
Locating Malicious Nodes for Data Aggregation in
Wireless Networks

Xiaohua Xu∗, Qian Wang†, Jiannong Cao‡, Peng-Jun Wan∗, Kui Ren†, Yuanfang Chen§
∗Department of Computer Science, Illinois Institute of Technology, Chicago, IL

†Department of Electrical and Computer Engineering, Illinois Institute of Technology, Chicago, IL
‡Department of Computing, The Hong Kong Polytechnic University, Hong Kong

§School of Software, Dalian University of Technology, P.R.China

Abstract—Data aggregation, as a primitive communication task
in wireless networks, can reduce the communication complexity.
However, in-network aggregation usually brings an unavoidable
security defect. Some malicious nodes may control a large
percentage of the whole network data and compel the network
misbehave in an arbitrary manner. Thus, locating the malicious
nodes to prevent them from further disaster is a practical chal-
lenge for data aggregation schemes. Based on the grouping and
localization techniques, we propose a novel integrated protocol to
locate malicious nodes. The proposed protocol does not rely on
any special hardware and requests only incomplete information
of the network from the security schemes. We also conduct
simulation study to evaluate the proposed protocol.

I. INTRODUCTION

Wireless networks, composed of a large number of spatially

distributed static or mobile wireless devices, are increasingly

being deployed and used for a variety number of purposes,

from environmental monitoring, to critical infrastructure pro-

tection, to health-care, to precise agriculture. The intrinsic

characteristic limitations of wireless systems such as power

restrictions, scarce computational power and storage raise

practical issues for wireless networking applications. To make

a wireless networking application successful, a number of

(theoretical and/or practical) challenging issues must be ad-

dressed, such as deployment strategies, energy conservation,

efficient data processing, routing, and localization. Among

them, one practical and fundamental challenge is efficient data

processing. As we know, data are generated everywhere in

wireless networks. In most applications, there is a request to

send all data from the wireless nodes within the network to

a control center (or sink node) that has more computational

ability than other wireless nodes. This process is termed as

converge-cast. Different from data collection, data aggregation

allows in-network processing which means that data can

be compressed within the network. This feature introduces

a possibility of a new energy or time efficient method of

collecting data, comparing to raw data collection.

From the viewpoint of information theory, data aggregation

is a lossy data compression process because all the individual

sensory readings are lost in the per-hop aggregation pro-

cess. However, from the security perspective, data aggregation

opens a new door to false data injection attacks. As we know,

wireless nodes are often deployed in open and unattended

environments. Due to the low manufacturing cost, the nodes

cannot prevent physical tampering. During data aggregation,

an adversary can obtain the confidential information from a

compromised node (or jammer). The compromised node may

also report an arbitrary false fusion result, causing the final ag-

gregation result to far deviate from the true measurement. This

attack can become more damaging when multiple compro-

mised nodes collude in injecting false data. Even worse case

is that the adversary reprogram the jammer(s) with malicious

code. The malicious node can change the aggregation result

of a large part of the whole network and cause inconceivable

consequences. To prevent possible disasters, the sink node

should know the locations of jammers immediately to obtain a

correct result on the premise of efficiency for data aggregation.

However, efficiency and security are two complementary

objectives (tradeoff) for data aggregation. An efficient data

aggregation scheme cannot have a good performance on

security issues, which means that it cannot provide very

detailed information about the attack, such as the concrete

geographical information. By the aid of some localization

scheme (led by the high-cited work [3]), we can obtain the

concrete geographical information, then it is easy for us to

deal with the attack (isolate either all the data in the area or

the affected data w.h.p). Based on this insight, we will propose

an efficient but secure data aggregation scheme. We first

divide the whole network into groups, perform aggregation

in each logical group, and generate one aggregate from each

group. After the sink node collects all the group aggregates, it

identifies the malicious groups based on an outlier detection

algorithm. Here a malicious group is defined as a group

containing malicious nodes. We then locate malicious nodes

based on the incomplete information acquired by identifying

malicious groups. Thus, our protocol integrates both detecting

and locating of malicious nodes.

