
Fast And Simple Approximation Algorithms for
Maximum Weighted Independent Set of Links

Peng-Jun Wan∗, Xiaohua Jia†, Guojun Dai‡, Hongwei Du§, and Ophir Frieder¶
∗ Department of Computer Science, Illinois Institute of Technology, wan@cs.iit.edu

† Department of Computer Science, City University of Hong Kong, csjia@cityu.edu.hk
‡ School of Computer Science, Hangzhou DianZi University, daigj@hdu.edu.cn. Corresponding author.

§ Department of Computer Science and Technology, HIT Shenzhen Graduate School, hwdu@hitsz.edu.cn
¶ Department of Computer Science, Georgetown University, ophir@ir.cs.georgetown.edu

Abstract—Finding a maximum-weighted independent set of
links is a fundamental problem in wireless networking and has
broad applications in various wireless link scheduling problems.
Under protocol interference model, it is NP-hard even when
all nodes have uniform (and fixed) interference radii and the
positions of all nodes are available. On one hand, it admits a
polynomial-time approximation scheme (PTAS). In other words,
for any fixed 𝜀 > 0, it has a polynomial-time (depending
on 𝜀) (1 + 𝜀)-approximation algorithm. However, such PTAS is
of theoretical interest only and is quite infeasible practically.
On the other hand, only with the uniform interference radii
is a simple (greedy) constant-approximation algorithm known.
For the arbitrary interference radii, fast constant-approximation
algorithms are still missing. In this paper, we present a number
of fast and simple approximation algorithms under the general
protocol interference model. When applied to the plane geometric
variants of the protocol interference model, these algorithms
produce constant-approximate solutions efficiently.

I. INTRODUCTION

Consider a multihop wireless network with a set 𝐿 of
communication links. A set 𝐼 of links in 𝐿 is said to be
independent if all links in 𝐼 can transmit successfully at the
same time under a pre-specified interference model. Given a
subset 𝐴 of 𝐿 and a positive weight function 𝑤 on 𝐴, the
problem of finding an independent subset (abbreviated with
IS) 𝐼 of 𝐴 with maximum total weight

∑
𝑎∈𝐼𝑤 (𝑎) is known as

Maximum Weighted Independent Set of Links (MWISL).
In particular, given a subset 𝐴 of 𝐿, the problem of finding a
largest IS of 𝐴 is known as Maximum Independent Set of
Links (MISL). The problem MWISL plays fundamental roles
in many wireless link scheduling problems. For examples, Wan
[5] presented polynomial approximation-preserving reductions
from three wireless link scheduling problems minimum-
latency link scheduling, maximum multiflow, and maximum
concurrent multiflow to MWISL. In other words, if there
exists a polynomial 𝜇-approximation algorithm for MWISL,
then there also exists polynomial 𝜇-approximation algorithms
for those three problems as well. Lin and Shroff [4] proved that
for the maximum-throughput stable wireless link scheduling,
any 𝜇-approximation algorithm for MWISL also achieves a
stable throughput efficiency ratio at least 1/𝜇.

Because of its fundamental importance, the problem

MWISL received much research interest in the past decade.
Most of the existing studies (e.g., [1], [2], [3], [4], [5])
assumed some variants of the protocol (as opposed to physical)
interference model. In general, a protocol interference model
specifies a pairwise conflict relations among all links in 𝐿, and
a subset 𝐼 of 𝐿 is independent if all links in 𝐼 are pairwise
conflict-free. It is classified into two communication modes:

∙ Unidirectional mode: For each link 𝑎 = (𝑢, 𝑣) ∈ 𝐿, the
communication between 𝑢 and 𝑣 occurs in the direction
from 𝑢 to 𝑣, and the endpoint 𝑢 (respectively, 𝑣) is
referred to as the sender (respectively, receiver) of 𝑎.
The sender 𝑢 of the link 𝑎 has an interference range,
and the interference range of 𝑎 is the interference range
of its sender. Two links in 𝐴 conflict with each other if
and only if the receiver of at least one link lies in the
interference range of the other link.

∙ Bidirectional mode: For each link 𝑎 = (𝑢, 𝑣) ∈ 𝐿, the
communication between 𝑢 and 𝑣 occurs in both direc-
tions, and both 𝑢 and 𝑣 have an interference range. The
interference range of 𝑎 is the union of the interference
ranges of its two endpoints. Two links in 𝐴 conflict with
each other if and only if at least one link has an endpoint
lying in the interference range of the other link.

In the plane geometric variant, the interference range of an
endpoint 𝑢 of a link 𝑎 is assumed to be a disk centered at
𝑢 of radius 𝑟𝑎 (𝑢), which is also knows as the interference
radius. Under the plane geometric variant of the protocol in-
terference model in either unidirectional mode or bidirectional
mode, the computational hardness of the problem MWISL
was well characterized in [5]. On one hand, the problem
MISL (and hence the problem MWISL too) is NP-hard
even when all nodes have uniform (and fixed) communica-
tion radii and uniform (and fixed) interference radii and the
positions of all nodes are available. On the other hand, the
problem MWISL (and hence the problem MISL too) admits
a polynomial-time approximation scheme (PTAS). In other
words, for any fixed 𝜀 > 0, it has polynomial-time (depending
on 𝜀) (1 + 𝜀)-approximation algorithm. Such PTAS is of
theoretical interest only and is quite infeasible practically
as it involves very time-consuming exhaustive enumerations.
For practical approximation algorithms for MWISL, only a

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

978-14799-3360-0/14/$31.00 ©2014 IEEE 1653

simple greedy 8-approximation algorithm [1] is known in
the bidirectional mode with uniform interference radii, which
selects an independent set of links in the first-fit manner in the
decreasing order of link weights. In all other settings, practical
approximation algorithms for MWISL are still missing till
now.

In this paper, we present a number of fast and simple
approximation algorithms for MWISL under the general pro-
tocol interference model, all of which exploit the rich nature
of the protocol interference model. Under the plane geometric
variant of the protocol interference model in either unidi-
rectional mode or bidirectional mode, these approximation
algorithms achieve constant approximation bounds even with
arbitrary interference radii. In the same setting as in [1] (i.e.,
the bidirectional mode with uniform interference radii), we are
able to achieve an approximation bound between 3 and 6 with
our algorithms, which outperforms the 8-approximation bound
achieved in [1].

The remainder of this paper is organized as follows. In
Section II, we design and analyze a general orientation-
based approximation algorithm, and study its performance
under specific variants of the protocol interference model. In
Section III, we design and analyze a general ordering-based
approximation algorithm, and study its performance under
specific variants of the protocol interference model. In Section
IV, we develop a divide-and-conquer approximation algorithm,
which is specially tailored for the plane geometric variant
of the protocol interference model with uniform interference
radii. We conclude this paper in Section V. The following
standard terms and notations are adopted throughout this paper.

∙ ℐ denotes the collection of all independent subsets of 𝐴.
∙ 𝐺 denotes the link-conflict graph of 𝐴 under the given

protocol interference model. In other words, 𝐴 is the
vertex set of 𝐺 and two links in 𝐴 are adjacent in 𝐺
if and only if they conflict with each other.

∙ For any 𝑎 ∈ 𝐴, 𝑁 (𝑎) denotes the set of links in 𝐴
conflicting with 𝑎 under the given protocol interference
model; and 𝑁 [𝑎] denotes {𝑎} ∪ 𝑁 (𝑎). In other words,
𝑁 (𝑎) (respectively, 𝑁 [𝑎]) is the open (respectively,
closed) neighborhood of 𝑎 in 𝐺.

