
Wan P, Wan ZG. Maximizing networking capacity in multi-channel multi-radio wireless networks. JOURNAL OF COM-

PUTER SCIENCE AND TECHNOLOGY 29(5): 901–909 Sept. 2014. DOI 10.1007/s11390-014-1477-y

Maximizing Networking Capacity in Multi-Channel Multi-Radio

Wireless Networks

Pengjun Wan1 (万鹏俊) and Zhi-Guo Wan2 (万志国)

1Department of Computer Science, Illinois Institute of Technology, Chicago, IL 60616, U.S.A.
2School of Software, Tsinghua University, Beijing 100084, China

E-mail: wan@cs.iit.edu; wanzhiguo@tsinghua.edu.cn

Received March 11, 2014; revised June 30, 2014.

Abstract Providing each node with one or more multi-channel radios offers a promising avenue for enhancing the network
capacity by simultaneously exploiting multiple non-overlapping channels through different radio interfaces and mitigating
interferences through proper channel assignment. However, it is quite challenging to effectively utilize multiple channels
and/or multiple radios to maximize throughput capacity. The National Natural Science Foundation of China (NSFC) Project
61128005 conducted comprehensive algorithmic-theoretic and queuing-theoretic studies of maximizing wireless networking
capacity in multi-channel multi-radio (MC-MR) wireless networks under the protocol interference model and fundamentally
advanced the state of the art. In addition, under the notoriously hard physical interference model, this project has taken
initial algorithmic studies on maximizing the network capacity, with or without power control. We expect the new techniques
and tools developed in this project will have wide applications in capacity planning, resource allocation and sharing, and
protocol design for wireless networks, and will serve as the basis for future algorithm developments in wireless networks with
advanced features, such as multi-input multi-output (MIMO) wireless networks.
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1 Introduction

Providing each node with one or more multi-channel
radios offers a promising avenue for enhancing the net-
work capacity by simultaneously exploiting multiple
non-overlapping channels through different radio inter-
faces and mitigating interferences through proper chan-
nel assignment. However, it is quite challenging to ef-
fectively utilize multiple channels and/or multiple ra-
dios to maximize throughput capacity. The throughput
maximization in multi-channel multi-radio (MC-MR)
multihop wireless networks involves four correlated sub-
problems in the top-down order. First, for each end-to-
end communication request, we need to find a group of
routing paths and compute the amount of traffic car-
ried over each of these paths. Second, for each commu-
nication link, we have to properly distribute its total
traffic demand to all possible radio-links joining the
two end nodes of this communication links. Third,
for each radio-link, we need to further split its traf-
fic demand to be transmitted over individual channels.
Forth, for each radio-link over each channel, we must
assign a sequence of transmitting time-intervals sub-
ject to the constraint that, at any time, all scheduled

links can transmit successfully. Therefore, a joint solu-
tion should be developed for routing, radio assignment,
channel assignment, and transmission scheduling alto-
gether. The primary objective of the National Natural
Science Foundation of China (NSFC) Project 61128005
is to develop efficient and effective algorithmic solutions
to maximize the network capacity of MC-MR wireless
networks.

During the two-year period of this project, we condu-
cted comprehensive algorithmic-theoretic and queuing-
theoretic studies of maximizing wireless networking
capacity in MC-MR wireless networks under the pro-
tocol interference model and fundamentally advanced
the state of the art from three aspects.

1) We have developed efficient approximation algo-
rithms with provably good performance guarantees for
various capacity optimization problems. The prevail-
ing paradigm of existing algorithmic studies of multi-
flow problems in wireless networks resorted to the tradi-
tional linear programming methods, which is quite inef-
ficient in both running time and memory requirement.
For the first time ever, we shifted to a new purely com-
binatorial paradigm which involves only a sequence of
shortest-path computations but still achieves provably
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good approximation factors. Thus, the algorithmic so-
lutions developed in this project are not only faster but
also simpler and easier for distributed implementation.
Furthermore, they offer a quantized trade-off between
accuracy and efficiency.