Note that most data aggregation schemes adopt a tree rout-

ing structure [10], [13], then a malicious node closer to the sink

node could access a large percentage of the whole network

data and would have a larger impact on the manipulation of

final result as observed in [14]. Our protocol can reduce the

trust on high-level nodes and perceive all low-cost wireless

nodes as evenly trustable, which is realized by the principle

of divide-and-conquer (or grouping). Our grouping technique

can dynamically partition the network into multiple groups of

similar sizes. Since fewer nodes will be under a high-level

The 31st Annual IEEE International Conference on Computer Communications: Mini-Conference

978-1-4673-0775-8/12/$31.00 ©2012 IEEE 3056

node in a logical subtree, the potential security threat by a

malicious high-level node will be reduced.

The rest of this paper is organized as follows. Section II

formulates the problem to be studied. Section III is devoted

to the protocol design. Section IV presents our simulation

results. Section V outlines the related work. Finally, Section

VI concludes the paper.

II. NETWORK MODEL

Given a wireless network of n nodes V = {v1, v2, · · · , vn};

in addition, there is a distinguished sink node vs that connects

this network to the outside infrastructure such as the Internet.

Each node can monitor the environment, and collect some data.

Assume that A = {a1, a2, · · · , aN} is a totally ordered multi-
set of N data items collected by all n nodes vi, 1 ≤ i ≤ n,

at a certain time period. Here, N is the cardinality of set

A. Each node vi has ni amount of raw data, denoted as

Ai ⊂ A. Since A is a multi-set, we assume Ai ∩ Aj = ∅
for i �= j and A =

⋃n
i=1 Ai. Then 〈A1, A2, · · · , An〉 is

called a distribution of A at sites of V . We assume that

one packet (i.e., message) can contain one data item ai, the

node ID, plus an additional constant number of bits, i.e., the

packet size is at the order of Θ(log n + log U), where U is

the upper-bound on values of ai. We also assume there is a

reliable transmission mechanism, for example, by using a link-

layer acknowledgment protocol. Data aggregation is a process

where all data are gathered to the sink node and expressed in

a summary form by using some aggregation function. Here

aggregation functions can be classified into three categories:

distributive (e.g., maximum, minimum, sum, count), algebraic

(e.g., minus, average, variance) and holistic (e.g., median, kth

smallest or largest). The previous two categories are usually

the focus of network community. An aggregation function f
is said to be distributive if for every pair of disjoint data

sets X1, X2, we have f(X1 ∪ X2) = fg(f(X1), f(X2)) for

some function fg . An algebraic aggregation function f can

be expressed as a combination of k distributive functions for

some integer constant k, i.e.,

f(X) = fg(g1(X), g2(X), ..., gk(X)).

Thus, instead of computing f , we compute gi(X) distribu-

tively for i ∈ [1, k] and fg(g1, g2, · · · , gk) at sink node. The

detailed definition of aggregation function is available in [13].

While message authentication code (MAC) can easily defeat

an outsider adversary from launching many attacks, there still

exist some attacks such as behavior-based attacks and false

data injection attacks. We will focus on the latter one where

an attacker aims to furtively inject false values that deviate

from the true measures in a noticeable scale. In the context

of data aggregation, the attack could be forging an unusual

false data value or forging a large count value (the number

of nodes involved in the aggregation operation). Note that an

attacker may launch these two attacks simultaneously. A node

is not perceived to attack when it forges a false reading of

its own. We want to defend against the false data injection

attacks which compel the sink node accept false aggregation

results. Given a wireless network of n nodes, with some

malicious nodes, the objective is to find out these malicious

nodes efficiently to isolate them with small communication

overhead.

III. PROTOCOL DESIGN

A. Grouping and leader selection

We geometrically partition the deployment plane into trian-

gles. The wireless nodes which lie in the same triangle form

a group. During the partition process, the size of each triangle

varies to balance the group size.

We share the same group leader selection criteria with [14]

with two noticeable modifications. First, all their groups are

logical while we use physical partition of the topology tree in

order to apply a localization technique. Second, they need to

employ hop-by-hop verification to find out the compromised

nodes while our protocol save that effort. Third, their topology

tree is a data structure based on a real topology tree. Their tree

is fixed all the time which is vulnerable to attacks while our

design will rotate the leaders among nodes instead of fixing

their roles. By doing this, we can ensure that the attackers

cannot predict the group leaders w.h.p. Otherwise, the attacker

can target at the group leaders and compromise them. Another

benefit is that each time, every node is assigned into a different

group that is formed on the fly; we can balance the resource

usage of nodes so as to prolong the overall lifetime of the

network.