∙ For any real-valued function 𝑓 on 𝐴 and any 𝐵 ⊆ 𝐴,
𝑓 (𝐵) represents

∑
𝑏∈𝐵 𝑓 (𝑏).

∙ Let ≺ be an ordering of 𝐴. For any pair of links 𝑎, 𝑏 ∈ 𝐴,
both 𝑎 ≺ 𝑏 and 𝑏 ≻ 𝑎 represent that 𝑎 appears before 𝑏 in
the ordering ≺; 𝑎 ⪯ 𝑏 represents that either 𝑎 ≺ 𝑏 or 𝑎 =
𝑏; 𝑎 ર 𝑏 represents that either 𝑎 ≻ 𝑏 or 𝑎 = 𝑏. For any
𝑎 ∈ 𝐴 and any 𝐵 ⊆ 𝐴, we use 𝐵≺𝑎 (respectively, 𝐵⪯𝑎,
𝐵≻𝑎, 𝐵ર𝑎) to denote the set of links 𝑏 ∈ 𝐵 satisfying
that 𝑏 ≺ 𝑎 (respectively, 𝑏 ⪯ 𝑎, 𝑏 ≻ 𝑎, 𝑏 ર 𝑎).

II. ORIENTATION-BASED APPROXIMATION ALGORITHM

An orientation on 𝐴 is a digraph 𝐷 obtained from the link-
conflict graph 𝐺 by imposing a direction on each edge of 𝐺.

Suppose that 𝐷 is an orientation. For each 𝑎 ∈ 𝐴, 𝑁 𝑖𝑛
𝐷 (𝑎)

denotes the set of in-neighbors of 𝑎 in 𝐷, and 𝑁 𝑖𝑛
𝐷 [𝑎] denotes

{𝑎}∪𝑁 𝑖𝑛
𝐷 (𝑎); 𝑁𝑜𝑢𝑡

𝐷 (𝑎) denotes the set of out-neighbors of 𝑎
in 𝐷, and 𝑁𝑜𝑢𝑡

𝐷 [𝑎] denotes {𝑎} ∪𝑁𝑜𝑢𝑡
𝐷 (𝑎). The inward local

independence number (ILIN) of 𝐷 is defined to be

𝛼𝑖𝑛
𝐷 = max

𝑎∈𝐴
max
𝐼∈ℐ

∣∣𝐼 ∩ 𝑁 𝑖𝑛
𝐷 [𝑎]

∣∣ .
In this section, we develop a simple approximation algorithm
MWISL which adopts an orientation 𝐷 and achieves an
approximation ratio nearly 2𝛼𝑖𝑛

𝐷 . Conceptually, our algorithm
is simple: it first prunes some links from 𝐴, and then greedily
select an IS from the remaining links in some order. Techni-
cally, our algorithm is however intricate. The pruning process
is assisted by some auxiliary non-negative weight function 𝑥
on 𝐴. For any 𝐵 ⊆ 𝐴, a link 𝑎 ∈ 𝐵 is said to be a 𝑥-surplus
link of 𝐵 if

𝑥
(
𝑁 𝑖𝑛

𝐷 (𝑎) ∩ 𝐵
) ≥ 𝑥

(
𝑁𝑜𝑢𝑡

𝐷 (𝑎) ∩ 𝐵
)
.

It was proved in [5] that any non-empty subset 𝐵 of 𝐴 has at
least one 𝑥-surplus link. This fact is exploited by the pruning
process repeatedly. After the pruning process, the order in
which the IS is greedily selected is also essential. For better
exposing our algorithm, this section proceeds as follows. In
Subsection II-A, we present the computation of an IS with a
given auxiliary weight function. In Subsection II-B, we give a
proper selection of the auxiliary weight function. In Subsection
II-C, we develop and analyze our algorithm by putting all
pieces together and apply it to the specific variants of the
protocol interference model.

A. Computing An IS with Auxiliary Weight Function

Suppose that 𝑥 is an auxiliary non-negative on 𝐴 with
𝑥 (𝐴) > 0. The algorithm PG(𝑥), outlined in Table I,
computes an IS 𝐼 of 𝐴 with the assistance of 𝑥. It maintains a
stack 𝑆, which is initially empty, and consists of two phases:
Prune Phase and Grow Phase. The Prune Phase maintains
a set 𝐵 of links which are yet to be decided whether to be
kept (in 𝑆) or to be pruned away. Each iteration of the Prune
Phase selects a 𝑥-surplus link 𝑎 of 𝐵 and computes an updated
weight 𝑤 (𝑎) to be its original weight minus the updated total
weight of its conflicting links sitting in the current stack. If
the updated weight of 𝑎 is positive, 𝑎 is pushed onto the stack
𝑆 with its updated weight; otherwise, it is pruned from further
consideration. Such iteration is repeated until 𝐵 is empty. The
Grow Phase builds an IS 𝐼 of 𝑆 incrementally in the top-down
manner.

Figure 1 illustrates the Prune Phase. Suppose that for the
given 𝑥, the links are processed in the ordering

𝑎2, 𝑎7, 𝑎6, 𝑎3, 𝑎1, 𝑎5, 𝑎4.

The white circles represents the links which have not been
processed yet, and the numbers inside the white circles are the
original 𝑤-weights of the corresponding links. The blue circles

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

1654

Algorithm PG(𝑥)

//Prune Phase
𝐵 ← 𝐴, 𝑆 ← ∅; //𝑆 is a stack
while 𝐵 ∕= ∅,

𝑎 ← a 𝑥-surplus link of 𝐵;
𝐵 ← 𝐵∖ {𝑎};
𝑤 (𝑎) ← 𝑤 (𝑎)− 𝑤 (𝑆 ∩𝑁 (𝑎));
if 𝑤 (𝑎) > 0, push 𝑎 onto 𝑆;

//Grow Phase
𝐼 ← ∅;
while 𝑆 ∕= ∅,

pop the top link 𝑎 from 𝑆;
if 𝐼 ∪ {𝑎} is independent, 𝐼 ← 𝐼 ∪ {𝑎};

return 𝐼 .

TABLE I
OUTLINE OF THE ALGORITHM OrderWIS.

represents the links which are kept in the current stack, and
the numbers inside the blue circles are the updated 𝑤-weights
of the corresponding links. The link 𝑎1 is pruned in Figure
1(e) and disappears from then on. At the end of the Prune
Phase, the stack 𝑆 consists of six links

𝑎4, 𝑎5, 𝑎3, 𝑎6, 𝑎7, 𝑎2

from the top to the bottom whose updated weights are

3, 3, 2, 3, 1, 2

respectively. During the Grow Phase, the vertices 𝑎4, 𝑎6, 𝑎2

are added to the independent set 𝐼 sequentially.

(a)

(d)

(c)(b)

(e) (f)

(g)

a4

a2

a

2
a5

a6 a7

a1

3aa4a4

a2
a5

a6 a7

a1

3a

a2
a5

a6 a7

a1

3aa4

a2
a5

a6 a7

a1

3a

7

3aa4

a2
a5

a6 a7

3aa4

a2
a5

a

6 a7

3aa4

a5

a6 a

4 13

2

8 5

46

8

2

3 1

2

3

3

8

2

13

2

8

46

8

2

3 1

2

5

46

3

2

3 1

2

3

14

2

8 5

462

6

Fig. 1. A step-by-step illustration of the Prune Phase in the ordering
𝑎2, 𝑎7, 𝑎6, 𝑎3, 𝑎1, 𝑎5, 𝑎4.