2) We also developed a number of greedy wireless
link scheduling algorithms with provably good stable
efficiency. For the first time, we also derived stability
subregions with explicit closed forms which are shown
to be within a constant factor of the network capa-
city region, which has been missing even in single-
channel single-radio (SC-SR) wireless networks. The
polynomial-time membership testability of these sta-
bility subregions is particularly favorable for cross-layer
optimization, where one needs to allocate the link rates
efficiently while still ensuring the network stability. Our
analyses were accomplished by an innovative sample-
path argument, which pushes the deterministic argu-
ments as far as possible while trying to avoid the heavy
machinery of stochastic processes.

3) The quantified interference factor and inter-
ference-aware link congestions and lengths introduced
in this project essentially capture the impact of wireless
interference. The deep relation between interference-
aware shortest paths and the maximum (concurrent)
multiflow is a cornerstone to combinatorial algorithms
for all multiflow problems in wireless networks. Fur-
thermore, the new techniques and tools developed in
this project will have wide applications in capacity
planning, resource allocation and sharing, and pro-
tocol design for wireless networks, and will serve as
the basis for future algorithm developments in wireless
networks with advanced features, such as multi-input
multi-output (MIMO) wireless networks.

In addition, we have taken initial algorithmic studies
on maximizing the network capacity under the physical
interference model.

This article is a survey on our major discoveries
made in the NSFC Project 61128005. The purpose
of this article is to highlight the new concepts and
methodologies developed in this project, while skipping
the technical details which can be found in the refe-
rences. Section 2 introduces the network model and
various optimization problems involved in maximizing
the wireless network capacity. Section 3 and Section
4 are devoted to algorithmic studies of the maximiza-
tion of the network capacity under the protocol interfe-
rence model and the physical interference model respec-
tively. Section 5 analyzes the stable efficiencies as well
as the stable capacity subregions of several greedy link
scheduling algorithms. Finally, we conclude this article
in Section 6.

2 Network Model and Problem Descriptions

Throughout this article, the MC-MR wireless net-
work consists of λ non-overlapping channels, a set V of
n wireless nodes, and A is the set V of m direct node-
level communication links. Each node v has τ(v) radios.
Let I denote the collection of all independent subsets of
A specified by the adopted interference model. For each
node-level link a = (u, v) in A, we make λ · τ(u) · τ(v)
replications (u, v, i, j, l) for 1 6 i 6 τ(u), 1 6 j 6 τ(v),
and 1 6 l 6 λ. A replication (u, v, i, j, k) always uti-
lizes the i-th radio at u and the j-th radio at v over
the l-th channel. Each of these replications is referred
to as a replicated link of a. We use {a}τ, λ to denote
the set of replicated links of a, and in general, for each
B ⊆ A, we use Bτ, λ to denote the set of all replicated
links of the links in B. Clearly, a set of replicated links
can transmit successfully at the same time if and only
if 1) they are pairwise radio-disjoint, and 2) for each
channel l, all those replicated links transmitting over
channel l are replicated from an independent set of A.
Any such set is also referred to as an independent set of
replicated links. Let Iτ, λ denote the collection of the
independent sets of replicated links.

Suppose that d ∈ RA
+ is a link-demand function in

terms of transmission time. A link schedule of d is a set

S = {(Ij , xj) ∈ Iτ, λ × R+ : 1 6 j 6 q}

satisfying that for each link a ∈ A:

d(a) =
∑q

j=1
xj |Ij ∩ {a}τ, λ|;

the two values, q and
∑q

j=1 xj , are referred to as the
size and length (or latency) of S respectively. The min-
imum length of all link schedules of d is denoted by
χ∗(d). The problem of finding a shortest link schedule
of d is referred to as Shortest Link Schedule (SLS). The
capacity region Ω of the network consists of all d ∈ RA

