
From Least Interference-Cost Paths to Maximum
(Concurrent) Multiflow in MC-MR Wireless

Networks
Peng-Jun Wan∗, Zhu Wang∗, Lei Wang†, Zhiguo Wan‡, and Sai Ji§

∗ Department of Computer Science, Illinois Institute of Technology, wan@cs.iit.edu
† School of Software, Dalian University of Technology, lei.wang@ieee.org
‡ School of software, Tsinghua University, wanzhiguo@tsinghua.edu.cn

§ College of Computer And Software, Nanjing University of Information Science And Technology, jisai@nuist.edu.cn

Abstract—Maximum multiflow and maximum concurrent mul-
tiflow in multi-channel multi-radio (MC-MR) wireless networks
have been well-studied in the literature. They are NP-hard
even in single-channel single-radio (SC-SR) wireless networks
when all nodes have uniform (and fixed) interference radii and
the positions of all nodes are available. While they admit a
polynomial-time approximation scheme (PTAS) when the number
of channels is bounded by a constant, such PTAS is quite
infeasible practically. Other than the PTAS, all other known
approximation algorithms, in both SC-SR wireless networks and
MC-MR wireless networks, resorted to solve a polynomial-sized
linear program (LP) exactly. The scalability of their running time
is fundamentally limited by the general-purposed LP solvers. In
this paper, we first introduce the concept of interference costs and
prices of a path and explore their relations with the maximum
(concurrent) multiflow. Then we develop purely combinatorial
approximation algorithms which compute a sequence of least
interference-cost routing paths along which the flows are routed.
These algorithms are faster and simpler, and achieve nearly the
same approximation bounds known in the literature.

I. INTRODUCTION

Consider an instance of multi-channel multi-radio (MC-
MR) multihop wireless network with a set 𝑉 of networking
nodes and a set 𝐴 of node-level communication links. Each
node 𝑣 has 𝜏 (𝑣) radios, and there are 𝜆 non-overlapping
channels. A set of links in 𝐴 is said to be independent if its
links are pairwise node-disjoint and can transmit successfully
at the same time over the same channel under a pre-specified
interference model. Let ℐ denote the collection of all indepen-
dent subsets of 𝐴. For each node-level link 𝑎 = (𝑢, 𝑣) in 𝐴, we
make 𝜆⋅𝜏 (𝑢)⋅𝜏 (𝑣) replications (𝑢, 𝑣, 𝑖, 𝑗, 𝑙) for 1 ≤ 𝑖 ≤ 𝜏 (𝑢),
1 ≤ 𝑗 ≤ 𝜏 (𝑣), and 1 ≤ 𝑙 ≤ 𝜆. A replication (𝑢, 𝑣, 𝑖, 𝑗, 𝑙)
always utilizes the 𝑖-th radio at 𝑢 and the 𝑗-th radio at 𝑣 over
the 𝑙-th channel. These replications is referred to as replicated
links of 𝑎. We use {𝑎}𝜏,𝜆 to denote the set of replicated links
of 𝑎; and in general, for each 𝐵 ⊆ 𝐴, we use 𝐵𝜏,𝜆 to denote
the set of all replicated links of the links in 𝐵. Clearly, a
set of replicated links can transmit successfully at the same
time if and only if (1) they are pairwise radio-disjoint, and
(2) for each channel 𝑙, all those replication links transmitting
over channel 𝑙 are replicated from an independent set of 𝐴.
These set of replicated links are also referred to independent

sets of replicated links. Let ℐ𝜏,𝜆 denote the collection of the
independent sets of replicated links. Any set

𝒮 =
{
(𝐼𝑗 , 𝑙𝑗) ∈ ℐ𝜏,𝜆 × ℝ+ : 1 ≤ 𝑗 ≤ 𝑞

}
is referred to as a link schedule; the value

∑𝑞
𝑗=1 𝑙𝑗 is referred

to as length (or latency) of 𝒮 . The link demand served by 𝒮
is the function 𝑥 on 𝐴 defined by

𝑥 (𝑎) =
∑𝑞

𝑗=1𝑙𝑗

∣∣∣𝐼𝑗 ∩ {𝑎}𝜏,𝜆
∣∣∣

for each 𝑎 ∈ 𝐴; 𝒮 is also said to be a link schedule of this 𝑥.
Suppose that we are given 𝑘 unicast requests specified by

source-destination pairs. Let 𝒫𝑗 be the set of paths in (𝑉,𝐴)
of the 𝑗-th request for all 1 ≤ 𝑗 ≤ 𝑘, and let 𝒫 be the union
of 𝒫1, ⋅ ⋅ ⋅ ,𝒫𝑘. Any set

Γ = {(𝑃𝑖, 𝛿𝑖) ∈ 𝒫 × ℝ+ : 1 ≤ 𝑖 ≤ 𝑙}
is referred to as a path flow of these requests; its link flow is
a function 𝑥 on 𝐴 defined by

𝑥 (𝑎) =
𝑙∑

𝑖=1

𝛿𝑖 ∣𝑃𝑖 ∩ {𝑎}∣ .

for each 𝑎 ∈ 𝐴; and the value
∑𝑙

𝑖=1 𝛿𝑖 is referred to as flow
value of Γ. The problem Maximum Multiflow (MMF) seeks
a path flow Γ of maximum flow value and a link schedule 𝒮
of length one such that 𝒮 serves the link flow of Γ.

Suppose that in addition that for each 1 ≤ 𝑗 ≤ 𝑘 the 𝑗-th
request has a positive demand 𝑑𝑗 . Any set

Π =
{
(𝑃𝑖1, ⋅ ⋅ ⋅ , 𝑃𝑖𝑘, 𝛿𝑖) ∈

∏𝑘
𝑗=1𝒫𝑗 × ℝ+ : 1 ≤ 𝑖 ≤ 𝑙

}
is referred to as a concurrent 𝑘-path flow of these requests;
its cumulative link flow is a function 𝑥 on 𝐴 defined by

𝑥 (𝑎) =

𝑙∑
𝑖=1

𝛿𝑖

𝑘∑
𝑗=1

𝑑𝑗 ∣𝑃𝑖𝑗 ∩ {𝑎}∣ .

for each 𝑎 ∈ 𝐴; and the value
∑𝑙

𝑖=1 𝛿𝑖 is referred to as
flow concurrency of Π. The problem Maximum Concurrent
Multiflow (MCMF) seeks a concurrent 𝑘-path flow Π of
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maximum flow concurrency and a link schedule 𝒮 of length
one such that 𝒮 serves the cumulative link flow of Π.

As fundamental problems in multihop wireless networking,
both MMF and MCMF received much research interest in the
past decade. Most of the existing studies (e.g., [4], [7], [8],
[9], [10], [11], [12]) assumed some variants of the protocol (as
opposed to physical) interference model. In general, a proto-
col interference model specifies a pairwise conflict relations
among all links in 𝐴, and a subset of 𝐴 is independent if
its links are pairwise conflict-free. It is classified into two
communication modes:

∙ Unidirectional mode: For each link 𝑎 = (𝑢, 𝑣) ∈ 𝐴, the
communication between 𝑢 and 𝑣 occurs in the direction
from 𝑢 to 𝑣, and the endpoint 𝑢 (respectively, 𝑣) is
referred to as the sender (respectively, receiver) of 𝑎.
The sender 𝑢 of the link 𝑎 has an interference range,
and the interference range of 𝑎 is the interference range
of its sender. Two links in 𝐴 conflict with each other if
and only if the receiver of at least one link lies in the
interference range of the other link.

∙ Bidirectional mode: For each link 𝑎 = (𝑢, 𝑣) ∈ 𝐴, the
communication between 𝑢 and 𝑣 occurs in both direc-
tions, and both 𝑢 and 𝑣 have an interference range. The
interference range of 𝑎 is the union of the interference
ranges of its two endpoints. Two links in 𝐴 conflict with
each other if and only if at least one link has an endpoint
lying in the interference range of the other link.

