the open disk using uw as a diameter 
does not contain any node w from V such that both 
(directed) edges uw and ww are in G. The constrained 
Yao graph over a (directed) graph G with an integer 
parameter Ic 2 6, denoted by Sk(G), is defined as 
follows. At each node u, any Ic equal-separated rays 
originated at u define Ic equal cones. In each cone, 
choose the shortest (directed) edge uw E G, if there 
is any, and add a directed link ?i&. Ties are broken 
arbitrarily. If we add the link & instead of the link &, 
the graph is denoted by %?k(G), which is called the 
reverse of Yao graph. Let YGk(G) be the undirected 
graph by ignoring the direction of each link in *k(G). 
See the following Figure 1 for an illustration of selecting 
edges incident on u in the Yao graph. 

Figure 1: The narrow regions are defined by 8 equal 
cones. The closest node in each cone is a neighbor of 
U. 

These graphs extend the conventional definitions 
of corresponding ones for the completed Euclidean 
graph; see [6, 7, 171. Notice that in all of the defi- 
nitions, when the graph G itself is a directed graph, all 
edges in the defined graphs carry their directions also. 
All these graphs are subgraphs of G. Moreover, the 
following statements were proved. See [4, 6, 7, 171 for 
more details. 

l RNG(G) is a subgraph of GG(G). 

l If G is UDG(V), RNG(G) c YGk(G). 

l If UDG(V) is connected, it contains the Euclidean 
minimum spanning tree EMST(V). 

l If G is UDG(V) and UDG(V) is a connected 
graph, then YG(G), GG(G) and RNG(G) contain 
EMST(V) as a subgraph. 

However, for a general graph G, it is not guaran- 
teed that RNG(G) is a subgraph of YGk(G). 
00 (c) 2002 IEEE 2
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For simplicity, when G is UDG(V), we 
use RNG(V), GG(V) and YG(V) instead of 
RNG(UDG(V)), GG(UDG(V)) and YG(UDG(V)) 
respectively. These graphs are sparse: IRNG(V)I 5 
3n - 10, IGG(V)I 5 3n - 8, and [*k(V)1 5 kn. ’ 
The sparseness implies that the average node degree is 
bounded by a constant. However the maximum node 
degree of the relative neighborhood graph RNG(V) 
and the Gabriel graph GG(V) and the maximum node 
in-degree of the Yao graph *k(V) could be as large 
as n - 1 as shown in Figure 2. It places n - 1 points 
of V on the unit circle centered at a node u E V. It 
is not difficult to show that each edge uw( belongs to 
RNG(V), GG(V) and YGk(V). 

Figure 2: Node u in the relative neighborhood graph 
has degree n. 

The configuration given by Figure 2 also shows 
that there is no geometry structure that has a con- 
stant bounded node degree and contains the least en- 
ergy consumption path for any pair of nodes. Notice 
that if such structure exists, node u in Figure 2 has to 
maintain the connection to each node vi, 1 5 i 5 n, 
because uw( is the least energy consumption path for 
nodes u and wi in UDG(V). 

The length stretch factor2 of a graph G is defined 
as the maximum ratio of the total edge length of the 
shortest path connecting any pair of nodes in G to their 
Euclidean distance. The same analyses by Bose et al. 
[3] implied that the length stretch factor of RNG(V) is 
at most n - 1 and the length stretch factor of GG(V) 
is at most *. Several papers showed that the 
Yao graph YG,+ (V) has a length stretch factor at most 
&; see PI. 

2.2 Power Stretch Factor 

The following definitions are proposed in [lo]. How- 
ever, for the completeness of the presentation, we still 
include them here. Consider any unicast ~(u, w) in G 
(could be directed) from a node u E V to another node 

‘Here IGI denotes the number of edges of a graph G. 
2Some researchers call it dilation ratio, spanning ratio. 
0-7695-1435-9/02 $17.
5th  Annual Hawaii International Conference on System Sciences (HICSS-35�02) 
7.00 © 2002 IEEE 
w E v: 

7r(u, w) = wow1 . . . ‘u&l?&, where U = ‘&,, ‘u = ‘uh. 

Here h is the number of hops of the path X. The total 
transmission power p(x) consumed by this path x is 
defined as 

p(7r) = p IlWi-mllP 
i=l 

Let pG(u, w) be the least energy consumed by all paths 
connecting nodes u and w in G. The path in G con- 
necting u, w and consuming the least energy pG (u, w) is 
called the least-energy path in G for u and w. When 
G is the unit disk graph UDG(V), we will omit the 
subscript G in pG(u, w). 