+

which has a link schedule of length at most one. In
general, the membership test of the capacity region Ω
is NP-complete. A subregion Φ of Ω is called a polyno-
mial µ-approximate capacity subregion for some µ > 1
if it satisfies the following three conditions: 1) Φ has an
explicit representation by a polynomial number of lin-
ear inequalities or equalities, 2) there is a polynomial
algorithm which produces a link schedule of length at
most one for any d ∈ Φ, and 3) Φ is a µ-approximation
of Ω, i.e., Ω ⊆ µΦ. The first condition ensures the
membership of Φ is polynomial, the second condition
implies that Φ ⊆ Ω, and the third condition ensures
that Φ is “close” to Ω.
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Consider k unicast requests in this wireless net-
work specified by source-destination pairs. For each
1 6 j 6 k, Fj denotes the set of flows of the request j,
and the value of a flow fj ∈ Fj is denoted by val(fj).
A multiflow is a sequence of flows f = (f1, f2, . . . , fk)
with fj ∈ Fj for each 1 6 j 6 k. The cumulative flow
of a multiflow f = (f1, f2, . . . , fk) is

∑k
j=1 fj . Among

all variants of the multiflow problems, the following two
are the most basic ones.

• Maximum Weighted Multiflow (MWMF). Given
that each request j has a weight wj per unit of its flow,
compute a multiflow f = (f1, . . . , fk) and a MAC-layer
link schedule S of

∑k
j=1 fj such that the length of S is

at most one and the total weight of f given by
∑k

j=1
val(fj)wj

is maximized.
• Maximum Concurrent Multiflow (MCMF). Given

that each request j has a traffic demand dj , compute a
multiflow f = (f1, . . . , fk) and a MAC-layer link sche-
dule S of

∑k
j=1 fj such that the length of S is at most

one and the concurrency of f given by

min
16j6k

val(fj)/dj

is maximized.
The above three problems are closely related to the

following two MAC-layer problems.
• Maximum Weighted Independent Set (MWIS).

Given a nonnegative weight function w on Aτ, λ, com-
pute an independent subset I of Aτ, λ with maximum
total weight

∑
e∈I w(e).

• Maximum Independent Set of Links (MISL).
Given a subset B of links, compute an independent sub-
set I of Bτ, λ with maximum size.

Consider a subset B of A. An independent set I of
Bτ, λ is said to be a maximal independent set (MIS) of
Bτ, λ if for any link e ∈ Bτ, λ \ I, I ∪ {e} /∈ Iτ, λ.

3 Maximizing Wireless Network Capacity
Under Protocol Interference Model

Under the protocol interference model, maximiz-
ing wireless network capacity allows for graph-theoretic
treatment. The pairwise conflict relations among all
node-level links in A under the protocol interference
model can be conveniently represented by a link con-
flict graph G. The vertex set of G is A and two links
in A are adjacent in G if and only if they conflict with
each other. We first introduce two key structural pa-
rameters of the protocol interference model, which play
critical roles in the algorithm design and analysis.

In our early studies[1-2], we have introduced two
types of local independence numbers. For any a ∈ A,

N [a] denotes the set of links in A conflicting with a
plus a itself. An orientation of G is a digraph D ob-
tained from G by imposing an orientation on each edge
of G. Suppose that D is an orientation. For each
a ∈ A, N in

D [a] (respectively, Nout
D [a]) denotes the set

of in-neighbors (respectively, out-neighbors) of a in D
plus a itself. The inward local independence number
(ILIN) of D is defined to be

max
a∈A

max
I∈I

|I ∩N in
D [a]|.

Suppose that ≺ is an ordering of A. For each a ∈ A,
N≺[a] denotes the set of preceding neighbors of a in ≺
plus a itself. The backward local independence number
(BLIN) of ≺ is defined to be

max
a∈A

max
I∈I

|I ∩N≺[a]|.

Note that any ordering of A can be treated as an acyclic
orientation of G. In [1-2], we have discovered orienta-
tions (respectively, orderings) with constant ILIN (re-
spectively, BLIN).

In [3], we introduced the interference factor ρ(a, b) of
two conflicting node-level links a and b, which captures
the essential advantage of multiple radios and multiple
channels. If a and b share a common endpoint u, then
each replicated link of b conflicts with exactly

ρ(a, b) = 1−
(
1− 1

τ(u)

)(
1− 1

λ

)

portion of replicated links of a; otherwise, each repli-
cated link of b conflicts with exactly

ρ(a, b) = 1/λ

portion of replicated links of a. In addition, each repli-
cated link of a link a = (u, v) conflicts with exactly

ρ(a, b) = 1−
(
1− 1

τ(u)

)(
1− 1

τ(v)

)(
1− 1

λ

)

portion of replicated links of a (include itself). Note
that ρ(a, b) = ρ(b, a) in either case.