Now, we analyze the performance of the algorithm PG(𝑥).
Theorem 2.1: Let 𝐼 be the output of the algorithm PG(𝑥).

Then,

𝑤 (𝐼) ≥
∑

𝑎∈𝐴 𝑤 (𝑎)𝑥 (𝑎)

2max𝑎∈𝐴 𝑥
(
𝑁 𝑖𝑛

𝐷 [𝑎]
) .

Proof: Let ≺ denote the ordering of 𝐴 in which the links
are processed in the Prune Phase. Then, just before 𝑎 is
removed from 𝐵, the set 𝐵 is 𝐴ર𝑎 and so 𝑎 is a 𝑥-surplus
link of 𝐴ર𝑎. Thus,

𝑥 (𝐴ર𝑎 ∩ 𝑁 [𝑎])

= 𝑥 (𝑎) + 𝑥
(
𝐴ર𝑎 ∩ 𝑁 𝑖𝑛

𝐷 (𝑎)
)
+ 𝑥

(
𝐴ર𝑢 ∩ 𝑁𝑜𝑢𝑡

𝐷 (𝑎)
)

≤ 𝑥 (𝑎) + 2𝑥
(
𝐴ર𝑎 ∩ 𝑁 𝑖𝑛

𝐷 (𝑎)
)

≤ 𝑥 (𝑎) + 2𝑥
(
𝑁 𝑖𝑛

𝐷 (𝑎)
)

≤ 2𝑥
(
𝑁 𝑖𝑛

𝐷 [𝑎]
)
.

Let 𝑆 be the set of links in the stack at the end of the Prune
Phase. Clearly, for each 𝑎 ∈ 𝑆,

𝑤 (𝑎) = 𝑤 (𝑎) + 𝑤 (𝑆≺𝑎 ∩ 𝑁 (𝑎)) = 𝑤 (𝑆⪯𝑎 ∩ 𝑁 [𝑎]) ;

in general, for each 𝑎 ∈ 𝐴,

𝑤 (𝑎) = 𝑤 (𝑎) + 𝑤 (𝑆≺𝑎 ∩ 𝑁 (𝑎)) ≤ 𝑤 (𝑆⪯𝑎 ∩ 𝑁 [𝑎]) .

Now, we claim that∑
𝑎∈𝐴 𝑤 (𝑎)𝑥 (𝑎)

2max𝑎∈𝐴 𝑥
(
𝑁 𝑖𝑛

𝐷 (𝑎)
) ≤ 𝑤 (𝑆)

Indeed, ∑
𝑎∈𝐴

𝑤 (𝑎)𝑥 (𝑎)

≤
∑
𝑣∈𝐴

𝑥 (𝑎)𝑤 (𝑆⪯𝑎 ∩ 𝑁 [𝑎])

=
∑
𝑏∈𝑆

𝑤 (𝑏)𝑥 (𝐴ર𝑏 ∩ 𝑁 [𝑏])

≤ 2
∑
𝑏∈𝑆

𝑤 (𝑏)𝑥
(
𝑁 𝑖𝑛

𝐷 [𝑏]
)

≤ 2

(
max
𝑏∈𝑆

𝑥
(
𝑁 𝑖𝑛

𝐷 [𝑏]
))∑

𝑏∈𝑆

𝑤 (𝑏)

≤ 2

(
max
𝑎∈𝐴

𝑥
(
𝑁 𝑖𝑛

𝐷 (𝑎)
))

𝑤 (𝑆) .

So our claim holds.
Next, we claim that

𝑤 (𝐼) ≥ 𝑤 (𝑆) .

Indeed, by the greedy selection of 𝐼 , for each 𝑏 ∈ 𝑆,

∣𝐼ર𝑏 ∩ 𝑁 [𝑏]∣ ≥ 1.

Thus,

𝑤 (𝐼) =
∑
𝑎∈𝐼

𝑤 (𝑆⪯𝑣 ∩ 𝑁 [𝑎])

=
∑
𝑏∈𝑆

𝑤 (𝑏) ∣𝐼ર𝑏 ∩ 𝑁 [𝑏]∣

≥
∑
𝑏∈𝑆

𝑤 (𝑏)

= 𝑤 (𝑆) .

So, our claim holds.
Finally, the lemma holds immediately from the above two

claims.

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

1655

B. Selection of The Auxiliary Weight Function

Theorem 2.1 suggests that the auxiliary weight function 𝑥
should be selected to make∑

𝑎∈𝐴 𝑤 (𝑎)𝑥 (𝑎)

max𝑎∈𝐴 𝑥
(
𝑁 𝑖𝑛

𝐷 [𝑎]
)

as large as possible. Let 𝑂 be a maximum-weighted indepen-
dent set 𝑂. If 𝑥 is the indicator function of 𝑂, then∑

𝑎∈𝐴 𝑤 (𝑎)𝑥 (𝑎)

max𝑎∈𝐴 𝑥
(
𝑁 𝑖𝑛

𝐷 [𝑎]
) ≥ 𝑤 (𝑂)

𝛼𝑖𝑛
𝐷

.

An auxiliary weight 𝑥 with maximum∑
𝑎∈𝐴 𝑤 (𝑎)𝑥 (𝑎)

max𝑎∈𝐴 𝑥
(
𝑁 𝑖𝑛

𝐷 [𝑎]
)

can actually be obtained by solving the following linear
program of linear size:

max
∑

𝑎∈𝐴 𝑤 (𝑎)𝑥 (𝑎)
𝑠.𝑡. 𝑥

(
𝑁 𝑖𝑛

𝐷 [𝑎]
) ≤ 1, , ∀𝑎 ∈ 𝐴

𝑥 (𝑎) ≥ 0, ∀𝑎 ∈ 𝐴

For such 𝑥, we have∑
𝑎∈𝐴 𝑤 (𝑎)𝑥 (𝑎)

max𝑎∈𝐴 𝑥
(
𝑁 𝑖𝑛

𝐷 [𝑎]
) ≥ 𝑤 (𝑂)

𝛼𝑖𝑛
𝐷

,

and hence the algorithm PG(𝑥) produces a 2𝛼𝑖𝑛
𝐷 -approximate

solution. However, solving the above linear program exactly
is time-consuming. In this subsection, we present an efficient
price-directive algorithm PDA(𝜀), which takes a parameter 𝜀 ∈
(0, 1) and outputs an auxiliary weight function 𝑥 satisfying
that ∑

𝑎∈𝐴 𝑤 (𝑎)𝑥 (𝑎)

max𝑎∈𝐴 𝑥
(
𝑁 𝑖𝑛

𝐷 [𝑎]
) ≥ 𝑤 (𝑂)

(1 + 𝜀)𝛼𝑖𝑛
𝐷

.

The running time of PDA(𝜀) increases with 1/𝜀 in at most
the square order.

The algorithm PDA(𝜀) uses a notion of price. For any
positive function 𝑦 on 𝐴 and any 𝑎 ∈ 𝐴, the 𝑦-price of 𝑎
is defined to be

𝑦 (𝑁𝑜𝑢𝑡
𝐷 [𝑎])

𝑤 (𝑎)
.