In the plane geometric variant, the interference range of an
endpoint 𝑢 of a link 𝑎 is assumed to be a disk centered at
𝑢 of radius 𝑟𝑎 (𝑢), which is also knows as the interference
radius. Under the plane geometric variant of the protocol in-
terference model in either unidirectional mode or bidirectional
mode, the computational hardness of MMF and MCMF was
well characterized in both single-channel single-radio (SC-SR)
setting [10] and MC-MR setting [11]. On one hand, they are
NP-hard in even in SC-SR networks in which all nodes have
uniform (and fixed) communication radii and uniform (and
fixed) interference radii and the positions of all nodes are
available. On the other hand, they admit a polynomial-time
approximation scheme (PTAS) when the number of channels
is bounded by a constant. In other words, for any fixed 𝜀 > 0, it
has polynomial-time (depending on 𝜀) (1 + 𝜀)-approximation
algorithm. Such PTAS is of theoretical interest only and is
quite infeasible practically as it involves very time-consuming
exhaustive enumerations and ellipsoid method. Other than the
PTAS, all other known approximation algorithms for MMF
and MCMF, in both SC-SR wireless networks (e.g., [7], [8],
[9], [10]) and in MC-MR wireless networks (e.g., [4], [11],
[12]), resorted to solve a polynomial-sized linear program
(LP) exactly. However, such LP-based methods can require
an inordinate amount of running time and memory even for a
moderate sized input [1].

In this paper, we take a purely combinatorial approach
for approximating MMF and MCMF in MC-MR wireless
networks (and in SC-SR wireless networks as well as a

special case) under the protocol interference model. A subtle
definition of the interference cost of a path in the node-level
communication topology (𝑉,𝐴) is introduced. Our algorithms
iteratively compute a sequence of cheapest paths in terms
of interference cost along which the flows are routed. They
are much faster and conceptually simpler (than the general-
purposed LP solvers). They also present a trade-off between
the targeted approximation bound and the running time: for
any fixed 𝜀 > 0, they may achieve approximation bounds
at most 1 + 𝜀 times those achieved in [11] at the growth of
the running time in at most the square order of 1/𝜀. Both
the designs and analyses of our algorithms are applicable to
general protocol interference model. When applied to the same
variants of the protocol interference model, they achieve nearly
the same approximation bounds as those achieved in [11].

The remainder of this paper is organized as follows. In
Section II, we introduce the relevant known facts and results
to be exploited by the subsequent sections of this paper. In
Section III, we define the interference costs and prices of a
path and exploring their relations with the maximum (con-
current) multiflow. In Section IV and Section V, we present
the designs and analyses of our approximation algorithms
for MMF and MCMF respectively. In Section VI, we apply
the approximations algorithms developed in the previous two
sections to the specific variants of the protocol interference
model. We conclude this paper in Section VII.

The following standard terms and notations are adopted
throughout this paper. Let 𝑛 = ∣𝑉 ∣ and 𝑚 = ∣𝐴∣. 𝐺
denotes the link-conflict graph of 𝐴 under the given protocol
interference model. In other words, 𝐴 is the vertex set of 𝐺
and two links in 𝐴 are adjacent in 𝐺 if and only if they conflict
with each other. An orientation of 𝐺 is a digraph 𝐷 obtained
from 𝐺 by imposing an orientation on each edge of 𝐺. For
any 𝑎 ∈ 𝐴, 𝑁 [𝑎] denotes the set of links in 𝐴 conflicting
with 𝑎 plus 𝑎 itself. Suppose that 𝐷 is an orientation. For
each 𝑎 ∈ 𝐴, 𝑁 𝑖𝑛

𝐷 [𝑎] (respectively, 𝑁𝑜𝑢𝑡
𝐷 [𝑎]) denotes the set

of in-neighbors (respectively, out-neighbors) of 𝑎 in 𝐷 plus 𝑎
itself. For any real-valued function 𝑓 on 𝐴 and any 𝐵 ⊆ 𝐴,
𝑓 (𝐵) represents

∑
𝑏∈𝐵𝑓 (𝑏); For any real-valued function 𝑓

on 𝐴×𝐴, and any 𝑎 ∈ 𝐴, and any 𝐵 ⊆ 𝐴, 𝑓 (𝑎,𝐵) represents∑
𝑏∈𝐵𝑓 (𝑎, 𝑏). Let ≺ be an ordering of 𝐴. For any pair of links

𝑎, 𝑏 ∈ 𝐴, both 𝑎 ≺ 𝑏 and 𝑏 ≻ 𝑎 represent that 𝑎 appears before
𝑏 in the ordering ≺.

II. PRELIMINARIES

For MC-MR wireless networks, Wan et al. [12] introduced
the interference factor 𝜌 (𝑎, 𝑏) of two conflicting links 𝑎 and
𝑏, which captures the essential advantage of multiple radios
and multiple channels. If 𝑎 and 𝑏 share a common endpoint
𝑢, then each replicated link of 𝑏 conflicts with exactly

𝜌 (𝑎, 𝑏) = 1−
(
1− 1

𝜏 (𝑢)

)(
1− 1

𝜆

)
portion of replicated links of 𝑎; otherwise, each replicated link
of 𝑏 conflicts with exactly

𝜌 (𝑎, 𝑏) =
1

𝜆
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portion of replicated links of 𝑎. Note that 𝜌 (𝑎, 𝑏) = 𝜌 (𝑏, 𝑎)
in either case. In addition, each replicated link of a link 𝑎 =
(𝑢, 𝑣) conflicts with exactly

𝜌 (𝑎, 𝑏) = 1−
(
1− 1

𝜏 (𝑢)

)(
1− 1

𝜏 (𝑣)

)(
1− 1

𝜆

)
portion of replicated links of 𝑎 (include itself).

Consider any non-negative function 𝑥 on 𝐴. The 𝑥-weighted
inductivity of 𝐴 is the value

Δ∗ (𝑥) = max
∅∕=𝐵⊆𝐴

min
𝑎∈𝐵

∑
𝑏∈𝑁 [𝑎]∩𝐵

𝜌 (𝑎, 𝑏)𝑥 (𝑏)

A link schedule of 𝑥 of length at most Δ∗ (𝑥) can be produced
by a simple greedy algorithm GLS developed by Wan et al.
[12] in 𝑂

(
𝑚2𝜆+𝑚𝑚′max𝑣∈𝑉 𝜏 (𝑣)

)
time, where 𝑚′ is the

total number of conflicting pairs of links in 𝐴. Note that this
running time grows linearly with the number of channels and
the maximum number of radios of all nodes. Consider an
orientation 𝐷 of 𝐺. The 𝑥-weighted inward interference of
𝑎 with respect to 𝐷 is defined to be

Δ𝑖𝑛
𝐷 (𝑎;𝑥) =

∑
𝑏∈𝑁𝑖𝑛

𝐷 [𝑎]

𝜌 (𝑎, 𝑏)𝑥 (𝑏) .

and the 𝑥-weighted inward interference of 𝐷 is defined to be

Δ𝑖𝑛
𝐷 (𝑥) = max

𝑎∈𝐴
Δ𝑖𝑛

𝐷 (𝑎;𝑥) .

The following relation between Δ∗ (𝑥) and Δ𝑖𝑛
𝐷 (𝑥) was

proved in [12].
Lemma 2.1: Δ∗ (𝑥) ≤ 2Δ𝑖𝑛

𝐷 (𝑥). If 𝐷 is acyclic, then
Δ∗ (𝑥) ≤ Δ𝑖𝑛

𝐷 (𝑥) .
The inward local independence number (ILIN) of 𝐷 is

defined to be
max
𝑎∈𝐴

max
𝐼∈ℐ

∣∣𝐼 ∩𝑁 𝑖𝑛
𝐷 [𝑎]

∣∣ .
The following upper bound on Δ𝑖𝑛

𝐷 (𝑥) was proved in [10] in
the SC-SR setting and in [12] in the MC-MR setting.

Lemma 2.2: Suppose 𝑥 has a link schedule of length at
most one. Then, for any orientation 𝐷 with ILIN 𝜇,

Δ𝑖𝑛
𝐷 (𝑥) ≤ 𝜇

where 𝜇 = 𝜇 in SC-SR setting and 𝜇 = 𝜇 + 2 in MC-MR
setting.