Subsequently, we present the design and analysis of
algorithms for the maximization of the network capa-
city under the protocol interference model.

3.1 Maximal Independent Set

Consider a subset B of A. An independent set I of
Bτ, λ is said to be a maximal independent set of Bτ, λ if
for any link e ∈ Bτ, λ\I, I∪{e} /∈ Iτ, λ. Given an order-
ing ≺ of A, an MIS I of Bτ, λ can be computed greedily
as follows. Initialize I to be the empty set, and repeat
the following iterations for each link a = (u, v) ∈ B
in the ordering ≺. Let R(u) (respectively, R(v)) be the
list of radios of u (respectively, v) not used by anyone in



904 J. Comput. Sci. & Technol., Sept. 2014, Vol.29, No.5

I, and let C(a) be the list of channels not used by any
preceding links which have conflict with a. Compute

k = min{|R(u)|, |R(v)|, |C(a)|}.
If k > 0, then I is augmented with k replicated links of
a using the first k radios from R(u), the first k radios
from R(v), and the first k channels from C(a) respec-
tively. Finally, the set I is returned. Clearly, the re-
turned I is a maximal independent set (IS) of Bτ, λ, and
is referred to as the greedy IS of Bτ, λ in the ordering
≺. In [3], we gave an implementation of the above al-
gorithm whose running time grows linearly with λ and
maxv∈V τ(v). In addition, we have proved the following
essential property of the greedy IS I of Bτ, λ: for any
a ∈ B:

∑
b∈N≺[a]

ρ(a, b)|I ∩ {b}τ, λ| > 1.

3.2 Shortest Link Schedule

Suppose that d ∈ RA
+ is a link-demand function in

terms of transmission time. Given a link ordering ≺,
a greedy scheduling algorithm developed by us in [3]
computes a link S of d iteratively as follows. Initialize
S to the empty set and repeat the following iteration
until d = 0. Let B be the subset of links a ∈ A with
d(a) > 0. We compute a greedy IS I of Bτ, λ in the
ordering ≺. Let

x = min
a∈B

d(a)
|I ∩ {a}τ, λ| ,

and add (I, x) to S. For each a ∈ B, replace d(a) by
d(a) − x|I ∩ {a}τ, λ|. When d = 0, the algorithm out-
puts S. The output S is referred to as the greedy link
schedule of d in ≺. Clearly, the algorithm has at most
m = |A| iterations. The length of the output S was
shown in [3] to be at most

∆≺(d) = max
a∈A

∑
b∈N≺[a]

ρ(a, b)d(b).

Let ∆∗(d) be the minimum value of ∆≺(d) among
all possible link orders ≺. In [3], we show that ∆∗(d)
can be achieved by a smallest-last ordering with respect
to d which can be computed successively in polynomial
time as follows. Initialize B to A and a stack S to be
empty. While B is non-empty, choose a link a ∈ B
minimizing ∑

b∈N [a]∩B
ρ(a, b)d(b),

remove it from B and push it onto the stack S. When
B is empty, S is A and the top-down order of S is a
smallest-last ordering of A with respect to d.

Now, we are ready to describe our approximation al-
gorithm GreedyLS for SLS developed in [3]. Let d ∈ RA

+

be the input link demand function. The algorithm con-
sists of two steps:

• Step 1: compute the smallest-last ordering ≺ with
respect to d.

• Step 2: compute a greedy link schedule of d in ≺.
The link schedule S is referred to as the greedy link
schedule of d. Its length is at most ∆∗(d).

Next, we present the approximation bound of the
greedy link schedule S of d derived in [3]. Consider an
orientation D of G with ILIN µ. For each link a, we
denote

∆in
D(a; d) =

∑
b∈N in

D [a]
ρ(a, b)d(b).

Let
∆in

D(d) = max
a∈A

∆in
D(a; d).