The lemma below shows that the least 𝑦-price is no more than
𝛼𝑖𝑛
𝐷

𝑦(𝐴)
𝑤(𝑂) .

Lemma 2.2: For any positive function 𝑦 on 𝐴,

min
𝑎∈𝐴

𝑦 (𝑁𝑜𝑢𝑡
𝐷 [𝑎])

𝑤 (𝑎)
≤ 𝛼𝑖𝑛

𝐷

𝑦 (𝐴)

𝑤 (𝑂)
.

Proof: On one hand,∑
𝑎∈𝑂

𝑦
(
𝑁𝑜𝑢𝑡

𝐷 [𝑎]
)

=
∑
𝑎∈𝑂

𝑤 (𝑎)
𝑦 (𝑁𝑜𝑢𝑡

𝐷 [𝑎])

𝑤 (𝑎)

≥
(
min
𝑎∈𝑂

𝑦 (𝑁𝑜𝑢𝑡
𝐷 [𝑎])

𝑤 (𝑎)

)∑
𝑎∈𝑂

𝑤 (𝑎)

=

(
min
𝑎∈𝐴

𝑦 (𝑁𝑜𝑢𝑡
𝐷 [𝑎])

𝑤 (𝑎)

)
𝑤 (𝑂) .

On the other hand,∑
𝑎∈𝑂

𝑦
(
𝑁𝑜𝑢𝑡

𝐷 [𝑎]
)

=
∑
𝑏∈𝐴

𝑦 (𝑏)
∣∣𝑁 𝑖𝑛

𝐷 [𝑏] ∩ 𝑂
∣∣

≤
(
max
𝑏∈𝐴

∣∣𝑁 𝑖𝑛
𝐷 [𝑏] ∩ 𝑂

∣∣)∑
𝑏∈𝐴

𝑦 (𝑏)

≤ 𝛼𝑖𝑛
𝐷 𝑦 (𝐴) .

Thus, the lemma holds.

The algorithm PDA(𝜀) is outlined in Table II. Initially,
𝑥 (𝑎) = 0 and 𝑦 (𝑎) = 1 for each 𝑎 ∈ 𝐴; the parameter 𝜏
is 0. In each iteration, a least 𝑦-priced link 𝑎 is selected, 𝑥 (𝑎)

is incremented by one, and 𝜏 is increased by
𝑦(𝑁𝑜𝑢𝑡

𝐷 [𝑎])
𝑦(𝐴) . Then,

for each 𝑏 ∈ 𝑁𝑜𝑢𝑡
𝐷 [𝑎], 𝑦 (𝑏) is increased by a factor 1+𝜀. Such

iteration is repeated until

max
𝑎∈𝐴

𝑥
(
𝑁 𝑖𝑛

𝐷 [𝑎]
)

< (1 + 𝜀) 𝜏.

Note that the relation

𝑦 (𝑎) = (1 + 𝜀)
𝑥(𝑁𝑖𝑛

𝐷 [𝑎]) , ∀𝑎 ∈ 𝐴

holds at the initialization and is maintained at the end of each
iteration.

Algorithm PDA(𝜀)

∀𝑎 ∈ 𝐴, 𝑥 (𝑎) ← 0, 𝑦 (𝑎) ← 1; 𝜏 ← 0;
while max𝑎∈𝐴 𝑥

(
𝑁 𝑖𝑛

𝐷 [𝑎]
) ≥ (1 + 𝜀) 𝜏 do

𝑎 ← argmin𝑎∈𝐴
𝑦(𝑁𝑜𝑢𝑡

𝐷 [𝑎])
𝑤(𝑎)

;

𝜏 ← 𝜏 +
𝑦(𝑁𝑜𝑢𝑡

𝐷 [𝑎])
𝑦(𝐴)

;
𝑥 (𝑎) ← 𝑥 (𝑎) + 1;
∀𝑏 ∈ 𝑁𝑜𝑢𝑡

𝐷 [𝑎], 𝑦 (𝑏) ← (1 + 𝜀) 𝑦 (𝑏) ;
return 𝑥.

TABLE II
OUTLINE OF THE ALGORITHM PDA.

Next, we analyze the performance of the algorithm PDA(𝜀).
Theorem 2.3: The algorithm PDA(𝜀) terminates in at most⌈

∣𝐴∣ ln ∣𝐴∣
ln (1 + 𝜀)− 𝜀

1+𝜀

⌉

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

1656

iterations, and outputs 𝑥 satisfying that∑
𝑎∈𝐴 𝑤 (𝑎)𝑥 (𝑎)

max𝑎∈𝐴 𝑥
(
𝑁 𝑖𝑛

𝐷 [𝑎]
) ≥ 𝑤 (𝑂)

(1 + 𝜀)𝛼𝑖𝑛
𝐷

.

Proof: We introduce the following notations in this proof.
Let 𝑚 = ∣𝐴∣. 𝑥0, 𝑦0, and 𝜏0 denote initial values of 𝑥, 𝑦, and
𝜏 respectively. For each iteration 𝑖 ≥ 1, 𝑥𝑖, 𝑦𝑖 and 𝜏𝑖 denote
the values of 𝑥, 𝑦, and 𝜏 respectively at the end of the 𝑖-
th iteration; 𝑎𝑖 denotes the link selected in the 𝑖-th iteration.
Then, in each iteration 𝑖,

𝜏𝑖 − 𝜏𝑖−1 =
𝑦𝑖−1 (𝑁

𝑜𝑢𝑡
𝐷 [𝑎𝑖])

𝑦𝑖−1 (𝐴)
,

and

𝑦𝑖 (𝐴) = 𝑦𝑖−1 (𝐴) + 𝜀𝑦𝑖−1

(
𝑁𝑜𝑢𝑡

𝐷 [𝑎𝑖]
)

= 𝑦𝑖−1 (𝐴) (1 + 𝜀 (𝜏𝑖 − 𝜏𝑖−1))

≤ 𝑦𝑖−1 (𝐴) exp (𝜀 (𝜏𝑖 − 𝜏𝑖−1))

We claim that for any iteration number 𝑘, at the end of the
𝑘-th iteration,

1

𝜀
ln

𝑦𝑘 (𝐴)

𝑚
≤ 𝜏𝑘 ≤ 𝛼𝑖𝑛

𝐷

∑
𝑎∈𝐴 𝑤 (𝑎)𝑥𝑘 (𝑎)

𝑤 (𝑂)

Indeed, by Lemma 2.2,

𝜏𝑘 =

𝑘∑
𝑖=1

𝑦𝑖−1 (𝑁
𝑜𝑢𝑡
𝐷 [𝑎𝑖])

𝑦𝑖−1 (𝐴)

≤ 𝛼𝑖𝑛
𝐷

∑𝑘
𝑖=1 𝑤 (𝑎𝑖)

𝑤 (𝑂)

=
𝛼𝑖𝑛
𝐷

∑
𝑎∈𝐴 𝑤 (𝑎)𝑥𝑘 (𝑎)

𝑤 (𝑂)
.

By induction,

𝑦𝑘 (𝐴) ≤ 𝑦0 (𝐴) exp

(
𝜀

𝑘∑
𝑡=1

(𝜏𝑖 − 𝜏𝑖−1)

)

= 𝑚 exp (𝜀𝜏𝑘) ,

which implies

𝜏𝑘 ≥ 1

𝜀
ln

𝑦𝑘 (𝐴)

𝑚
.