Let H be a subgraph of G. The power stretch 
factor of the graph H with respect to G is defined as 

p”(G) = max pa 
‘%vEV pG(U, w) 

If G is a unit disk graph, we use PH(V) instead of 
PH(G). For any positive integer n, let 

pH(n) = ,qz pH(V). 
7l 

When the graph H is clear from the context, it is 
dropped from notation. For the remainder of this sec- 
tion, we review some basic properties of the power 
stretch factor, which are studied in [lo]. 

Lemma 1 For a constant 6,p~(G) 5 6 iff for any link 
wiwj in graph G but not in H, pH(‘ui,‘uj) 5 Gllwiwjllp. 

The above lemma implies that it is sufficient to 
analyze the power stretch factor of H for each link in 
G but not in H. 

Lemma 2 For any H c G with a length stretch factor 
6, its power stretch factor is at most 60. 

Therefore a geometry structure H with a constant 
length stretch factor 6 implies that its power stretch 
factor is no more than 60. In particular, a graph with 
a constant bounded length stretch factor must also 
have a constant bounded power stretch factor. But 
the reverse is not necessarily true. Finally, the power 
stretch factor has the following monotonic property: if 
HI c HZ c G then the power stretch factors of HI and 
HZ satisfy PHI (G) 2 pH2 (G). 
00 (c) 2002 IEEE 3
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2.3 Localized Algorithm 

Due to the limited resources of the wireless nodes, it 
is preferred that the underlying network topology can 
be constructed in a localized manner. Stojmenovic et 
al. first define what is a localized algorithm in several 
pioneering papers [4, 141. Here a distributed algorithm 
constructing a graph G is a localized algorithm if ev- 
ery node u can exactly decide all edges incident on u 
based only on the information of all nodes within a 
constant hops of u (plus a constant number of addi- 
tional nodes’ information if necessary). It is easy to 
see that the Yao graph YG(V), the relative neighbor- 
hood graph RNG(V) and the Gabriel graph GG(V) 
can be constructed locally. However, the Euclidean 
minimum spanning tree EMST(V) can not be con- 
structed by any localized algorithm. Gabriel graph was 
used as a planar subgraph in the FACE routing algo- 
rithm [4, 5, 131 that guarantees delivery. RNG was 
used for efficient broadcasting (minimizing the number 
of retransmissions) in one-to-one broadcasting model 
in [la]. In this paper, we are interested in designing 
localized algorithms to construct sparse and power ef- 
ficient network topologies. 

3 Results 

In this section, we study the power stretch factor of 
several sparse geometry structures for unit disk graph 
although our results usually hold for general graphs. 
Then we give a new method to construct a sparse net- 
work with a bounded node degree and it has a bounded 
power stretch factor in practice. At the end, we will 
show our simulation results on these sparse geometry 
structures. 

3.1 Yao and Gabriel Graph 

It is easy to show that the Gabriel graph over the unit 
disk graph UDG(V) has a power stretch factor 1 al- 
ways. In addition, the number of edges in GG(V) is less 
than 3n given n wireless nodes V because GG(V) is a 
subgraph of the Delaunay triangulation of V. The Yao 
graph YGk(V) has at most Icn edges and has a length 
stretch factor at most &. Then from Lemma 2, 
we know that its power stretch factor is no more than 
(&)o. In [lo], they proved a stronger result. 

Theorem 3 The power stretch factor of the Yao graph 
YGk(V) is at most 1--(2 & 71j8. 12 

We then give two methods to combine the Gabriel 
and the Yao structures. 
0-7695-1435-9/02 $17.0
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First Yao then Gabriel graph. For setting up 
a power-efficient wireless networkin 

7f 
topology, each 

node u finds all its neighbors in Y k(V), which can 
be done in linear time proportional to the number of 
nodes within its transmission range. To further reduce 
the number of edges, we can apply the Gabriel graph 
structure to the constructed Yao graph *k(V). A 
directed edge ???j in Sk(V) survives if and only if, 
for any node w contained in the open disk using seg- 
ment uw as diameter, one of the directed edges ?i& 
and & is not in Y G k(V). The power stretch factor 
of the constructed network topology is also at most 
i-c2 & 71)8 and the out-degree of each node is at most 

Ic. Let G*,(V) be the constructed topology , i.e., 
G-k(V) = GG(%!?h(V)). The number of edges of 
G-k(V) is bounded by O(lcn). 