Consider a link schedule

𝒮 =
{
(𝐼𝑗 , 𝑙𝑗) ∈ ℐ𝜏,𝜆 × ℝ+ : 1 ≤ 𝑗 ≤ 𝑞

}
.

We use ∥𝒮∥ to denote its length
∑𝑞

𝑗=1 𝑙𝑗 . Scaling 𝒮 by a
positive factor 𝑐 results in the link schedule

𝑐𝒮 := {(𝐼𝑗 , 𝑐𝑙𝑗) : 1 ≤ 𝑗 ≤ 𝑞} ;
clearly, ∥𝑐𝒮∥ = 𝑐 ∥𝒮∥.

Consider a path flow

Γ = {(𝑃𝑖, 𝛿𝑖) : 1 ≤ 𝑖 ≤ 𝑙} .

We use ∥Π∥ to denote its flow value
∑𝑙

𝑖=1 𝛿𝑖. Scaling Γ by a
positive factor 𝑐 results in the path flow

𝑐Γ := {(𝑃𝑖, 𝑐𝛿𝑖) : 1 ≤ 𝑖 ≤ 𝑙} ;
clearly, ∥𝑐Γ∥ = 𝑐 ∥Γ∥.

Consider a concurrent 𝑘-path flow

Π = {(𝑃𝑖1, ⋅ ⋅ ⋅ , 𝑃𝑖𝑘, 𝛿𝑖) : 1 ≤ 𝑖 ≤ 𝑙}
We use ∥Π∥ to denote its flow concurrency

∑𝑙
𝑖=1 𝛿𝑖. Scaling

Π by a positive factor 𝑐 results in the concurrent 𝑘-path flow

𝑐Π := {(𝑃𝑖1, ⋅ ⋅ ⋅ , 𝑃𝑖𝑘, 𝑐𝛿𝑖) : 1 ≤ 𝑖 ≤ 𝑙} ;
clearly, ∥𝑐Π∥ = 𝑐 ∥Π∥.

III. LEAST INTERFERENCE-COST PATHS

Consider an orientation 𝐷 of 𝐺 with ILIN 𝜇, and let 𝜇 = 𝜇
in SC-SR setting and 𝜇 = 𝜇+ 2 in MC-MR setting. Suppose
that 𝑦 is positive function on 𝐴. Let 𝑦 be the function on 𝐴
defined by

𝑦 (𝑎) =
∑

𝑏∈𝑁𝑜𝑢𝑡
𝐷 [𝑎]

𝜌 (𝑎, 𝑏) 𝑦 (𝑏)

for each 𝑎 ∈ 𝐴. The value 𝑦 (𝑎) is interpreted as the 𝑦-
weighted interference cost brought by 𝑎 to its closed out-
neighborhood in 𝐷. For each 1 ≤ 𝑗 ≤ 𝑘, let 𝑑𝑖𝑠𝑡𝑗(𝑦) be the
(interference) cost of the cheapest (𝑠𝑗 , 𝑡𝑗)-path with respect
to 𝑦. In this section, we establish the following intrinsic rela-
tions between the least interference-cost paths and maximum
(concurrent) multiflows.

Theorem 3.1: Let 𝑜𝑝𝑡 be the value of the maximum multi-
flow. Then,

min
1≤𝑗≤𝑘

𝑑𝑖𝑠𝑡𝑗 (𝑦) ≤ 𝜇
𝑦 (𝐴)

𝑜𝑝𝑡
.

Theorem 3.2: Let 𝑜𝑝𝑡 be the concurrency of the maximum
concurrent multiflow. Then,

𝑘∑
𝑗=1

𝑑𝑗𝑑𝑖𝑠𝑡𝑗 (𝑦) ≤ 𝜇
𝑦 (𝐴)

𝑜𝑝𝑡
.

We begin with following property of a singleton path flow.
Lemma 3.3: Suppose that 𝑥 is the link flow of a singleton

path flow {(𝑃, 𝛿)}. Then, for any 𝑎 ∈ 𝐴,

Δ𝑖𝑛
𝐷 (𝑎;𝑥) = 𝛿𝜌

(
𝑎,𝑁 𝑖𝑛

𝐷 [𝑎] ∩ 𝑃
)

and ∑
𝑎∈𝐴

𝑦 (𝑎)Δ𝑖𝑛
𝐷 (𝑎;𝑥) = 𝛿𝑦 (𝑃 ) .

Proof: For any 𝑎 ∈ 𝐴,

Δ𝑖𝑛
𝐷 (𝑎;𝑥) =

∑
𝑏∈𝑁𝑖𝑛

𝐷 [𝑎]

𝜌 (𝑎, 𝑏)𝑥 (𝑏)

=
∑

𝑏∈𝑁𝑖𝑛
𝐷 [𝑎]

𝜌 (𝑎, 𝑏) 𝛿 ∣𝑃 ∩ {𝑎}∣

= 𝛿
∑

𝑏∈𝑁𝑖𝑛
𝐷 [𝑎]

𝜌 (𝑎, 𝑏) ∣𝑃 ∩ {𝑏}∣

= 𝛿𝜌
(
𝑎,𝑁 𝑖𝑛

𝐷 [𝑎] ∩ 𝑃
)
.
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Thus, the first part holds.
By the first part, we have∑

𝑎∈𝐴

𝑦 (𝑎)Δ𝑖𝑛
𝐷 (𝑎;𝑥)

= 𝛿
∑
𝑎∈𝐴

𝑦 (𝑎) 𝜌
(
𝑎,𝑁 𝑖𝑛

𝐷 [𝑎] ∩ 𝑃
)

= 𝛿
∑
𝑎∈𝐴

𝑦 (𝑎)
∑
𝑏∈𝑃

∣∣{𝑏} ∩𝑁 𝑖𝑛
𝐷 [𝑎]

∣∣ 𝜌 (𝑎, 𝑏)
= 𝛿

∑
𝑏∈𝑃

∑
𝑎∈𝐴

∣∣{𝑏} ∩𝑁 𝑖𝑛
𝐷 [𝑎]

∣∣ 𝜌 (𝑎, 𝑏) 𝑦(𝑎)
= 𝛿

∑
𝑏∈𝑃

∑
𝑎∈𝑁𝑜𝑢𝑡

𝐷 [𝑏]

𝜌 (𝑎, 𝑏) 𝑦(𝑎)

= 𝛿𝑦 (𝑃 ) .

So, the second part also holds.
Lemma 3.3 gives an alternative interpretation on the inter-

ference cost of a path 𝑃 : Let 𝑥 be the link flow of a path flow
{(𝑃, 1)}.

𝑦 (𝑃 ) =
∑
𝑎∈𝐴

𝑦 (𝑎)Δ𝑖𝑛
𝐷 (𝑎;𝑥) .

From Lemma 3.3, we also derive the following property of a
singleton concurrent 𝑘-path flow.

Lemma 3.4: Suppose that 𝑥 is the cumulative link flow of
a singleton concurrent 𝑘-path flow

{(𝑃1, ⋅ ⋅ ⋅ , 𝑃𝑘, 𝛿)} .

Then, for any 𝑎 ∈ 𝐴,

Δ𝑖𝑛
𝐷 (𝑎;𝑥) = 𝛿

𝑘∑
𝑗=1

𝑑𝑗𝜌
(
𝑎,𝑁 𝑖𝑛

𝐷 [𝑎] ∩ 𝑃𝑗

)
and ∑

𝑎∈𝐴

𝑦 (𝑎)Δ𝑖𝑛
𝐷 (𝑎;𝑥) = 𝛿

𝑘∑
𝑗=1

𝑑𝑗𝑦 (𝑃𝑗) .

Proof: The concurrent 𝑘-path flow

{(𝑃1, ⋅ ⋅ ⋅ , 𝑃𝑘, 𝛿)} .

is equivalent to the path flow

{(𝑃𝑗 , 𝛿𝑑𝑗) : 1 ≤ 𝑗 ≤ 𝑘} .