Thus, our claim holds.
Now, we bound the number of iterations of the algorithm.

Assume to the contrary that the algorithm didn’t terminate
after ⌈

𝑚 ln𝑚

ln (1 + 𝜀)− 𝜀
1+𝜀

⌉

iterations. Let

𝑘 =

⌈
𝑚 ln𝑚

ln (1 + 𝜀)− 𝜀
1+𝜀

⌉
.

Since
∑

𝑎∈𝐴 𝑥𝑖

(
𝑁 𝑖𝑛

𝐷 [𝑎]
)

strictly increases with the iteration
𝑖, ∑

𝑎∈𝐴

𝑥𝑘

(
𝑁 𝑖𝑛

𝐷 [𝑎]
) ≥ 𝑘.

Let 𝑎 be the link in 𝐴 maximizing 𝑥𝑘

(
𝑁 𝑖𝑛

𝐷 [𝑎]
)
. Then,

𝑥𝑘

(
𝑁 𝑖𝑛

𝐷 [𝑎]
) ≥ 𝑘/𝑚 ≥ ln𝑚

ln (1 + 𝜀)− 𝜀
1+𝜀

.

Hence,

1

𝜀
ln

(1 + 𝜀)
𝑥𝑘(𝑁𝑖𝑛

𝐷 [𝑎])

𝑚
≥ 𝑥𝑘

(
𝑁 𝑖𝑛

𝐷 [𝑎]
)

1 + 𝜀
.

Thus,

𝜏𝑘 ≥ 1

𝜀
ln

𝑦𝑘 (𝐴)

𝑚

>
1

𝜀
ln

(1 + 𝜀)
𝑥𝑘(𝑁𝑖𝑛

𝐷 [𝑎])

𝑚

≥ 𝑥𝑘

(
𝑁 𝑖𝑛

𝐷 [𝑎]
)

1 + 𝜀
.

This means that the number of iterations is at most 𝑘, which
is a contradiction.

Finally, we show the output 𝑥 satisfies the inequality stated
in the theorem. Suppose that the algorithm runs in 𝑘 iterations.
By the stopping rule of the algorithm,

max
𝑎∈𝐴

𝑥𝑘

(
𝑁 𝑖𝑛

𝐷 [𝑎]
)

≤ (1 + 𝜀) 𝜏𝑘

≤ (1 + 𝜀)𝛼𝑖𝑛
𝐷

∑
𝑎∈𝐴 𝑤 (𝑎)𝑥𝑘 (𝑎)

𝑤 (𝑂)
.

Thus, ∑
𝑎∈𝐴 𝑤 (𝑎)𝑥𝑘 (𝑎)

max𝑎∈𝐴 𝑥𝑘

(
𝑁 𝑖𝑛

𝐷 [𝑎]
) ≥ 𝑤 (𝑂)

(1 + 𝜀)𝛼𝑖𝑛
𝐷

.

This completes the proof of the theorem.

As

ln (1 + 𝜀) = − ln

(
1− 𝜀

1 + 𝜀

)

≥ 𝜀

1 + 𝜀
+

1

2

(
𝜀

1 + 𝜀

)2

,

we have

ln (1 + 𝜀)− 𝜀

1 + 𝜀
≥ 1

2

(
𝜀

1 + 𝜀

)2

=
1

2
(1 + 1/𝜀)

−2
.

The running time of PDA(𝜀) increases with 1/𝜀 in at most
the square order.

C. Putting Together

Now, we are ready describe our orientation-based approxi-
mation algorithm OrientWIS(𝜀) for MWISL. The algorithm
takes a parameter 𝜀 ∈ (0, 1) and produces an IS 𝐼 of 𝐴 in two
steps:

∙ Apply the algorithm PDA(𝜀) to compute an auxiliary
weight function 𝑥 on 𝐴.

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

1657

∙ Apply the algorithm PG(𝑥) to compute an IS 𝐼 of 𝐴.
From Theorem 2.1 and Theorem 2.3, we immediately obtain
the following approximation bound of the algorithm Orien-
tWIS(𝜀).

Theorem 2.4: The approximation ratio of OrientWIS(𝜀) is
2 (1 + 𝜀)𝛼𝑖𝑛

𝐷 .

Next, we apply the algorithm OrientWIS(𝜀) to the plane
geometric variants of the protocol interference model. In the
bidirectional mode, Wan et al. [6] introduced the following
orientation 𝐷. Consider any conflicting pair of links 𝑎 and 𝑏
in 𝐴. If 𝑎 has an endpoint 𝑢 and 𝑏 has an endpoint 𝑣 satisfying
that 𝑢 is within the interference range of 𝑣 and its interference
radius is no more than that of 𝑣, then we take the orientation
from 𝑏 to 𝑎; otherwise, we take the orientation from 𝑎 to 𝑏.
Ties are broken arbitrarily. It was shown in [6] that the ILIN of
such 𝐷 is at most 8. By Theorem 2.4, we have the following
corollary.

Corollary 2.5: Under the plane geometric variant of the
protocol interference model in the bidirectional mode, by
adopting the orientation 𝐷 given in [6], the algorithm Ori-
entWIS(𝜀) has an approximation bound 16 (1 + 𝜀).

In the unidirectional mode, Wan [5] introduced the follow-
ing orientation 𝐷. Consider any conflicting pair of links 𝑎
and 𝑏 in 𝐴. If the receiver of 𝑎 is within the interference
range of the sender of 𝑏, then we take the orientation from
𝑏 to 𝑎; otherwise, we take the orientation from 𝑎 to 𝑏. Ties
are broken arbitrarily. Suppose that for each link 𝑎 ∈ 𝐴, the
interference radius of its sender is at least 𝑐 times its length
for some constant 𝑐 > 1. It was shown in [6] that the ILIN of
such 𝐷 is at most ⌈

𝜋/ arcsin
𝑐 − 1

2𝑐

⌉
− 1.

By Theorem 2.4, we have the following corollary.

Corollary 2.6: Under the plane geometric variant of the
protocol interference model in the unidirectional mode in
which the interference radius of its sender of each link is
at least 𝑐 times the link length for some constant 𝑐 > 1,
by adopting the orientation 𝐷 given in [5], the algorithm
OrientWIS(𝜀) has an approximation bound

2 (1 + 𝜀)

(⌈
𝜋/ arcsin

𝑐 − 1

2𝑐

⌉
− 1

)
,

III. ORDERING-BASED APPROXIMATION ALGORITHM

For any ordering ≺ of 𝐴, the forward local independence
number (FLIN) of ≺ is defined to be

𝛼≺ = max
𝑎∈𝐴

max
𝐼∈ℐ

∣𝐼ર𝑎 ∩ 𝑁 [𝑎]∣ .
An ordering ≺ naturally defines an orientation on 𝐷 as
follows: For any conflicting pair of links 𝑎 and 𝑏 in 𝐴, if
𝑎 ≺ 𝑏, we take the orientation from 𝑏 to 𝑎; otherwise, we
take the orientation from 𝑎 to 𝑏. For such orientation 𝐷,

its ILIN is exactly 𝛼≺. By adopting such orientation 𝐷,
the algorithm OrientWIS(𝜀) has an approximation bound
2 (1 + 𝜀)𝛼≺. However, an ordering is stronger than a general
orientation in the sense that the orientation defined by an
ordering is acyclic. In this section, we present an ordering
based approximation OrderWIS which takes advantage of
such stronger property of orderings. The algorithm OrderWIS
is not only simpler, but also achieves an approximation bound
𝛼≺, where ≺ is the ordering adopted by the algorithm.