First Gabriel then Yao graph. On the other 
hand, we can also first construct the Gabriel graph 
and then apply the Yao structure over the Gabriel 
graph. Let Yak(V) denote the constructed graph, 
i..e, Yak(V) = *k(GG(V)). Because the Gabriel 
graph GG(V) h as a power stretch factor equal to one, 
the power stretch factor of Yak(V) is therefore the 
same as that of the Yao graph *k(V). The node out- 
degree is also bounded by Ic. Moreover, the number of 
edges in YGG,+ (V) ’ b is ounded by 3n, which is a bound 
on the number of edges in GG(V). The connectivity of 
these graphs are guaranteed by the following lemma. 

Lemma 4 The first Yao then Gabriel graph G*,+(V) 
and the first Gabriel then Yao graph Yak(V) are both 
connected graphs if the unit disk graph UDG(V) is con- 
nected and k > 6. 

PROOF. Notice that from the definition of GG(H), 
when a graph H is connected, graph GG(H) is guar- 
anteed to be connected. First of all, we only need to 
show the following claim: there is a path in GG(H) 
to connect the two end points u and w of an edge 
uw E H. We prove this by induction on the length 
of edges in H. First, the shortest edge of H must be in 
GG(H), because if an edge uw from H is not selected 
to GG(H), then there must exists a path uww in H 
with lluw]] < ]]uw]] and IIww]] < IIuw]]. Assume that 
the claim is true for all Ic - 1 shortest edges. Then con- 
sider the lath shortest edge uw from H. If uw is not in 
GG(H), then there must exists a path uww in H with 
lluw]] < ]]uw]] and IIww]] < IIuw]]. From induction, u 
and w are connected in GG(H) and w and w are also 
connected. Thus, u and w are connected in GG(H). 

Notice that the resulted graph &!?k (G), by apply- 
ing the Yao structure to a topology G, remains con- 
0 (c) 2002 IEEE 4
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netted if G is connected and Ic > 7. The proof is 
the same as that of *k(V) is a connected graph if 
UDG(V) is a connected graph. q 

The experimental performances of these two 
graphs G-k(V) and Y%,+(V) are presented in Sub- 
section 3.4. 

3.2 Yao and Sink 

Notice that althou h the directed graphs Sk(V), 
G-k(V) and YG 73 k(V) have a bounded stretch ratio 
and a bounded out-degree Ic for each node, some nodes 
may have a very large in-degree. The nodes configura- 
tion given in Figure 2 will result a very large in-degree 
for node U. Bounded out-degree gives us advantages 
when apply several routing algorithms. However, un- 
bounded in-degree at node u will often cause large over- 
head at U. Therefore it is often imperative to construct 
a sparse network topology such that both the in-degree 
and the out-degree are bounded by a constant while it 
is still power-efficient. 

Arya et al. [l] had given an ingenious technique 
to generate a bounded degree graph with a constant 
length stretch factor. In [lo], the authors apply the 
same technique to construct a sparse network topology 
with a bounded degree and a bounded power stretch 
factor. The technique is to replace the directed star 
consisting of all links towards a node u by a directed 
tree T(u) with u as the sink. Tree T(u) is constructed 
recursively. See [lo] for more detail. Figure 3 illustrates 
a directed star centered at u and the directed tree T(u) 
constructed to replace the star. 

Figure 3: Left: The directed star formed by all links 
towards to U; Right: The directed tree T(u) sinked at 
u. 

The union of all trees T(u) is called the sink struc- 
ture 8;(V). They [lo] proved that its power stretch 
factor is at most ( l--i2stn fjP )” and its in-degree is 

bounded by (Ic + 1)2 - 1. However, the construction 
of this sink structure 8; (V) is actually more compli- 
cated than the previous two methods and the perfor- 
mance gain is not so obvious in practice as shown by 
0-7695-1435-9/02 $17.0
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our experimental results. 

Theorem 5 The power stretch factor of the graph 
*g(V) is at most ( l--i2stn fj0)2. The maximum in- 

degree of thegraphag(V)is at most (lc+1)2-l. The 
maximum out-degree is k. 

Notice that the sink structure and the Yao graph 
structure do not have to have the same number of 
cones. 