B. Aggregation commitment

Leaf node aggregation: A leaf node just sends its iden-

tification, data, and count value to its parent (it also keeps

a local copy of the packet). The packet consists of the data

as follows. First, there is a flag indicating whether the data

can be aggregated or not (the value of bit 1 indicates that

the data can not be aggregated). This flag position is reserved

for later usage. Second, there is a count value indicating how

many nodes’ data the packet contains. Third, there is a node

reading. Finally, there is an authentication value (encrypted)

computed by the leaf node with its individual key shared with

the sink node. In addition, a seed is included to identify this

specific data aggregation process and to prevent replay attacks.

All the data will be encrypted using its pairwise key shared

with the parent of this leaf node.

Internal node aggregation: When an internal node receives

a packet from its child node, it first checks the flag. If the flag

bit is 0, the node first decrypts the data using its pairwise

key shared with this child node. It also performs some simple

checking on the validity of the count (if within a certain range),

and seed. If the packet does not pass this checking, it will

discard the packet directly. Otherwise, it will further aggregate

its own reading with all the aggregates carrying flag 0 received

from its child nodes. A new count is also calculated as the sum

of the count values in the received aggregates with flag 0 plus

one (accounting for its own reading).

The internal node also checks if it is a group leader, it

then encrypts the new count value and aggregation data using

3057

the pairwise key shared with its own parent. If the internal

node is not a leader, then the packet that it sends to its parent

node is as follows: the count value summed over the count

value of its children and its own contribution, the aggregation

value and the XOR of all contributing nodes’ authentication

values. Finally, all the data will be encrypted using its pairwise

key shared with the parent of this internal node. Thus, the

encrypted value can represent the authentication information

of all the nodes contributing to this aggregation data.

Leader node aggregation: Now suppose that an internal

node has processed the aggregates from its child nodes and

it finds out that it is a group leader. Like a regular internal

node, it also computes a new aggregate, keeps local copies

of those packets with flag bit 0, and appends a corresponding

authentication encrypted value using its individual key shared

with the sink node. Unlike a regular internal node, it sets

the flag to 1 in its aggregation packet so that data from this

group will not be aggregated any more. The packet it sends

upward is as follows: the aggregation result of the group, the

authentication value computed by the leader node. Similarly,

all the data will be encrypted using its pairwise key shared

with the parent of this leader node.

When the parent node receives a packet from a leader node,

it forwards the packet towards the sink node without any

further aggregation. At the same time, this parent node does

not add any count value to its own. In an extreme case when

all the children of a node are group leaders, this node will

only contribute the count value of one to its parent node. In

this case, all node behaves like a leaf node.

Based on the above aggregation rule, the packets are trans-

mitted towards the sink node. There may be some nodes left

without group membership. In this case, the sink node is the

default group leader for them. After the sink node receives

the aggregates from all groups, it decrypts and saves them,

including the group leader node’s identification, the group

count, the group aggregation value, the authentication tag

computed by the group leader, and the seed.

C. Detecting malicious groups

The next step is to test whether the count or the aggregation

result has been modified by a malicious group leader or

member, which can influence the final aggregation result at

the sink node. Here a malicious group is defined as the group

that contains a malicious node. Note that authentication cannot

solve this insider attack because a malicious node has the valid

keys.

We expect the attacker to forge an aggregated data that

have a nontrivial influence on the final result. As a result,

a false aggregate should exhibit certain abnormality. On the

other hand, we cannot simply treat all abnormal sensing data

as outliers and discard them, since they may indeed reflect

the real environment. In many cases, we are more interested

in abnormal data than in normal ones. We have to verify the

abnormal aggregates before accepting or rejecting them.

Grubbs’ test [2] Given a data set X = {a1, a2, · · · , aN},

suppose that μ and s are the sample mean and standard

deviation of all the data, then the data ai with the largest

sample statistic

Z =
|ai − μ|

s
(1)

is an outlier if this statistic falls beyond the range defined by

the critical values.

In Grubbs’ test, it first computes the sample statistic for

each datum ai in the set by
|ai−μ|

s . The result represents the

datum’s absolute deviation from the sample mean in units of

the sample standard deviation. Based on this, each time the

datum with the maximum statistic is picked up. Then we check

whether the sample statistic falls in the non-rejection range

defined by the critical values. Therefore we can use Grubbs’

test to determine that which groups are malicious groups and

thus contain malicious nodes. We next show how to locate the

malicious nodes as accurately as possible.