The algorithm OrderWIS is outlined in Table III. It adopts
an ordering ≺ of 𝐴 and is a simplified adaptation from the
algorithm OrientWIS(𝜀). It maintains a stack 𝑆 and consists
of two phases: Prune Phase and Grow Phase. In the Prune
Phase, for each link 𝑎 ∈ 𝐴 in the ordering ≺, it computes
its updated weight 𝑤 (𝑎) to be its original weight minus the
updated total weight of its conflicting links sitting in the
current stack. If the updated weight of 𝑎 is positive, 𝑎 is
pushed onto the stack 𝑆 with its updated weight; otherwise,
it is pruned from further consideration. The Grow Phase
builds an IS 𝐼 of 𝑆 incrementally in the top-down manner.
The performance of the algorithm OrderWIS is given in the
theorem below.

Algorithm OrderWIS
//Prune Phase
𝑆 ← ∅, 𝐼 ← ∅;
for each 𝑎 ∈ 𝐴 in the given ordering ≺

𝑤 (𝑎) ← 𝑤 (𝑎)− 𝑤 (𝑆 ∩𝑁 (𝑎));
if 𝑤 (𝑎) > 0, push 𝑎 onto 𝑆;

//Grow Phase
𝐼 ← ∅;
while 𝑆 ∕= ∅

pop the top link 𝑎 from 𝑆;
if 𝐼 ∪ {𝑎} is independent, 𝐼 ← 𝐼 ∪ {𝑎};

return 𝐼 .

TABLE III
OUTLINE OF THE ALGORITHM OrderWIS.

Theorem 3.1: The approximation ratio of OrderWIS is at
most 𝛼≺.

Proof: Let 𝑆 be the set of links in the stack at the end
of the Prune Phase. Clearly, for each 𝑎 ∈ 𝑆,

𝑤 (𝑎) = 𝑤 (𝑆⪯𝑎 ∩ 𝑁 [𝑎]) ;

in general, for each 𝑎 ∈ 𝐴,

𝑤 (𝑎) ≤ 𝑤 (𝑆⪯𝑎 ∩ 𝑁 [𝑎]) .

Let 𝑂 be an optimal solution. Then,

𝑤 (𝑂) ≤
∑
𝑎∈𝑂

𝑤 (𝑆⪯𝑎 ∩ 𝑁 [𝑎])

=
∑
𝑏∈𝑆

𝑤 (𝑏) ∣𝑂ર𝑏 ∩ 𝑁 [𝑏]∣

≤
(
max
𝑏∈𝑆

∣𝑂ર𝑏 ∩ 𝑁 [𝑏]∣
)∑

𝑏∈𝑆

𝑤 (𝑏)

≤ 𝛼≺𝑤 (𝑆) .

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

1658

Let 𝐼 be the output by the algorithm. By using the same
argument in the proof of Theorem 2.1, we can show that

𝑤 (𝐼) ≥ 𝑤 (𝑆) .

Therefore,
𝑤 (𝑂) ≤ 𝛼≺𝑤 (𝑆) ≤ 𝛼≺𝑤 (𝐼) .

So, the theorem holds.

Next, we apply the algorithm OrderWIS to the plane
geometric variants of the protocol interference model in the
bidirectional mode. We define the interference radius of a
link to be the larger one between the interference radii of
its two endpoints. The interference-radius increasing ordering
sorts the links in the increasing order of their interference radii
and ties are broken arbitrarily. For arbitrary interference radii,
its FLIN is at most 23 [5]. For symmetric interference radii
(i.e, for each link, its two endpoints have equal interference
radii), its FLIN is at most 8 [6]. By Theorem 3.1, we have the
following corollary.

Corollary 3.2: Under the plane geometric variant of the
protocol interference model in the bidirectional mode, by
adopting the interference radius increasing ordering, the ap-
proximation ratio of OrderWIS is at most 23 for arbitrary
interference radii, and at most 8 for symmetric interference
radii.

We remark that for arbitrary interference radii, the 23-
approximation bound of OrderWIS is larger than the
16 (1 + 𝜀)-approximation bound of OrientWIS(𝜀). However,
OrderWIS enjoys a simpler implementation than OrderWIS.

In case of uniform interference radii, we consider a different
ordering. The lexicographic ordering sorts the links in the
lexicographic order of their left endpoints and ties are broken
arbitrarily. The reverse of the lexicographic ordering has FLIN
at most 6 [3]. By Theorem 3.1, we have the following
corollary.

Corollary 3.3: Under the plane geometric variant of the
protocol interference model in the bidirectional mode with
uniform interference radii, by adopting the reverse of the
lexicographic ordering, the approximation ratio of OrderWIS
is at most 6.

We remark that for uniform interference radii, the 6-
approximation bound of OrderWIS is better than the 8-
approximation bound of the simple greedy algorithm in [1].

IV. DIVIDE AND CONQUER

Under the plane geometric variants of the protocol inter-
ference model with uniform interference radii, we further
present a better approximation algorithm for MWISL which
exploits the following strip-wise transitivity of independence
discovered in [7]. Suppose that the maximum link length is
normalized to one, and all nodes have an interference radius
𝑟 ≥ 1. In the unidirectional mode, we assume that 𝑟 > 1.

∙ Bidirectional mode: Let 𝑆 be a horizontal strip of height

ℎ (𝑟) =

√
𝑟2 − 1

4
cos

(
𝜋

6
+ arcsin

1

2𝑟

)
. (1)

Suppose that 𝑎1, 𝑎2 and 𝑎3 are three links whose mid-
points lie in 𝑆 from left to right (see Figure 2). If both
𝑎1 and 𝑎3 are independent with 𝑎2, then 𝑎1 and 𝑎3 are
also independent with each other.

∙ Unidirectional mode: Let 𝑆 be a horizontal strip of height

ℎ (𝑟) = (𝑟 − 1) sin

(
arccos

𝑟 − 1

2𝑟
− arcsin

1

𝑟

)
. (2)

Suppose that 𝑎1, 𝑎2 and 𝑎3 are three links whose senders
lie in 𝑆 from left to right (see Figure 3). If both 𝑎1

and 𝑎3 are independent with 𝑎2, then 𝑎1 and 𝑎3 are also
independent with each other.

(r)h
a1

a3

a2

Fig. 2. Strip-wise transtivity of independence in bidirectional mode.

(r)h
a1

a2

a3

Fig. 3. Strip-wise transtivity of independence in unidirectional mode.

In Subsection IV-A, we give a greedy algorithm GWIS for
MWISL restricted to the sets of links satisfying the transitivity
of independence in some ordering. In Subsection IV-B, we
present a spatial divide-and-conquer approximation algorithm
StripWIS for MWISL under the plane geometric variants
of the protocol interference model with uniform interference
radii, which utilizes the algorithm GWIS to solve the sub-
problems.

A. A Greedy Algorithm

Suppose that 𝐵 is a subset of 𝐴 which has an ordering ≺
satisfying the transitivity of independence, i.e., for any three
links 𝑎1, 𝑎2 and 𝑎3 in 𝐵 with 𝑎1 ≺ 𝑎2 ≺ 𝑎3, the independence
of {𝑎1, 𝑎2} and {𝑎2, 𝑎3} implies the independence of {𝑎1, 𝑎3}.
A maximum-weighted IS of 𝐵 can be computed in polynomial
time by a greedy algorithm GWIS given in this subsection.