3.3 Yao plus Reverse Yao Graph 

In this section, we present a new algorithm that con- 
structs a sparse and power efficient topology. Assume 
that each node vi of V has a unique identification num- 
ber ID(Q) = i. The identity of a directed link & is 
defined as ID(&) = (IluwlI,ID(u),ID(w)). Then we 
can order all directed links (at most n(n- 1) such links) 
in an increasing order of their identities. Here the iden- 
tities of two links are ordered based on the following 
rule: ID(&) > ID(&) if 

1. Ibll > IlPcdl or 
2. ]]uw]] = llpq]] and ID(u) > ID(p) or 

3. Ibll = IlPcdl~ u=pandID(w) >ID(q). 

Correspondingly, the rank rank(&) of each di- 
rected link ???j is its order in the sorted directed links. 
Notice that, we actually only have to consider the links 
with length no more than one. For the remainder of 
the subsection, we present our new network topology 
construction algorithm and then show that the con- 
structed network topology is connected. 

Algorithm 6 Yao+ReverseYao Topology Con- 
struction 

1. Each node u divides the space by Ic equal-sized 
cones centered at u. We generally assume that the 
cone is half open and half-close. Node u chooses a 
node w from each cone so the directed link & has 
the smallest ID(&) among all directed links tii 
with wi in that cone, if there is any. Let *k(V) 
be the union of all chosen directed links. In other 
words, this step computes the Yao graph Sk(V). 

2. Each node w chooses a node u from each cone, if 
there is any, so the directed link & has the small- 
est ID(&) among all directed links computed in 
the first step in that cone. In other words, in 
this step, each node w finds the closest link from 
YGk(V) in each cone, which is pointed to w. 
0 (c) 2002 IEEE 5
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3. The union of all chosen directed links in the sec- 
ond step is the final network topology, denoted by 
yk”m. 

If the directions of all links are ignored, the graph 
is denoted as YYk:(V). To prove the correctness of 
the algorithm, we first show that the resulted network 
topology is connected if UDG(V) is connected. 

Theorem 7 The directed graph *k(V) is strongly 
connected if UDG(V) is connected and Ic > 6. 

PROOF. Notice that it is sufficient to show that there 
is a directed path from u to w for any two nodes u and 
w with IIuwII 5 1. Notice that the Yao graph Sk(V) 
is strongly connected. Therefore, we only have to show 
that for any directed link & in Sk(V), there is a 
directed path from u to w in *k(V). 

We prove the claim by induction on the ranks of 
all directed links in YGk (V). 

If the directed link F& has the smallest rank among 
all links of 8,+ (V), then ti will obviously survive after 
the second step. So the claim is true for the smallest 
rank. 

Assume that the claim is true for all links in 
*k(V) with rank at most r. Then consider a directed 
link & in *k(V) with rank(&) = r + 1 in &f?k(V). 

If & survives in the second phase, then the claim 
holds. Otherwise, & can only be removed by the node 
u in the second phase. Then there must exist a directed 
link E& survived with a smaller identity in the same 
cone as E&. In addition, the angle Lwuw is less than 
8 = a Here k . 

Therefore llwull 5 IIwuII. Because Lwuw < %-, 
we have IIwwII < IIuwII. Consequently, the iden- 
tity (IIwwII,ID(w),ID(w)) of the directed link w* 
is less than that of the directed link v’, which is 

(II~UII,~D(~),~D(U)). 
Notice that here the directed link w* is not guar- 

anteed to be in *k(V) and our induction is for all 
directed links in *k(V). So we can not directly use 
the induction. There are two cases here 

Case 1: the link w* is in Sk(V). Then by induc- 
tion, there is a directed path w +-+ w from w to w after 
the second phase. Consequently, there is a directed 
path (concatenation of the path w +-+ w and the link 
E&) from w to u after the second phase. 

Case 2: the link w* is not in *k(V). Then 
we know that there is a directed path ny*Jw, w) = 

q1q2 . . . qh from w to w in 2k(V), where q1 = w and 
qh = t”. Using the same proof technique, we can 
0-7695-1435-9/02 $17.0
35th  Annual Hawaii International Conference on System Sciences (HICSS-35�02) 
17.00 © 2002 IEEE 
prove that each directed link qiqi+l, 1 5 i < h, in 
x~*~(w, w) has a smaller rank than wd, which is r. 
Here rank(qlq2 = wqz) < ranlc(w, w) because the se- 
lection method in the first step. And runk(qiqi+l) < 
runlc(w, w), 1 < i < h, because 

Iki4i+1II I llw4l < 114i-lWII < ... < llq1wII = IIWWII. 