For each 1 ≤ 𝑗 ≤ 𝑘, let 𝑥𝑗 be the link flow of the singleton
path flow (𝑃𝑗 , 𝛿𝑑𝑗). Then, 𝑥 =

∑𝑘
𝑗=1 𝑥𝑗 . By Lemma 3.3, for

any 𝑎 ∈ 𝐴,

Δ𝑖𝑛
𝐷 (𝑎;𝑥) =

𝑘∑
𝑗=1

Δ𝑖𝑛
𝐷 (𝑎;𝑥𝑗)

=
𝑘∑

𝑗=1

𝛿𝑑𝑗𝜌
(
𝑎,𝑁 𝑖𝑛

𝐷 [𝑎] ∩ 𝑃𝑗

)
= 𝛿

𝑘∑
𝑗=1

𝑑𝑗𝜌
(
𝑎,𝑁 𝑖𝑛

𝐷 [𝑎] ∩ 𝑃𝑗

)
.

Again by Lemma 3.3, we have∑
𝑎∈𝐴

𝑦 (𝑎)Δ𝑖𝑛
𝐷 (𝑎;𝑥)

=
∑
𝑎∈𝐴

𝑦 (𝑎)

𝑘∑
𝑗=1

Δ𝑖𝑛
𝐷 (𝑎;𝑥𝑗)

=

𝑘∑
𝑗=1

∑
𝑎∈𝐴

𝑦 (𝑎)Δ𝑖𝑛
𝐷 (𝑎;𝑥𝑗)

= 𝛿

𝑘∑
𝑗=1

𝑑𝑗𝑦 (𝑃𝑗)

So, the lemma holds.
Now, we are ready to prove Theorem 3.1.

Proof of Theorem 3.1: Let

{(𝑃𝑖, 𝛿𝑖) ∈ 𝒫 × ℝ+ : 1 ≤ 𝑖 ≤ 𝑙}
be a maximum multiflow, and 𝑥 be its link flow. For each
1 ≤ 𝑖 ≤ 𝑙, let 𝑥𝑖 be the link flow of the singleton path flow
{(𝑃𝑖, 𝛿𝑖)}. Then, 𝑥 =

∑𝑙
𝑖=1 𝑥𝑖. By Lemma 3.3,∑

𝑎∈𝐴

𝑦 (𝑎)Δ𝑖𝑛
𝐷 (𝑎;𝑥)

=
∑
𝑎∈𝐴

𝑦 (𝑎)

𝑙∑
𝑖=1

Δ𝑖𝑛
𝐷 (𝑎;𝑥𝑖)

=

𝑙∑
𝑖=1

∑
𝑎∈𝐴

𝑦 (𝑎)Δ𝑖𝑛
𝐷 (𝑎;𝑥𝑖)

=
𝑙∑

𝑖=1

𝛿𝑖𝑦 (𝑃𝑖)

≥
𝑙∑

𝑖=1

𝛿𝑖𝑑𝑖𝑠𝑡𝑗 (𝑦)

≥
(
min

1≤𝑗≤𝑘
𝑑𝑖𝑠𝑡𝑗 (𝑦)

) 𝑙∑
𝑖=1

𝛿𝑖

=

(
min

1≤𝑗≤𝑘
𝑑𝑖𝑠𝑡𝑗 (𝑦)

)
𝑜𝑝𝑡.

On one hand, by Lemma 2.2,∑
𝑎∈𝐴

𝑦 (𝑎)Δ𝑖𝑛
𝐷 (𝑎;𝑥) ≤ Δ𝑖𝑛

𝐷 (𝑥)
∑
𝑏∈𝐴

𝑦 (𝑎) ≤ 𝜇𝑦 (𝐴) .

Thus, the theorem holds.
Finally, we prove Theorem 3.2.

Proof of Theorem 3.2: Let

{(𝑃𝑖1, ⋅ ⋅ ⋅ , 𝑃𝑖𝑘, 𝛿𝑖) : 1 ≤ 𝑖 ≤ 𝑙}
be a maximum concurrent multiflow, and 𝑥 be its cumulative
link flow. For each 1 ≤ 𝑖 ≤ 𝑙, let 𝑥𝑖 be the link flow of the
singleton concurrent 𝑘-path flow

{(𝑃𝑖1, ⋅ ⋅ ⋅ , 𝑃𝑖𝑘, 𝛿𝑖)} .
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Then, 𝑥 =
∑𝑙

𝑖=1 𝑥𝑖. By Lemma 3.4,∑
𝑎∈𝐴

𝑦 (𝑎)Δ𝑖𝑛
𝐷 (𝑎;𝑥)

=
∑
𝑎∈𝐴

𝑦 (𝑎)

𝑙∑
𝑖=1

Δ𝑖𝑛
𝐷 (𝑎;𝑥𝑖)

=

𝑙∑
𝑖=1

∑
𝑎∈𝐴

𝑦 (𝑎)Δ𝑖𝑛
𝐷 (𝑎;𝑥𝑖)

=

𝑙∑
𝑖=1

𝛿𝑖

𝑘∑
𝑗=1

𝑑𝑗𝑦 (𝑃𝑖𝑗)

≥
𝑙∑

𝑖=1

𝛿𝑖

𝑘∑
𝑗=1

𝑑𝑗𝑑𝑖𝑠𝑡𝑗 (𝑦)

≥
⎛⎝ 𝑘∑

𝑗=1

𝑑𝑗𝑑𝑖𝑠𝑡𝑗 (𝑦)

⎞⎠(
𝑙∑

𝑖=1

𝛿𝑖

)

=

⎛⎝ 𝑘∑
𝑗=1

𝑑𝑗𝑑𝑖𝑠𝑡𝑗 (𝑦)

⎞⎠ 𝑜𝑝𝑡

On the other hand, by Lemma 2.2,∑
𝑎∈𝐴

𝑦 (𝑎)Δ𝑖𝑛
𝐷 (𝑎;𝑥) ≤ Δ𝑖𝑛

𝐷 (𝑥)
∑
𝑏∈𝐴

𝑦 (𝑎) ≤ 𝜇𝑦 (𝐴) .

Thus, the theorem holds.

IV. MAXIMUM MULTIFLOW

Suppose that 𝐷 is an orientation of 𝐺 with ILIN 𝜇, and
denote 𝜇 = 𝜇 in SC-SR setting and 𝜇 = 𝜇 + 2 in MC-MR
setting. Consider an arbitrary parameter 𝜀 ∈ (0, 1]. In this
section, we present an efficient algorithm MF(𝜀) algorithm for
the problem MMF, which achieves an approximation bound
2 (1 + 𝜀)𝜇 in general and (1 + 𝜀)𝜇 if 𝐷 is acyclic, and has
running time growing with 1/𝜀 in at most the square order.

The algorithm MF(𝜀) is outlined in Table I. It runs in three
phases:

∙ Flow Phase: This phase computes a path flow Γ and
its link flow 𝑥 iteratively by computing a sequence of
cheapest paths in terms of interference costs.

∙ Link-Scheduling Phase: This phase computes a link
schedule 𝒮 of 𝑥 by simply applying the greedy algorithm
GLS developed in [12].

∙ Scaling Phase: This phase scales both Γ and 𝒮 by a
factor 1/ ∥𝒮∥ and then return them as the final output.

Both the Link-Scheduling Phase and the Scaling Phase
are straightforward. The Flow Phase is quite subtle and is
elaborated below.