We first describe the underlying recursive relation of the
algorithm GWIS. Consider any 𝑎 ∈ 𝐵. Let ℐ≺ [𝑎] denote
the collection of independent subsets of 𝐵⪯𝑎 which contains
𝑎 itself, and 𝑓 (𝑎) be the weight of a maximum-weighted
independent set in ℐ≺ [𝑎]. A link 𝑏 ∈ 𝐵 is said to be an

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

1659

immediate independent predecessor of 𝑎 if (1) 𝑏 ≺ 𝑎, (2)
{𝑎, 𝑏} ∈ ℐ, and (3) for any link 𝑏′ ∈ 𝐵 with 𝑏 ≺ 𝑏′ ≺ 𝑎,
{𝑎, 𝑏, 𝑏′} /∈ ℐ. Let 𝐽 (𝑎) denote the set of all immediate
independent predecessors of 𝑎. Clearly, if 𝐽 (𝑎) = ∅, then
{𝑎} is the only independent set in ℐ≺ [𝑎] and 𝑓 (𝑎) = 𝑤 (𝑎).
If 𝐽 (𝑎) ∕= ∅, then, we have the following recursive relation.

Lemma 4.1: Consider any 𝑎 ∈ 𝐵 with 𝐽 (𝑎) ∕= ∅. Let 𝑏 any
link in 𝐽 (𝑎) with maximum 𝑓 (𝑏) and 𝐼 be any set in ℐ≺ [𝑏]
with maximum weight. Then, {𝑎}∪𝐼 is a maximum weighted
set in ℐ≺ [𝑎]; and consequently,

𝑓 (𝑎) = 𝑤 (𝑎) + max
𝑏∈𝐽(𝑎)

𝑓 (𝑏) ;

Proof: By the transitivity of independence, {𝑎} ∪ 𝐼 ∈
ℐ≺ [𝑎]. We prove by contradiction that 𝑤 ({𝑎} ∪ 𝐼) = 𝑓 (𝑎).
Assume to the contrary that 𝑤 ({𝑎} ∪ 𝐼) < 𝑓 (𝑎). Let 𝐼 ′ ∈
ℐ≺ [𝑎] be such that 𝑤 (𝐼 ′) = 𝑓 (𝑎). Then, 𝐼 ′ ∖ {𝑎} ∕= ∅. Let 𝑏′

be the last link in 𝐼 ′ ∖{𝑎} in the ordering ≺. Then, 𝐼 ′ ∖{𝑎} ∈
ℐ≺ [𝑏′], and hence

𝑓 (𝑏′) ≥ 𝑤 (𝐼 ′ ∖ {𝑎})
= 𝑓 (𝑎)− 𝑤 (𝑎)

> 𝑤 ({𝑎} ∪ 𝐼)− 𝑤 (𝑎)

= 𝑤 (𝐼)

= 𝑓 (𝑏) .

By the choice of 𝑏, 𝑏′ /∈ 𝐽 (𝑎). So, there must exist a link
𝑏′′ ∈ 𝐵 satisfying that 𝑏′ ≺ 𝑏′′ ≺ 𝑎 and {𝑎, 𝑏′, 𝑏′′} ∈ ℐ. Again
by transitivity of independence, 𝐼 ′ ∪ {𝑏′′} is independent, and
hence 𝐼 ′ ∪ {𝑏′′} ∈ ℐ≺ [𝑎]. But

𝑤 (𝐼 ′ ∪ {𝑏′′}) > 𝑤 (𝐼 ′) = 𝑓 (𝑎) ,

which is a contradiction. Thus, we must have that
𝑤 ({𝑎} ∪ 𝐼) = 𝑓 (𝑎). So, the lemma holds.

The algorithm GWIS is outlined in Table IV. For the
reconstruction of a maximum weighted independent set 𝐼 ,
a variable 𝑝𝑟𝑒 (𝑎) of each link 𝑎 is defined as follows. If
𝐽 (𝑎) = ∅ is empty, then 𝑝𝑟𝑒 (𝑎) is null; otherwise, 𝑝𝑟𝑒 (𝑎) is
some link 𝑏 ∈ 𝐽 (𝑎) with maximum 𝑓 (𝑏). Then, both 𝑓 (𝑎) and
𝑝𝑟𝑒 (𝑎) can be computed sequentially in the order ≺ using the
recursive relation proved in Lemma 4.1. After the completion
of the computations of 𝑓 (𝑎) and 𝑝𝑟𝑒 (𝑎) for all links 𝑎 ∈ 𝐵, a
maximum-weighted IS 𝐼 of 𝐵 is reconstructed as follows. Let
𝑎 be the link in 𝐵 with maximum 𝑓 (𝑎), and initially 𝐼 consists
of 𝑎 only. While 𝑝𝑟𝑒 (𝑎) is not null, 𝑝𝑟𝑒 (𝑎) is added to 𝐼 and
𝑎 is reset to 𝑝𝑟𝑒 (𝑎). The final 𝐼 is a maximum-weighted IS
of 𝐵.

B. Divide And Conquer

The algorithm StripWIS takes a divide-and-conquer ap-
proach. We describe its three algorithmic components division,
conquer, and combination below.

Division: The same division of 𝐴 given in [7] is adopted
here. A representative of a link is defined to be its midpoint

Algorithm GWIS
for each 𝑎 ∈ 𝐵 in ≺ do

compute 𝐽 (𝑎);
if 𝐽 (𝑎) = ∅ then

𝑝𝑟𝑒 (𝑎) ← 𝑛𝑢𝑙𝑙; 𝑓 (𝑎) ← 𝑤 (𝑎) ;
else

𝑝𝑟𝑒 (𝑎) ← argmax𝑏∈𝐽(𝑎) 𝑓 (𝑏);
𝑓 (𝑎) ← 𝑤 (𝑎) + 𝑓 (𝑝𝑟𝑒 (𝑎));

𝑎 ← argmax𝑎∈𝐵 𝑓 (𝑎);
𝐼 ← {𝑎};
while 𝑝𝑟𝑒 (𝑎) ∕= 𝑛𝑢𝑙𝑙 do

𝐼 ← 𝐼 ∪ {𝑝𝑟𝑒 (𝑎)};𝑎 ← 𝑝𝑟𝑒 (𝑎);
return 𝐼 .

TABLE IV
OUTLINE OF THE ALGORITHM GWIS.

(respectively, sender) in the bidirectional (respectively, unidi-
rectional) mode. Let

𝜇 =

⌈
𝑟 + 1

ℎ (𝑟)

⌉
+ 1,

where ℎ (𝑟) is given by Equation (1) (respectively, Equation
(2)) in the bidirectional (respectively, unidirectional) mode.
The minimal axis-parallel rectangle surrounding the represen-
tatives of all links in 𝐴 is computed and partitioned into top-
closed bottom-open horizontal strips in the manner that the
upper boundary of the top-most strip aligns with the top of the
rectangle, the heights of all strips except the bottom-most one
are all equal to (𝑟 + 1) / (𝜇 − 1), and the height of the bottom-
most strip is at most (𝑟 + 1) / (𝜇 − 1) (see Figure 4). Let 𝑙
denote the total number of strips, and number the successive
strips from top to bottom using integers 0, 1, ⋅ ⋅ ⋅ , 𝑙 − 1. For
each 0 ≤ 𝑖 ≤ 𝑙 − 1, let 𝐴𝑖 be the set of links in 𝐴 whose
representatives lie in the 𝑖-th strip.