Then, if D is acyclic,

∆∗(d) 6 ∆in
D(d);

otherwise,
∆∗(d) 6 2∆in

D(d);

on the other hand,

χ∗(d) > ∆in
D(d)

µ+ 2
.

Thus, S has the approximation bound:
• If there is orientation D with ILIN µ, then the

approximation bound of S is µ+ 2;
• If there is acyclic orientation D with ILIN µ, then

the approximation bound of S is 2(µ+ 2).
The orientations given in [1-2] imply the following

specific approximation bounds:
• 2(dπ/arc sin c−1

2c e + 1) in the unidirectional mode
in which the interference radius of each link is at least
c times the link length for some c > 1,

• 20 in the bidirectional mode,
• 10 in the bidirectional mode with symmetric inter-

ference radii,
• 8 in the bidirectional mode with uniform interfe-

rence radii.

3.3 Polynomial Approximate Capacity
Subregions

In [3], we defined a polynomial approximate capa-
city subregion with respect to an orientation. Consider
an orientation D of G with ILIN µ. If D is acyclic,

ΦD = {d ∈ RA
+ : ∆in

D(d) 6 1};
otherwise, define

ΦD = {d ∈ RA
+ : ∆in

D(d) 6 1/2}.
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The set ΦD is referred to as the inward capacity subre-
gion with respect to D. Then, if D is acyclic, ΦD is a
polynomial (µ + 2)-approximation capacity subregion;
otherwise ΦD is a polynomial 2(µ + 2)-approximation
capacity subregion. By adopting any orientation D
given in [1-2], the inward capacity subregion with re-
spect to D has the following polynomial approximation
bounds:

• 2(dπ/arc sin c−1
2c e + 1) in the unidirectional mode

in which the interference radius of each link is at least
c times the link length for some c > 1,

• 20 in the bidirectional mode,
• 10 in the bidirectional mode with symmetric inte-

rference radii,
• 8 in the bidirectional mode with uniform interfe-

rence radii.

3.4 Maximum Multiflows

In [3], we developed a general linear programming
(LP) based method for maximum multiflow. We fix an
orientation D of the link conflict graph, which could be
any one given in [1-2], and use µ to denote its ILIN.
A multiflow (f1, f2, . . . , fk) is said to be ΦD-restricted
if

∑k
j=1 fj ∈ ΦD. A maximum weighted ΦD-restricted

multiflow is any solution to the following LP of polyno-
mial size

max
∑k

j=1
val(fj)wj

s.t. fj ∈ Fj ,∀1 6 j 6 k;
∑k

j=1
fj ∈ ΦD.

Similarly, the maximum concurrent ΦD-restricted mul-
tiflow is any solution to the following LP of polynomial
size:

max φ

s.t. fj ∈ Fj ,∀1 6 j 6 k;

val(fj) > φdj ,∀1 6 j 6 k;
∑k

j=1
fj ∈ ΦD.

Thus, a maximum weighted (respectively, concurrent)
ΦD-restricted multiflow can be computed in polynomial
time by linear programming methods. The LP-based
method for all multiflow problems in wireless networks
runs in three phases.

• Restricted Multiflow Phase. This phase com-
putes maximum weighted (respectively, concurrent)
ΦD-restricted multiflow f = (f1, . . . , fk).

• Link-Scheduling Phase. This phase computes a
greedy link schedule S of

∑k
j=1 fj .

• Scaling Phase. This phase scales both f and S
down by a factor of the length of S and then returns
them as the final output.

In [3], we proved the LP-based method has an ap-
proximation bound µ + 2 if D is acyclic, and 2(µ + 2)
otherwise. By adopting any orientationD given in [1-2],
the LP-based method can achieve the following approxi-
mation bounds:

• 2(dπ/arc sin c−1
2c e + 1) in the unidirectional mode

in which the interference radius of each link is at least
c times the link length for some c > 1,

• 20 in the bidirectional mode,
• 10 in the bidirectional mode with symmetric inte-

rference radii,
• 8 in the bidirectional mode with uniform interfe-

rence radii.
The LP-based method becomes inefficient in run-

ning time and memory when the network size grows.
In our most recent work[4], we developed a flow aug-
mentation method which shifts away from the prevail-
ing but inefficient LP-based paradigm for the first time
ever. Given an arbitrarily small but positive parame-
ter ε quantizing the trade-off between the accuracy in
terms of the approximation bound and the efficiency
in terms of the running time, the flow augmentation
method would make a number of shortest-path compu-
tations which only grow with 1/ε in the square order,
but still achieve approximation bounds no more than
1+ε times of those achieved with the LP-based method.
Such a new method is not only conceptually simpler but
also faster. Furthermore, the simplicity of this method
allows for easier distributed implementations.