The Flow Phase builds up a path flow Γ incrementally and
updates its link flow 𝑥 accordingly throughput this phase. The
Flow Phase maintains a flow cost variable 𝛾, which are the
cumulative costs incurred by Γ. Initially, Γ is empty, 𝑥 is
zero-valued, and 𝛾 is zero. The Flow Phase also maintains
a positive weight function 𝑦 on 𝐴 to help the building
up Γ. Initially, 𝑦 is one-valued. The Flow Phase runs in

Algorithm MF(𝜀)
// Flow Phase
Γ ← ∅, 𝑥 ← 0,𝛾 ← 0;𝑦 ← 1;
while Δ𝑖𝑛

𝐷 (𝑥) ≥ (1 + 𝜀) 𝛾 do
𝑃 ← a cheapest path in 𝒫 w.r.t. 𝑦;
𝛿 ← 1

max𝑎∈𝐴 𝜌(𝑎,𝑁𝑖𝑛
𝐷

[𝑎]∩𝑃)
;

Γ ← Γ ∪ {(𝑃, 𝛿)};

𝛾 ← 𝛾 +
𝑦(𝑃 )
𝑦(𝐴)

𝛿;
∀𝑎 ∈ 𝑃 , 𝑥 (𝑎) ← 𝑥 (𝑎) + 𝛿;
∀𝑎 ∈ 𝐴, 𝑦 (𝑎) ← 𝑦 (𝑎)

(
1 + 𝜀𝛿𝜌

(
𝑎,𝑁 𝑖𝑛

𝐷 [𝑎] ∩ 𝑃
))

;
// Link-Scheduling Phase
𝒮 ← the link schedule of 𝑥 output by GLS;
// Scaling Phase
Γ ← 1

∥𝒮∥Γ, 𝒮 ← 1
∥𝒮∥𝒮;

Output Γ and 𝒮.

TABLE I
OUTLINE OF THE ALGORITHM MF(𝜀).

iterations until the flow cost 𝛾 exceeds Δ𝑖𝑛
𝐷 (𝑥) / (1 + 𝜀). In

each iteration, a cheapest path 𝑃 ∈ 𝒫 with respect to 𝑦 is
computed, and 𝛿 units of flow are routed along 𝑃 where

𝛿 =
1

max𝑎∈𝐴 𝜌
(
𝑎,𝑁 𝑖𝑛

𝐷 [𝑎] ∩ 𝑃
) .

The 𝛿 is selected such that after Γ is augmented by (𝑃, 𝛿), the
maximum increment on Δ𝑖𝑛

𝐷 (𝑎;𝑥) for all 𝑎 ∈ 𝐴 is exactly
one by Lemma 3.3. The pair (𝑃, 𝛿) is then added to Γ, and
all other variables are subsequently updated. Specifically, the
new flow (𝑃, 𝛿) incurs a flow cost 𝑦(𝑃 )

𝑦(𝐴)𝛿, which is the product
of the 𝑦-weighted interference cost of 𝑃 and the flow amount
𝛿 routed along 𝑃 . Such cost is charged to 𝛾. The update on
𝑥 is straightforward: 𝑥 (𝑎) is incremented by 𝛿 for each link
𝑎 ∈ 𝑃 . For each link 𝑎 ∈ 𝐴, 𝑦 (𝑎) is increased by a factor

1 + 𝜀𝛿𝜌
(
𝑎,𝑁 𝑖𝑛

𝐷 [𝑎] ∩ 𝑃
)
.

Note that 𝛿𝜌
(
𝑎,𝑁 𝑖𝑛

𝐷 [𝑎] ∩ 𝑃
)

is the increment of Δ𝑖𝑛
𝐷 (𝑎;𝑥)

due to the growth of Γ by Lemma 3.3. Such update on
𝑦 ensures that if a link 𝑎 receives a larger increment on
Δ𝑖𝑛

𝐷 (𝑎;𝑥), then 𝑦 (𝑎) grows faster which in turn makes it less
likely to appear in a cheapest path in the future iteration.

Next, we analyze the performance of the algorithm MF(𝜀).
Theorem 4.1: The Flow Phase of the algorithm MF(𝜀)

terminates in at most⌈
𝑚 ln𝑚

ln (1 + 𝜀)− 𝜀
1+𝜀

⌉
iterations, and the final output of the algorithm MF(𝜀) is a
2 (1 + 𝜀)𝜇-approximate solution in general and a (1 + 𝜀)𝜇-
approximate solution if 𝐷 is acyclic.

Proof: We introduce the following notations in this proof.
Let 𝑜𝑝𝑡 be the value of the maximum multiflow. Γ0, 𝑥0, 𝑦0,
and 𝛾0 denote initial values of 𝑥, 𝑦, and 𝛾 respectively in the
Flow Phase. For each iteration 𝑖 ≥ 1 of the Flow Phase, Γ𝑖,
𝑥𝑖, 𝑦𝑖 and 𝛾𝑖 denote the values of 𝑥, 𝑦, and 𝛾 respectively at
the end of the 𝑖-th iteration; (𝑃𝑖, 𝛿𝑖) denotes the flow added in
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the 𝑖-th iteration. Consider any iteration 𝑖 of the Flow Phase.
For each 𝑎 ∈ 𝐴, since

Δ𝑖𝑛
𝐷 (𝑎;𝑥𝑖)−Δ𝑖𝑛

𝐷 (𝑎;𝑥𝑖−1)

= 𝛿𝑖𝜌
(
𝑎,𝑁 𝑖𝑛

𝐷 [𝑎] ∩ 𝑃𝑖

) ≤ 1,

we have

𝑦𝑖 (𝑎) = 𝑦𝑖−1 (𝑎)
(
1 + 𝜀𝛿𝑖𝜌

(
𝑎,𝑁 𝑖𝑛

𝐷 [𝑎] ∩ 𝑃𝑖

))
≥ 𝑦𝑖−1 (𝑎) (1 + 𝜀)

𝛿𝑖𝜌(𝑎,𝑁𝑖𝑛
𝐷 [𝑎]∩𝑃𝑖)

= 𝑦𝑖−1 (𝑎) (1 + 𝜀)
Δ𝑖𝑛

𝐷 (𝑎;𝑥𝑖)−Δ𝑖𝑛
𝐷 (𝑎;𝑥𝑖−1) .

Furthermore,

𝑦𝑖 (𝐴) =
∑
𝑎∈𝐴

𝑦𝑖 (𝑎)

=
∑
𝑎∈𝐴

𝑦𝑖−1 (𝑎)
(
1 + 𝜀𝛿𝑖𝜌

(
𝑎,𝑁 𝑖𝑛

𝐷 [𝑎] ∩ 𝑃𝑖

))
= 𝑦𝑖−1 (𝐴) + 𝜀𝛿𝑖

∑
𝑎∈𝐴

𝜌
(
𝑎,𝑁 𝑖𝑛

𝐷 [𝑎] ∩ 𝑃𝑖

)
𝑦𝑖−1 (𝑎)

= 𝑦𝑖−1 (𝐴) + 𝜀𝛿𝑖𝑦𝑖−1 (𝑃𝑖)

= 𝑦𝑖−1 (𝐴)

(
1 + 𝜀𝛿𝑖

𝑦𝑖−1 (𝑃𝑖)

𝑦𝑖−1 (𝐴)

)
= 𝑦𝑖−1 (𝐴) (1 + 𝜀 (𝛾𝑖 − 𝛾𝑖−1))

≤ 𝑦𝑖−1 (𝐴) exp (𝜀 (𝛾𝑖 − 𝛾𝑖−1)) ,

where the fourth equality follows from Lemma 3.3. Therefore,
by induction on the iterations, for each iteration 𝑙 of the Flow
Phase, for each 𝑎 ∈ 𝐴,

𝑦𝑙 (𝑎) ≥ 𝑦0 (𝑎) (1 + 𝜀)
∑𝑙

𝑡=1(Δ
𝑖𝑛
𝐷 (𝑎;𝑥𝑖)−Δ𝑖𝑛

𝐷 (𝑎;𝑥𝑖−1))

= (1 + 𝜀)
Δ𝑖𝑛

𝐷 (𝑎;𝑥𝑙) ;

and

𝑦𝑙 (𝐴) ≤ 𝑦0 (𝐴) exp

(
𝜀

𝑙∑
𝑡=1

(𝛾𝑖 − 𝛾𝑖−1)

)
= 𝑚 exp (𝜀𝛾𝑙) .

Hence,

𝛾𝑙 ≥ 1

𝜀
ln

𝑦𝑙 (𝐴)

𝑚
≥ 1

𝜀
ln
(1 + 𝜀)

Δ𝑖𝑛
𝐷 (𝑥𝑙)

𝑚
.