(strips)

(r+1)/

r+1

(μ−1)

μ−1

Fig. 4. Partition of the plane into half-open half-closed strips of height
(𝑟 + 1) / (𝜇− 1) where 𝜇 = ⌈(𝑟 + 1) /ℎ (𝑟)⌉+ 1.

Conquer: Since the height of each strip is at most

(𝑟 + 1) / (𝜇 − 1) ≤ ℎ (𝑟) ,

each 𝐴𝑖 satisfies the transitivity of independence in the
lexicographic ordering of the representatives of 𝐴𝑖. So, the
algorithm GWIS is applied to compute a maximum-weighted
independent set 𝑀𝑖 of 𝐴𝑖 for each 0 ≤ 𝑖 ≤ 𝑙 − 1.

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

1660

Combination: For each 0 ≤ 𝑗 < 𝜇, let 𝐼𝑗 be the union of
the sets 𝑀𝑖 with 0 ≤ 𝑖 < 𝑙 and 𝑖 = 𝑗 mod𝜇. Then, each 𝐼𝑗 is
still independent as argued in [7]. Among these 𝜇 independent
sets 𝐼𝑗 for 0 ≤ 𝑗 < 𝜇, the one with maximum weight is output
by the algorithm StripWIS.

Theorem 4.2: The approximation ratio of the algorithm
StripWIS is at most 𝜇.

Proof: Let 𝑂 be a maximum weighted IS of 𝐴. For each
0 ≤ 𝑖 ≤ 𝑙 − 1, let 𝑂𝑖 = 𝑂 ∩ 𝐴𝑖. Then, 𝑤 (𝑂𝑖) ≤ 𝑤 (𝑀𝑖) for
each 0 ≤ 𝑖 ≤ 𝑙 − 1. Hence,

𝑤 (𝑂) =

𝑙−1∑
𝑖=0

𝑤 (𝑂𝑖) ≤
𝑙−1∑
𝑖=0

𝑤 (𝑀𝑖) =

𝜇−1∑
𝑗=0

𝑤 (𝐼𝑗)

≤ 𝜇 max
0≤𝑗≤𝜇−1

𝑤 (𝐼𝑗) .

So, the theorem holds.

The value of 𝜇 was computed in [7]. In the bidirectional
mode,

𝜇 =

⎧⎨
⎩

6 if 𝑟 ∈ [1, 1.0891) ;
5 if 𝑟 ∈ [1.0891, 1.3609) ;
4 if 𝑟 ∈ [1.3609, 2.2907) ;
3 if 𝑟 ∈ [2.2907,∞) .

In the unidirectional mode, 𝜇 = 𝑘 +1 over [𝑟𝑘, 𝑟𝑘−1) for any
𝑘 ≥ 2, where 𝑟𝑘 is the unique root of the following quartic
polynomial in (1,∞):(

4− 3𝑘2
)
𝑟4 + 4

(
𝑘2 + 𝑘 + 2

)
𝑟3 + 2

(
3𝑘2 − 2𝑘 + 2

)
𝑟2

− 4𝑘 (3𝑘 + 1) 𝑟 +
(
5𝑘2 + 4𝑘

)
.

The numeric values of 𝑟𝑘 can be computed with the quartic
formula. Table V lists the numeric values of 𝑟𝑘 for 2 ≤ 𝑘 ≤ 11.

𝑘 𝑟𝑘 𝑘 𝑟𝑘
2 4.2462 7 1.5715
3 2.5689 8 1.5009
4 2.0632 9 1.4476
5 1.8167 10 1.4058
6 1.6697 11 1.3721

TABLE V
NUMERIC VALUES OF 𝑟𝑘 FOR 2 ≤ 𝑘 ≤ 11.

V. CONCLUSION

In this paper, we have developed several fast and simple ap-
proximation algorithms for MWISL under the general proto-
col interference model. These algorithms imply the following
impact on the structural properties of protocol interference on
the approximality of MWISL:

∙ If there is an orientation of ILIN 𝜇, then for any 𝜀 >
0 a simple 2 (1 + 𝜀)𝜇-approximate IS can be computed
efficiently in polynomial time.

∙ If there is an ordering of FLIN 𝜇, then a 𝜇-approximate
IS can be computed efficiently in polynomial time.

∙ If there is an ordering satisfying the transitivity of inde-
pendence, then a maximum-weighted IS can be computed
efficiently in polynomial time.

By exploiting the rich nature of the plane geometric variant of
the protocol interference model discovered in the literature,
these algorithms are able to produce constant-approximate
solutions efficiently.

Due to the existence of polynomial approximation-
preserving reductions to MWISL [5], minimum-latency link
scheduling, maximum multiflow, and maximum concurrent
multiflow also have the same approximality, which was already
known in the literature [5], [7]. However, because of the
fractional nature of these three problems (i.e., an independent
set can be scheduled for a fractional amount of time), the
same approximality can be achieved by simpler approximation
algorithms. The integral nature of MWISL (i.e., a link is
selected or not selected by the output independent set) makes
the same approximality harder to achieve in most settings.
Indeed, our orientation-based approximation and ordering-
based approximation both have to run a subtle pruning process
before the standard greedy growing process of building up an
independent set.

ACKNOWLEDGEMENTS: This work was supported in
part by the National Science Foundation of USA under
grants CNS-0916666 and CNS-1219109, by the National
Natural Science Foundation of P. R. China under grants
61128005, 61100191 and 61370216, by Natural Scientific
Research Innovation Foundation in Harbin Institute of Tech-
nology under Project HIT-NSFIR 2011128, and by Shen-
zhen Strategic Emerging Industries Program under grant
ZDSY20120613125016389.

REFERENCES

[1] P. Chaporkar, K. Kar, X. Luo, and S. Sarkar, Throughput and Fairness
Guarantees Through. Maximal Scheduling in Wireless Networks, IEEE
Transactions on Information Theory 54(2):572–594, 2008.

[2] C. Joo, X. Lin, and N. B. Shroff, Greedy Maximal Matching: Performance
Limits for Arbitrary Network Graphs Under the Node-exclusive Interfer-
ence Model, IEEE Transactions on Automatic Control 54(12): 2734-2744,
2009.

[3] C. Joo, X. Lin, and N. B. Shroff, Understanding the Capacity Region
of the Greedy Maximal Scheduling Algorithm in Multi-hop Wireless
Networks, in Proc. IEEE INFOCOM’08, April 2008.

[4] X. Lin and N. B. Shroff, The Impact of Imperfect Scheduling on Cross-
Layer Rate Control in Wireless Networks, IEEE/ACM Transactions on
Networking 14(2):302–315, 2006.

[5] P.-J. Wan, Multiflows in Multihop Wireless Networks, ACM MOBIHOC
2009, pp. 85-94.

[6] P.-J. Wan, C. Ma, Z. Wang, B. Xu, M. Li, and X. Jia, Weighted
Wireless Link Scheduling without Information of Positions And Inter-
ference/Communication Radii, in Proc. IEEE INFOCOM 2011.

[7] P.-J. Wan, L. Wang, A. Huang, M. Li, and F. Yao, Approximate Capacity
Subregions of Uniform Multihop Wireless Networks, IEEE INFOCOM
2010.

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

1661

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