Then for each link in qiqi+l in ~~3~ (w, w) , there 

is a directed path qi +-+ qi+l survived in yk”k(V) after 
the second phase (this is proved by induction on the 
rank runk(qiqi+l)). The the concatenation of all such 
paths qi +-+ qi+l, 1 5 i < h, and the directed link Fi& 
forms a directed path from w to u in *k(V). 

This finishes the proof of the strong connectivity 
theorem. q 

It is obvious that both the out-degree and in- 
degree of a node in yk”k(V) are bounded by Ic. And 
our experimental results show that this sparse topol- 
ogy has a small power stretch factor in practice (see 
the next subsection 3.4). We conjecture that it also 
has a constant bounded power stretch factor theoreti- 
cally. The proof of this conjecture or the construction 
of a counter-example remains a future work. 

3.4 Experimental Results 

In this section we measure the performances of the new 
sparse and power efficient topologies by conducting 
some experiments. In a wireless network, each node is 
expected to potentially send and receive messages from 
many nodes. Therefore an important requirement of 
such network is a strong connectivity. In Section 2 and 
Section 3, we have shown all these sparse topologies 
are strongly connected if the unit disk graph UDG(V) 
is connected. So in our experiments, we randomly gen- 
erate a set V of n wireless nodes and its UDG(V), and 
test the connectivity of UDG(V). If it is strongly con- 
nected, we construct different topologies from V by var- 
ious algorithms (some are already studied before, some 
are newly presented in the previous sections). Then 
we measure the sparseness and the power efficiency of 
these topologies by the following criteria: the average 
and the maximum node degree, and the average and 
the maximum power stretch factor. Notice that, for a 
directed topology, we also measure its average and the 
maximum in-degree. In the experimental results pre- 
sented here, we choose total n = 100 wireless nodes; 
the number of cones is set to 8 when we construct any 
graph using the Yao structure (for example, YG(V), 
YGG(V), GYG(V), YG*(V) and YY(V)); the power 
attenuation constant /3 = 2. We generate 1000 vertex 
sets V (each with 100 vertices) and then generate the 
0 (c) 2002 IEEE 6
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graphs for each of these 1000 vertex sets. The average 
and the maximum are computed over all these 1000 
vertex sets. Figure 4 gives all eight different topologies 
defined in this paper for the unit disk graph illustrated 
by the first figure of Figure 4. 

3.4.1 Node Degree 

Before we show the power efficiency of different topolo- 
gies, we would like to understand the characteristics of 
the resulting topologies. Figure 4 shows an example 
of all the topologies generated by different topology 
control algorithms. The average node degree of each 
topology is shown in Table 1. The average node degree 
of the wireless networks should not be too large. Oth- 
erwise a node with a large degree has to communicate 
with many nodes directly. This increases the interfer- 
ence and collision, and increases the overhead at this 
node. The average node degree should also not be too 
small either: a low node degree usually implies that the 
network has a lower fault tolerance and it also tends 
to increase the overall network energy consumption as 
longer paths may have to be taken. Thus the average 
node degree is an important performance metric for the 
wireless network topology. Table 1 shows that first Yao 
then Gabriel graph GYG(V), first Gabriel then Yao 
graph YGG(V), and the Yao plus reverse Yao graph 
YY (V) have a much less number of edges than the 
Yao graph YG(V). In other words, these graphs are 
sparser than the Yao graph YG(V), which is also ver- 
ified by Figure 4. Notice that theoretically, the sink 
structure YG*(V) has the same number of edges as 
the Yao graph YG(V). However, the in-degree of each 
node of the sink structure YG*(V) is bounded from 
above by a constant. Let davg and d,,, be the average 
and the maximum node degree over all nodes and all 
undirected graphs respectively. For directed graphs, we 
ignore the direction of each link. Let Oavg and O,,, 
be the average and the maximum node out-degree over 
all nodes and all directed graphs respectively; IaVs and 
I maz be the average and the maximum node in-degree 
over all nodes and all directed graphs respectively. No- 
tice that for a directed graph, its Iavg equals to its 
0 avg. 