On the other hand, by Theorem 3.1, we have

𝛾𝑙 =

𝑙∑
𝑖=1

𝛿𝑖
𝑦𝑖−1 (𝑃𝑖)

𝑦𝑖−1 (𝐴)
≤ 𝜇

∑𝑙
𝑖=1 𝛿𝑖

𝑜𝑝𝑡
=

𝜇 ∥Γ𝑙∥
𝑜𝑝𝑡

.

Now, we bound the number of iterations of the Flow Phase.
Assume to the contrary that the Flow Phase didn’t terminate
after ⌈

𝑚 ln𝑚

ln (1 + 𝜀)− 𝜀
1+𝜀

⌉
iterations. Let

𝑙 =

⌈
𝑚 ln𝑚

ln (1 + 𝜀)− 𝜀
1+𝜀

⌉
.

By the choice of 𝛿𝑖,
∑

𝑎∈𝐴Δ
𝑖𝑛
𝐷 (𝑎;𝑥𝑖) strictly increases by at

least one with the iteration 𝑖. So,∑
𝑎∈𝐴

Δ𝑖𝑛
𝐷 (𝑎;𝑥𝑙) ≥ 𝑙,

which implies

Δ𝑖𝑛
𝐷 (𝑥𝑙) ≥

∑
𝑎∈𝐴Δ

𝑖𝑛
𝐷 (𝑎;𝑥𝑙)

𝑚
≥ 𝑙/𝑚 >

ln𝑚

ln (1 + 𝜀)− 𝜀
1+𝜀

.

Hence,
1

𝜀
ln
(1 + 𝜀)

Δ𝑖𝑛
𝐷 (𝑥𝑙)

𝑚
>
Δ𝑖𝑛

𝐷 (𝑥𝑙)

1 + 𝜀
.

Thus,

𝛾𝑙 ≥ 1

𝜀
ln
(1 + 𝜀)

Δ𝑖𝑛
𝐷 (𝑥𝑙)

𝑚
>
Δ𝑖𝑛

𝐷 (𝑥𝑙)

1 + 𝜀
.

This means that the number of iterations is at most 𝑙, which
is a contradiction.

Next, we show that at the end of the of the Flow Phase,

∥Γ∥
Δ𝑖𝑛

𝐷 (𝑥)
≥ 𝑜𝑝𝑡

(1 + 𝜀)𝜇
.

Suppose that the Flow Phase runs in 𝑙 iterations. By the
stopping rule of the Flow Phase,

Δ𝑖𝑛
𝐷 (𝑥𝑙) ≤ (1 + 𝜀) 𝛾𝑙 ≤ (1 + 𝜀)𝜇 ∥Γ𝑙∥

𝑜𝑝𝑡
.

Thus,
∥Γ𝑙∥

Δ𝑖𝑛
𝐷 (𝑥𝑙)

≥ 𝑜𝑝𝑡

(1 + 𝜀)𝜇
.

Finally, we prove the approximation bound of the output by
the algorithm. It is sufficient to show that at the end of the
Link-Scheduling Phase,

∥Γ∥
∥𝒮∥ ≥ 𝑜𝑝𝑡

2 (1 + 𝜀)𝜇
,

and if 𝐷 is acyclic, then

∥Γ∥
∥𝒮∥ ≥ 𝑜𝑝𝑡

(1 + 𝜀)𝜇
.

By Lemma 2.2, we have

∥𝒮∥ ≤ Δ∗ (𝑥) ≤ 2Δ𝑖𝑛
𝐷 (𝑥) ,

which implies that

∥Γ∥
∥𝒮∥ ≥ ∥Γ∥

2Δ𝑖𝑛
𝐷 (𝑥)

≥ 𝑜𝑝𝑡

2 (1 + 𝜀)𝜇
.

If 𝐷 is acyclic, again by Lemma 2.2 we have

∥𝒮∥ ≤ Δ∗ (𝑥) ≤ Δ𝑖𝑛
𝐷 (𝑥) ,

which implies that

∥Γ∥
∥𝒮∥ ≥ ∥Γ∥

Δ𝑖𝑛
𝐷 (𝑥)

≥ 𝑜𝑝𝑡

(1 + 𝜀)𝜇
.

This completes of the proof of the theorem.
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The running time of MF(𝜀) increases with 1/𝜀 in at most
the square order because

ln (1 + 𝜀)− 𝜀

1 + 𝜀
= − ln

(
1− 𝜀

1 + 𝜀

)
− 𝜀

1 + 𝜀

≥ 1

2

(
𝜀

1 + 𝜀

)2

=
1

2
(1 + 1/𝜀)

−2
.

The running time of the the Flow Phase does not depend on
the the number of channels and the number of radios at each
node. Within each iteration of the Flow Phase, a cheapest
path 𝑃 ∈ 𝒫 with respect to 𝑦 has to be computed. A naive
implementation is first making 𝑘 separate computations of
cheapest paths 𝑃𝑗 ∈ 𝒫𝑗 for each 1 ≤ 𝑗 ≤ 𝑘 and then choosing
the cheapest one among them as 𝑃 . However, by observing
that Dijkstra’s algorithm for computing shortest paths gives
the shortest path to every node in the graph, we adopt the
following more economic implementation. We first group
unicasts by a common source node. The number of groups is at
more min {𝑛, 𝑘}. Then, for each group we compute cheapest
paths from the common source node to the sinks of all unicast
in this group by a single call to the Dijkstra’s algorithm. As the
Dijkstra’s algorithm has running time 𝑂 (𝑚+ 𝑛 log 𝑛) based
on Fibonacci heap, we can compute the cheapest path 𝑃 ∈ 𝒫
in

𝑂 (min {𝑛, 𝑘} (𝑚+ 𝑛 log 𝑛))

time. For 𝑘 = Θ
(
𝑛2

)
, this implementation is a linear factor

speedup over the naive implementation.

V. MAXIMUM CONCURRENT MULTIFLOW

Suppose that 𝐷 is an orientation of 𝐺 with ILIN 𝜇, and
denote 𝜇 = 𝜇 in SC-SR setting and 𝜇 = 𝜇 + 2 in MC-MR
setting. Consider an arbitrary parameter 𝜀 ∈ (0, 1]. In this
section, we present an efficient algorithm CMF(𝜀) algorithm
for the problem MCMF, which achieves an approximation
bound 2 (1 + 𝜀)𝜇 in general and (1 + 𝜀)𝜇 if 𝐷 is acyclic,
and has running time growing with 1/𝜀 in at most the square
order.

The algorithm CMF(𝜀) is outlined in Table II. Similar to
the algorithm MF(𝜀), it runs in three phases:

∙ Flow Phase: This phase computes a concurrent 𝑘-path
flow Π and its cumulative link flow 𝑥 iteratively by
computing a sequence of cheapest paths in terms of
interference costs.

∙ Link-Scheduling Phase: This phase computes a link
schedule 𝒮 of 𝑥 by simply applying the greedy algorithm
GLS developed in [12].

∙ Scaling Phase: This phase scales both Π and 𝒮 by a
factor 1/ ∥𝒮∥ and then return them as the final output.

The Flow Phase of CMF(𝜀) is more intricate than that of
MF(𝜀) and is elaborated below.