To detect multiple outliers from bivariate data (i.e., counts

and aggregation value), a simple method is that, after Grubbs’

test detects one outlier at a time, we delete the detected outlier

from the data set and repeat the test over the remaining data

until no outliers can be found.

D. Locating malicious node

Section III-C illustrate the detection of malicious groups.

By performing grouping several times, we can obtain some

incomplete information about which triangular groups the

compromised node has appeared in. Based on this incomplete

information, we want to locate the malicious node.

APIT [3] is an area-based range-free localization scheme.

It employs a novel area-based approach to perform location

estimation by isolating the environment into triangular regions

between anchor nodes. Any node’s presence inside or outside

of these triangular regions allows a node to narrow down the

area in which it can potentially reside. By utilizing different

combinations of triangles, the size of the estimated area in

which a node resides can be reduced to provide a satisfying

location estimate. Based on APIT, we will repeat grouping

with different triangle combinations until all combinations

are exhausted or the required accuracy is achieved. We then

calculate the center of gravity of the intersection of all of the

triangles in which the malicious node resides to determine its

estimated position.

If the network size (or the total number of nodes) is

large, we can aggregate the results of individual group tests

by means of a grid array [3]. This grid array is used to

represent the maximum area in which a malicious node likely

resides. When we determine the malicious node is inside

a particular region, the values of the grids over which the

corresponding triangle resides are incremented; the grid area

for an outside decision is similarly decremented. Once all

triangular regions are computed, the resulting information is

used to the maximum overlapping area. Note that some of the

inside/outside decisions may be incorrect. However, the correct

decisions build up on the grid and the small number of errors

only serves as a slight disturbance to the final estimation.

3058

20 30 40 50 60 70 80
20

30

40

50

60

70

80

X−axis

Y
−a

xi
s

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10−3

Number of nodes

Fa
ls

e
po

si
tiv

e
pr

ob
ab

ili
ty

(a) Illustration of grouping. (b) False positive vs. number of nodes.

Fig. 1. The simulation results of evaluating our proposed protocol.

IV. SIMULATION RESULTS

We conduct simulations to study the performance of our

protocol. We deploy a network of 5000 wireless nodes in a

two-dimensional plane, each node contains data to report. We

set one node to be malicious. Thus the value of this node

deviates from that of other nodes greatly. The objective is to

find this node efficiently during the secure aggregation process.

We will determine the false positive probability.

To implement our protocol, we will group all nodes for

20 times. Each time, every group is a triangle containing all

nodes in this triangle. We will vary the shape of each triangle

extensively to ensure that the intersection areas of different

triangles are small. Then, each group will check whether

itself is a non-secure group. After grouping all nodes for 20
times, we can find 20 non-secure groups. We then find the

overlapping area of the 20 non-secure groups. The center of

gravity for this overlapping area is highly suspicious.

Figure 1 (a) shows the result of a network of 5000 nodes

after grouping for 20 times. Each time when we group, the

shape of each triangle varies.

Figure 1 (b) shows the result of false positive rate versus

the number of nodes. We set the number of grouping times as

20. The result is promising. Most of the time, we can find the

malicious node with high probability. At the same time, we

can see that the false positive rate is not very sensitive to the

number of nodes.

V. RELATED WORK

Recently many data aggregation protocols have been pro-

posed to eliminate the data redundancy in sensory data of the

network, hence reducing the communication cost and energy

expenditure in data collection. For the well-studied minimum

latency data aggregation problem, there is a series of results

focusing on either the protocol wireless interference model [5],

[10], [13] or the physical interference model [11], [12]. There

is also a recent work [6] for data aggregation scheduling in

duty-cycled network.

For secure data aggregation, Ozdemir et al. [7] present

a broad overview of secure data aggregation by evaluating

each protocol based on the security requirements of wireless

sensor networks. In [4], the authors et al. proposed a protocol

called iCPDA, which piggybacks on a cluster-based privacy-

preserving data aggregation protocol(CPDA). They implement

the add-on feature to protect integrity of aggregation result.