3.4.2 Power Stretch Factor 

Besides strong connectivity, the most important design 
metric of wireless networks is perhaps the energy effi- 
ciency, as it directly affects both the node and the net- 
work lifetime. So while our new topologies increase the 
sparseness, how do they affect the power efficiency of 
the constructed network? Table 2 summarizes our ex- 
perimental results of the power stretch factors of these 
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UDG(V) 

RNG(V) EMST(V) 

YGIVl YGIVl 

GYGIVJ 

YG*(V) 

YGGIVJ 

Figure 4: Different topologies generated from the same 
unit disk graph UDG(V). 
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Table 1: The node degrees of different topologies. 

topologies. It shows that the new proposed network 
topologies still have small power stretch factors. Notice 
that even the average and the maximum node degree of 
the new topologies GYG(V), YGG(V), and YY(V) is 
much smaller than that of YG(V), the average and the 
maximum power stretch factors of these graphs are at 
the same level of that of the Yao graph YG(V). Espe- 
cially, the power stretch factor of the Yao plus reverse 
Yao graph YY(V) is just little bit higher than those of 
GYG(V) and YGG(V). Remember that YY(V) has a 
bounded node degree while no other topologies (except 
YG* (V)) have such a property. 

Paw Pmax ~a7J.q ~max 
ULX 1.000 1.000 96.756 110.434 

1.000 1.000 3.819 4.770 

Table 2: The quality measurements of different topolo- 
gies. 

In the Table 2, pavg and pmaz are the aver- 
age and the maximum unicasting power stretch fac- 
tor over all nodes and all graphs respectively; oavg 
and gmax are the average and the maximum multicas- 
ting/broadcasting power stretch factor over all graphs 
respectively, which will be defined later. 

3.4.3 Broadcasting (or Multicasting) Power 
Stretch Factor 

The power stretch factor (see Subsection 2.2) discussed 
previously is defined for the unicasting communica- 
tions. However, in practice, we also have to consider 
the broadcast or multicast communications. Here we 
assume that all one-hop neighbors of a node u can 
receive the message sent by node u. In other words, 
we assume a one-to-all communication model. Wan et 
0-7695-1435-9/02 $17.00
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al.[15] showed that the minimum energy cost of broad- 
casting or multicasting is related to the total energy 
cost of all links in the Euclidean minimum spanning 
tree EMST of the same point set. They proved that a 
broadcasting method based on the Euclidean minimum 
spanning tree rooted at the sender uses energy no more 
than 12 times the minimum energy cost of any broad- 
casting scheme. More precisely, they proved that the 
minimum energy cost of any broadcasting scheme is at 

least ik ILEEMST ]]e]]P. Thus, give a topology G over 
a set of points, CeEG lle] Ip could be a good theoretical 
approximation of its performance when used for broad- 
casting. Then we formally define the broadcasting (or 
multicasting) power stretch factor of any topology G 
as follows. 

Definition 8 The broadcasting (or multicasting) 
power stretch factor, denoted by OG, of a topology 
G(V) over a point set V is defined as the ratio of the 
total energy cost of all links in G to that in EMST. 
In other words, 

OG = C&G lIelIP 
c ~EEMST llellP' 

Unfortunately, the broadcasting (or multicasting) 
power stretch factor of any graph structures men- 
tioned above (except EMST) could be an arbitrarily 
large real number theoretically. Figure 5 gives such 
an example of wireless nodes. Here ]]uiwi]] = 1 and 
I ]uiui+i I I = I ]wiwi+i I I = E for a very small positive real 
number E. The graph shown in the example is the rel- 
ative neighborhood graph RNG(V). It is easy to show 
that 

c 
gRNG(V) = 

e~RNG(V)ll~ll~ n+2(n- 1)E2 

ILEEMST(V) lIelIP = 1+ 2(n - lb2 + n’ 

when E + 0. Notice that all other graph structures 
(except EMST(V)) contain RNG(V) as a subgraph 
for this node configuration. It then implies our previous 
claim. 

On the other hand, our experiments (see Table 
2) show that the broadcasting (or multicasting) power 
stretch factors of GYG(V), YGG(V) and YY(V) are 
actually small enough for practical usage. Notice that 
here the YGG(V) graph has the smallest broadcasting 
(or multicasting) power stretch factor among the new 
topologies we presented. It is reasonable because the 
number of its edges is bounded by 3n, while the number 
of edges of the other two graphs GYG(V) and YY(V) 
is bounded by Icn, and Ic 2 6. 