The Flow Phase builds up a concurrent 𝑘-path flow Π in-
crementally and updates its cumulative link flow 𝑥 accordingly
throughput this phase. The Flow Phase maintains a flow cost
variable 𝛾 storing the cumulative costs incurred by Π. Initially,
Π is empty, 𝑥 is zero-valued, and 𝛾 is zero. The Flow Phase

Algorithm CMF(𝜀)
// Flow Phase
Π ← ∅, 𝑥 ← 0,𝛾 ← 0;𝑦 ← 1;
while Δ𝑖𝑛

𝐷 (𝑥) ≥ (1 + 𝜀) 𝛾,

(𝑃1, ⋅ ⋅ ⋅ , 𝑃𝑘) ← cheapest paths in
𝑘∏

𝑗=1
𝒫𝑗 w.r.t. 𝑦;

𝛿 ← 1
max𝑎∈𝐴

∑𝑘
𝑗=1 𝑑𝑗𝜌(𝑎,𝑁𝑖𝑛

𝐷
[𝑎]∩𝑃𝑗)

;

Π ← Π ∪ {(𝑃1, ⋅ ⋅ ⋅ , 𝑃𝑘, 𝛿)};

𝛾 ← 𝛾 +

∑𝑘
𝑗=1 𝑑𝑗𝑦(𝑃𝑗)

𝑦(𝐴)
𝛿;

∀𝑎 ∈ 𝐴,

𝑥 (𝑎) ← 𝑥 (𝑎) + 𝛿
𝑘∑

𝑗=1
𝑑𝑗 ∣𝑃𝑗 ∩ {𝑎}∣;

𝑦 (𝑎) ← 𝑦 (𝑎) (1 + 𝜀𝛿
𝑘∑

𝑗=1
𝑑𝑗𝜌

(
𝑎,𝑁 𝑖𝑛

𝐷 [𝑎] ∩ 𝑃𝑗

)
);

// Link-Scheduling Phase
𝒮 ← the link schedule of 𝑥 output by GLS;
// Scaling Phase
Π ← 1

∥𝒮∥Π, 𝒮 ← 1
∥𝒮∥𝒮;

Output Π and 𝒮.

TABLE II
OUTLINE OF THE ALGORITHM CMF(𝜀).

also maintains a positive weight function 𝑦 on 𝐴 to help the
building up Γ. Initially, 𝑦 is one-valued. The Flow Phase runs
in iterations until the flow cost 𝛾 exceeds Δ𝑖𝑛

𝐷 (𝑥) / (1 + 𝜀). In
each iteration, 𝑘 cheapest paths 𝑃𝑗 ∈ 𝒫𝑗 for 1 ≤ 𝑗 ≤ 𝑘 with
respect to 𝑦 are computed. Along these 𝑘 paths, a concurrent
flow of concurrency 𝛿 is routed where

1

max𝑎∈𝐴

∑𝑘
𝑗=1 𝑑𝑗𝜌

(
𝑎,𝑁 𝑖𝑛

𝐷 [𝑎] ∩ 𝑃𝑗

) .
The 𝛿 is selected such that after Π is augmented by the new
flow

(𝑃1, ⋅ ⋅ ⋅ , 𝑃𝑘, 𝛿) ,

the maximum increment on Δ𝑖𝑛
𝐷 (𝑎;𝑥) for all 𝑎 ∈ 𝐴 is exactly

one by Lemma 3.4. The new flow is then added to Π, and
all other variables are subsequently updated. Specifically, the
𝑗-th new flow incurs a cost 𝑦(𝑃𝑗)

𝑦(𝐴) 𝛿𝑑𝑗 , which is the product
of the 𝑦-weighted interference prices of 𝑃𝑗 and the flow
amount 𝛿𝑑𝑗 routed along 𝑃𝑗 . The total cost of the new flow is∑𝑘

𝑗=1 𝑑𝑗𝑦(𝑃𝑗)

𝑦(𝐴) 𝛿, and it is added to 𝛾. The update on 𝑥 is straight-
forward: for each link 𝑎 ∈ 𝐴, 𝑥 (𝑎) is incremented by the total
new flow through 𝑎, which is equal to 𝛿

∑𝑘
𝑗=1 𝑑𝑗 ∣𝑃𝑗 ∩ {𝑎}∣.

For each link 𝑎 ∈ 𝐴, 𝑦 (𝑎) is increased by a factor

1 + 𝜀𝛿

𝑘∑
𝑗=1

𝑑𝑗𝜌
(
𝑎,𝑁 𝑖𝑛

𝐷 [𝑎] ∩ 𝑃𝑗

)
.

Note that the term 𝛿
∑𝑘

𝑗=1 𝑑𝑗𝜌
(
𝑎,𝑁 𝑖𝑛

𝐷 [𝑎] ∩ 𝑃𝑗

)
is the incre-

ment of Δ𝑖𝑛
𝐷 (𝑎;𝑥) due to the growth of Π by Lemma 3.4.

Such update on 𝑦 ensures that if a link 𝑎 receives a larger
increment on Δ𝑖𝑛

𝐷 (𝑎;𝑥), then 𝑦 (𝑎) grows faster which in turn
makes it less likely to appear in a cheapest path in the future
iteration.

Next, we analyze the performance of the algorithm
CMF(𝜀).
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Theorem 5.1: The algorithm CMF(𝜀) terminates in at most⌊
𝑚 ln𝑚

ln (1 + 𝜀)− 𝜀
1+𝜀

⌋
iterations, and outputs Π and 𝑥 satisfying that

∥Π∥
Δ𝑖𝑛

𝐷 (𝑥)
≥ 𝑜𝑝𝑡

(1 + 𝜀)𝜇
.

Proof: We introduce the following notations in this proof.
Let 𝑜𝑝𝑡 be the concurrency of the maximum concurrent
multiflow. Π0, 𝑥0, 𝑦0, and 𝛾0 denote initial values of 𝑥, 𝑦, and
𝛾 respectively in the Flow Phase. For each iteration 𝑖 ≥ 1 of
the Flow Phase, Π𝑖, 𝑥𝑖, 𝑦𝑖 and 𝛾𝑖 denote the values of 𝑥, 𝑦,
and 𝛾 respectively at the end of the 𝑖-th iteration;

(𝑃𝑖1, ⋅ ⋅ ⋅ , 𝑃𝑖𝑘, 𝛿𝑖)

denotes the concurrent flow added in the 𝑖-th iteration. Con-
sider any iteration 𝑖 of the Flow Phase. For each 𝑎 ∈ 𝐴,
since

Δ𝑖𝑛
𝐷 (𝑎;𝑥𝑖)−Δ𝑖𝑛

𝐷 (𝑎;𝑥𝑖−1)

= 𝛿𝑖

𝑘∑
𝑗=1

𝑑𝑗𝜌
(
𝑎,𝑁 𝑖𝑛

𝐷 [𝑎] ∩ 𝑃𝑖𝑗

) ≤ 1,

we have

𝑦𝑖 (𝑎) = 𝑦𝑖−1 (𝑎)

⎛⎝1 + 𝜀𝛿𝑖

𝑘∑
𝑗=1

𝑑𝑗𝜌
(
𝑎,𝑁 𝑖𝑛

𝐷 [𝑎] ∩ 𝑃𝑖𝑗

)⎞⎠
≥ 𝑦𝑖−1 (𝑎) (1 + 𝜀)

𝛿𝑖
∑𝑘

𝑗=1 𝑑𝑗𝜌(𝑎,𝑁𝑖𝑛
𝐷 [𝑎]∩𝑃𝑖𝑗)

= 𝑦𝑖−1 (𝑎) (1 + 𝜀)
Δ𝑖𝑛

𝐷 (𝑎;𝑥𝑖)−Δ𝑖𝑛
𝐷 (𝑎;𝑥𝑖−1) .

Furthermore,

𝑦𝑖 (𝐴) =
∑
𝑎∈𝐴

𝑦𝑖−1 (𝑎) (1 + 𝜀𝛿𝑖

𝑘∑
𝑗=1

𝑑𝑗𝜌
(
𝑎,𝑁 𝑖𝑛

𝐷 [𝑎] ∩ 𝑃𝑖𝑗

)
)

=𝑦𝑖−1 (𝐴) + 𝜀𝛿𝑖
∑
𝑎∈𝐴

𝑦𝑖−1 (𝑎)

𝑘∑
𝑗=1

𝑑𝑗𝜌
(
𝑎,𝑁 𝑖𝑛

𝐷 [𝑎] ∩ 𝑃𝑖𝑗

)
=𝑦𝑖−1 (𝐴) + 𝜀𝛿𝑖

𝑘∑
𝑗=1

𝑑𝑗
∑
𝑎∈𝐴

𝜌
(
𝑎,𝑁 𝑖𝑛

𝐷 [𝑎] ∩ 𝑃𝑖𝑗

)
𝑦𝑖−1 (𝑎)

=𝑦𝑖−1 (𝐴) + 𝜀𝛿𝑖

𝑘∑
𝑗=1

𝑑𝑗𝑑𝑖𝑠𝑡𝑗 (𝑦𝑖−1)

=𝑦𝑖−1 (𝐴)

(
1 + 𝜀𝛿𝑖

∑𝑘
𝑗=1 𝑑𝑗𝑑𝑖𝑠𝑡𝑗 (𝑦𝑖−1)

𝑦𝑖−1 (𝐴)

)
=𝑦𝑖−1 (𝐴) (1 + 𝜀 (𝛾𝑖 − 𝛾𝑖−1))

≤𝑦𝑖−1 (𝐴) exp (𝜀 (𝛾𝑖 − 𝛾𝑖−1)) ,

where the fourth equality follows from Lemma 3.3.
The rest of the proof is almost the same as that in the proof

of Theorem 4.1. We only outline the steps of the argument

and skip the details. First, we can show that for any iteration
number 𝑙 of the Flow Phase, at the end of the 𝑙-th iteration,

1

𝜀
ln
(1 + 𝜀)

Δ𝑖𝑛
𝐷 (𝑥𝑙)

𝑚
≤ 𝛾𝑙 ≤ 𝜇 ∥Π𝑙∥

𝑜𝑝𝑡
.