We focus on a general practical challenge: how can the sink

node know the location of compromised nodes and thus obtain

a correct aggregation result without losing the efficiency of

per-hop data aggregation when a fraction of sensor nodes are

compromised? For this problem, Wagner [9] first addressed it

and provided guidelines for selecting aggregation functions

in a sensor network. Yang et al. [14] proposed SDAP, a

secure hop-by-hop data aggregation protocol using a tree-

based topology to compute the Average in the presence of

a few compromised nodes. SDAP divides the network into

multiple groups and employs an outlier detection algorithm

to detect the corrupted groups. Recently, Roy et al. [8] also

used a grouping technique in their extended approach for

secure median computation. Chen et al. [1] proposed to strictly

diminish the capability of adversaries whenever they launch a

successful attack, so that malicious sensors can only ruin the

aggregation result for a small number of times before they are

fully revoked. To this end, they proposed VMAT (verifiable

minimum with audit trail), a novel secure aggregation protocol

with malicious sensor revocation capability.

VI. CONCLUSION

We proposed a two-phased integrated protocol for detecting

and locating compromised nodes in wireless networks. In the

3059

first phase, we dynamically grouped the wireless nodes and

performed aggregation commitment in each group before the

sink node collects the data. After collecting all the aggregation

commitment to the sink node, we then detected the malicious

groups based on the Grubb’s test scheme. In the second

phase, we located compromised nodes based on the incomplete

information acquired from the first phase. By the aid of

some localization scheme, we obtain the concrete geographical

information of the attack. While the proposed secure data

aggregation scheme is efficient after performance evaluation, it

will be interesting to develop efficient schemes in the general

context (independent of Grubb’s test).

VII. ACKNOWLEDGEMENT

Peng-Jun Wan and Xiaohua Xu were supported in part by

the NSF grants CNS-0831939 and CNS-0916666.
Kui Ren and Qian Wang were supported in part by the NSF

grants CNS-0831963 and CNS-1117811.

REFERENCES

[1] CHEN, B., AND YU, H. Secure aggregation with malicious node
revocation in sensor networks. IEEE ICDCS (2011).

[2] GRUBBS, F. Procedures for detecting outlying observations in samples.
Technometrics, (1969).

[3] HE, T., HUANG, C., BLUM, B., STANKOVIC, J., AND ABDELZAHER,
T. Range-free localization schemes for large scale sensor networks. In
ACM Mobicom (2003).

[4] HE, W., LIU, X., NGUYEN, H., AND NAHRSTEDT, K. A Cluster-Based
Protocol to Enforce Integrity and Preserve Privacy in Data Aggregation.
In IEEE ICDCS Workshops (2009).

[5] HUANG, S., WAN, P., VU, C., LI, Y., AND YAO, F. Nearly Constant
Approximation for Data Aggregation Scheduling in Wireless Sensor
Networks. In IEEE INFOCOM (2007), pp. 366–372.

[6] JIAO, X., LOU, W., WANG, X., CAO, J., XU, M., AND ZHOU, X. Data
aggregation scheduling in uncoordinated duty-cycled wireless sensor
networks under protocol interference model. To appear at Ad-hoc &
Sensor Wireless Networks.

[7] OZDEMIR, S., AND XIAO, Y. Secure data aggregation in wireless sensor
networks: A comprehensive overview. Computer Networks (2009).

[8] ROY, S., CONTI, M., SETIA, S., AND JAJODIA, S. Secure median
computation in wireless sensor networks. Ad Hoc Networks (2009).

[9] WAGNER, D. Resilient aggregation in sensor networks. In Proceedings
of the 2nd ACM workshop on Security of ad hoc and sensor networks
(2004).

[10] WAN, P., SCOTT, C., WANG, L., WAN, Z., AND JIA, X. Minimum-
latency aggregation scheduling in multihop wireless networks. In ACM
Mobihoc (2009).

[11] WAN, P., WANG, L., AND FRIEDER, O. Fast group communications in
multihop wireless networks subject to physical interference. In IEEE
MASS (2009).

[12] XIANG-YANG LI, XIAOHUA XU, S. W. S. T. G. D. J. Z. Y. Q.
Efficient Data Aggregation in Multi-hop Wireless Sensor Networks
under Physical Interference Model. In IEEE MASS (2009).

[13] XIAOHUA XU, SHIGUANG WANG, X. M. S. T. X. L. An Improved
Approximation Algorithm for Data Aggregation in Multi-hop Wireless
Sensor Networks. In IEEE TPDS (2011).

[14] YANG, Y., WANG, X., ZHU, S., AND CAO, G. SDAP: A secure hop-by-
hop data aggregation protocol for sensor networks. ACM Transactions
on Information and System Security (2008).

3060