Notice that Arya et al. [2] gave a centralized algo- 
rithm to construct a graph with bounded node degree 
 (c) 2002 IEEE 8



Proceedings of the 35th Hawaii International Conference on System Sciences - 2002

Proceedings of the
0-7695-1435-9/02 
Ul 

El 

Vl 

‘i ‘i 

% V” 

Figure 5: An instance of wireless nodes that every net- 
work structure (except EMST) has an arbitrarily large 
broadcasting (or multicasting) power stretch factor. 

and the total edge length is no more than a constant 
factor of that of EMST(V). Then Arya et al. [l] 
gave another centralized algorithm to construct a graph 
that satisfies these two conditions in addition that the 
graph has a bounded length stretch factor. However, 
it is very complicated to transform their algorithms to 
a distributed algorithm. 

3.4.4 Special Case Study 

Then we study the performances of various structures 
for the following special node configuration. There are 
total 100 points: one point u is at the center of the 
domain; 50 points are distributed on the circle centered 
at u with radius one; all other 49 points are randomly 
distributed outside of the circle. 

UDG(G) EMST(V) RNG(+) 

GG(V) YG(Vj GYG(cj 

YGG(c) YG* (c) YY(V) 

Figure 6: Different topologies generated from the unit 
disk graph UDG(V). 
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Figure 6 illustrates various topology structures 
generated for this point set. As we expected, all graphs 
except the sink structure YG* (V) and the Yao plus the 
reverse of Yao YY (V) have a very large node degree at 
u. Both the sink structure YG*(V) and the Yao plus 
the reverse of Yao YY(V) have a constant bounded 
node degree. 

a7J.q 

Table 3: The node degrees of different topologies. 

Table 4: The quality measurements of different topolo- 
gies. 

In addition, these two graphs have similar uni- 
casting power stretch factors and broadcasting power 
stretch factors in our experiments. Notice that, unlike 
YG*(V), it is an open problem whether YY(V) has 
a constant bound on the unicasting power stretch fac- 
tor theoretically. However, the Yao plus the reverse of 
Yao YY(V) has two advantages over the sink struc- 
ture YG*(V): (1) ‘t 1 is easier to construct YY(V) than 
YG*(V), (2) the node degree bound of YY(V) is not 
larger than that of YG*(V). 

4 Summary and Future Work 

In this paper, we first combine some well-known geom- 
etry structures such as the Gabriel graph GG(V) and 
the Yao graph YG(V) to get the new sparse topologies 
GYG(V) and YGG(V). These two new topologies are 
power-efficient and have constant bounded node out- 
degrees. However, the node in-degree could be very 
large theoretically. Then we present an algorithm to 
construct a new topology called the Yao plus reverse 
0 (c) 2002 IEEE 9
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Yao graph YY(V), which has a bounded node degree. 
Our experimental results show that its power stretch 
factor is very small in practice. In addition, the experi- 
ments also show that these three topologies have small 
broadcasting (or multicasting) power stretch factors. 
We also found that even the sink structure YG* (V) has 
both bounded node degree and unicast power stretch 
factor theoretically, it is not better than the YY(V) 
structure in practice. Notice that it is easy to show 
that YY (GG(V)) is always not worse than YY(V) and 
YG*(GG(V)) is always not worse than YG*(V). We 
did not conduct the experiments on them because we 
are more interested in the structures of YY and YG*. 

Even the graph YY(V) has a bounded degree and 
a good unicasting and broadcasting power stretch fac- 
tor in practice, it is still an open problem whether it 
has a bounded unicasting power stretch factor theo- 
retically. We also leave it as a future work to design 
an efficient localized algorithm achieving the following 
three objectives: a constant bounded node degree, a 
constant bounded unicasting power stretch factor, and 
a constant bounded broadcasting (multicasting) power 
stretch factor. 

One of the main questions remaining to be stud- 
ied is to integrate the overhead cost of transmission. 
Notice that in this paper, we assume that the power 
needed to transmit from a node u to a node w is strictly 
depends on their Euclidean distance [IUW 11, namely 
IIuwl1° for a real constant 2 5 Q 5 4. However, this 
model does not fully reflect the actual transmission 
cost, which is often IIuwl1° + c to transmit from u to w, 
here c is a real positive constant. We leave it as a fu- 
ture work to design an efficient algorithm to construct 
a power-efficient topology by considering this cost over- 
head c. 
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