Then, using the above inequality and the fact that∑
𝑎∈𝐴Δ

𝑖𝑛
𝐷 (𝑎;𝑥𝑖) strictly increases by at least one with the

iteration 𝑖, we can prove the upper bound on the number of
iterations of the Flow Phase by contradiction. Using the above
inequality again and the stopping rule of the Flow Phase, we
can show that at the end of the of the Flow Phase,

∥Π∥
Δ𝑖𝑛

𝐷 (𝑥)
≥ 𝑜𝑝𝑡

(1 + 𝜀)𝜇
.

Using this inequality and Lemma 2.2, we can conclude that
at the end of the Link-Scheduling Phase,

∥Π∥
∥𝒮∥ ≥ 𝑜𝑝𝑡

2 (1 + 𝜀)𝜇
,

and if 𝐷 is acyclic, then

∥Π∥
∥𝒮∥ ≥ 𝑜𝑝𝑡

(1 + 𝜀)𝜇
.

This completes the proof of the theorem.
The same remark at the end of Section IV also applies to

the algorithm CMF(𝜀) and is omitted here.

VI. APPLICATIONS

In this section, we apply the algorithms MF(𝜀) and CMF(𝜀)
to the plane geometric variants of the protocol interference
model by choosing an appropriate orientation 𝐷. We remark
that any ordering ≺ of 𝐴 naturally induces an orientation 𝐷
by orienting every edge {𝑎, 𝑏} in the link-conflict graph 𝐺 for
𝑎 to 𝑏 if 𝑎 ≺ 𝑏, or in the reverse direction otherwise.

In the unidirectional mode, Wan [10] introduced the fol-
lowing orientation 𝐷. Consider any conflicting pair of links
𝑎 and 𝑏 in 𝐴. If the receiver of 𝑎 is within the interference
range of the sender of 𝑏, then we take the orientation from
𝑏 to 𝑎; otherwise, we take the orientation from 𝑎 to 𝑏. Ties
are broken arbitrarily. Suppose that for each link 𝑎 ∈ 𝐴, the
interference radius of its sender is at least 𝑐 times its length
for some constant 𝑐 > 1. It was shown in [13] that the ILIN
of such 𝐷 is at most

⌈
𝜋/ arcsin 1−𝑐

2

⌉ − 1. By Theorem 4.1
and Theorem 5.1, we have the following corollary.

Corollary 6.1: Under the plane geometric variant of the
protocol interference model in the unidirectional mode in
which the interference radius of its sender of each link is at
least 𝑐 times the link length for some constant 𝑐 > 1, by
adopting the orientation 𝐷 given in [10], both MF(𝜀) and
CMF(𝜀) have an approximation bound

2 (1 + 𝜀)

(⌈
𝜋/ arcsin

𝑐− 1

2𝑐

⌉
+ 1

)
in MC-MR wireless networks, and

2 (1 + 𝜀)

(⌈
𝜋/ arcsin

𝑐− 1

2𝑐

⌉
− 1

)
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in SC-SR wireless networks,
In the bidirectional mode, Wan et al. [13] introduced the

following orientation 𝐷. Consider any conflicting pair of links
𝑎 and 𝑏 in 𝐴. If 𝑎 has an endpoint 𝑢 and 𝑏 has an endpoint
𝑣 satisfying that 𝑢 is within the interference range of 𝑣 and
its interference radius is no more than that of 𝑣, then we take
the orientation from 𝑏 to 𝑎; otherwise, we take the orientation
from 𝑎 to 𝑏. Ties are broken arbitrarily. It was shown in [13]
that the ILIN of such 𝐷 is at most 8. By Theorem 4.1 and
Theorem 5.1, we have the following corollary.

Corollary 6.2: Under the plane geometric variant of the
protocol interference model in the bidirectional mode, by
adopting the orientation 𝐷 given in [13], both MF(𝜀) and
CMF(𝜀) have an approximation bound 18 (1 + 𝜀) in MC-MR
wireless networks, and 16 (1 + 𝜀) in SC-SR wireless networks,

In the bidirectional mode with symmetric interference radii
(i.e., for each link, its two endpoints have equal interfer-
ence radii), we sorts the links in the decreasing order of
the interference radii of their endpoints and ties are broken
arbitrarily. Such ordering is referred to as the interference
radius decreasing ordering. It was shown in [13] that for
the acyclic orientation 𝐷 induced by the interference radius
decreasing ordering, its ILIN is at most 8. By Theorem 4.1
and Theorem 5.1, we have the following corollary.

Corollary 6.3: Under the plane geometric variant of the
protocol interference model in the bidirectional mode with
symmetric interference radii, by adopting the orientation 𝐷
induced by the interference radius decreasing ordering, both
MF(𝜀) and CMF(𝜀) have an approximation bound 10 (1 + 𝜀)
in MC-MR wireless networks, and 8 (1 + 𝜀) in SC-SR wireless
networks,

In the bidirectional mode with uniform interference radii
(i.e., the endpoints of all links have equal interference radii),
we sorts the links in the lexicographic order of their left
endpoints and ties are broken arbitrarily. Such ordering is
referred to as the lexicographic ordering. It was shown in [5]
that for the acyclic orientation 𝐷 induced by the lexicographic
ordering, its ILIN is at most 6. By Theorem 4.1 and Theorem
5.1, we have the following corollary.

Corollary 6.4: Under the plane geometric variant of the
protocol interference model in the bidirectional mode with
uniform interference radii, by adopting the orientation 𝐷 in-
duced by the lexicographic ordering, both MF(𝜀) and CMF(𝜀)
have an approximation bound 8 (1 + 𝜀) in MC-MR wireless
networks, and 6 (1 + 𝜀) in SC-SR wireless networks,

VII. CONCLUSION

In this paper, we have developed purely combinatorial
approximation algorithms for both maximum multiflow and
maximum concurrent multiflow in MC-MR wireless networks.
These algorithms adopt an orientation 𝐷 of the conflict graph
and a parameter 𝜀 ∈ (0, 1] which represents the trade-off
between the approximation ratio and the running time. Let
𝜇 be the ILIN of 𝐷, and denote 𝜇 = 𝜇 in SC-SR setting
and 𝜇 = 𝜇 + 2 in MC-MR setting. At the running time
growing with 1/𝜀 in at most the square order, they produce

2 (1 + 𝜀)𝜇-approximate solutions in general, and (1 + 𝜀)𝜇-
approximate solutions if 𝐷 is acyclic. Compared to the existing
approximation algorithms based on the LP approach, these
approximation bounds are only slightly larger by a factor 1+𝜀,
but they are much faster and simpler. Underlying the combi-
natorial approach followed by these algorithms is the intrinsic
relation between interference costs and prices of a path and the
maximum (concurrent) multiflow. These algorithms iteratively
compute a sequence of least interference-cost routing paths
along which the flows are routed. By leveraging the techniques
in [3], [2], [6], we can further speed up these algorithms and
the details will be reported in the full version of this paper.
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