The flow augmentation method replaces the re-
stricted multiflow phase of the LP-based method by a
flow augmentation phase. This phase computes a mul-
tiflow f = (f1, . . . , fk) and its cumulative flow

∑k
j=1 fj

from scratch with successive flow augmentation. Each
augmenting flow is transported along the shortest paths
of some requests. Despite of the conceptual simplicity,
the flow augmentation phase has to address the follow-
ing technical issues for an algorithmic implementation
with targeted accuracy and efficiency:

1) How to quantize the interference-aware link “con-
gestions” and “lengths” with respect to a multiflow?

2) Which shortest path(s) among the k shortest
paths should be selected?

3) How much flow should be routed along those se-
lected shortest paths?

4) When should the augmentations terminate?
These questions are addressed below.

3.4.1 Interference-Aware Link Congestions and
Lengths

In wired networks, the congestion of a link due to
a multiflow is simply the total amount of flow through
this link, and the length of a link capturing the edge
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congestion is simply an exponential function of the con-
gestion of this link only. Such perception on link con-
gestion and length has to be fundamentally changed
in wireless networks due to the presence of wireless
interference. Intuitively speaking, the “congestion” of
a link a due to a multiflow should count both the flow
amount through the link a itself and the flows through
the links interfering the link a. Similarly, the “length”
of a link a with respect to a multiflow should take into
account both the flow amount through the link a it-
self and the flows through the links interfered by the
link a. Subsequently, we will give precise quantizations
of such interference-aware link congestions and lengths
with respect to a multiflow f = (f1, . . . , fk).

The interference-aware congestion of a link a
due to f , denoted by congf (a), is defined to be
∆in

D(a;
∑k

j=1 fj). The (interference-aware) bottleneck
congestion of f is the maximum congestion of f on
all links ∆in

D(
∑k

j=1 fj). The interference-aware cost of
a link a due to f is defined to be

costf (a) = (1 + ε)∆
in
D(a; k

j=1 fj).

Such exponential growth of cost in congestion ensures
that a highly congested link is less likely to appear
in the future augmenting flow. The total interference-
aware cost of f is defined to be

costf (A) =
∑

a∈A
costf (a).

The interference-aware length of a link a with respect
to f is defined to be

`f (a) =
∑

b∈Nout
D [a]

ρ(a, b)costf (a).

For each 1 6 j 6 k, let distj(`f ) be the length of the
shortest path of the request j with respect to `f . These
concepts enable us to establish the following approx-
imate duality between the interference-aware shortest
paths and the maximum weighted (respectively, con-
current) multiflows.

• The total weight of the maximum weighted multi-
flow is at most

µ̂
costf (A)

min16j6k distj(`f )/wj
.

• The concurrency of the maximum concurrent mul-
tiflow is at most

µ̂
costf (A)∑k

j=1
djdistj(`f )

.

3.4.2 Flow Augmentation

For the problem MWMF, each iteration of the flow
augmentation phase first computes a shortest path Pj

of each request j with respect to the interference-aware
length function `f and then computes the price `f (Pj)

wj

of each request j. For the least-priced request j, the
augmenting flow would route a flow of value

δ =
1

maxa∈A ρ(N in
D [a] ∩ Pj , a)

,

along Pj , and fj is updated accordingly. The above
value of δ is adopted to ensure that the bottleneck
interference-aware congestion of this augmenting flow
is exactly one.

For the problem MCMF, each iteration of the flow
augmentation phase first computes a shortest path Pj

of each request j with respect to the interference-aware
length function `f and then computes a concurrency

σ =
1

max
a∈A

∑k

j=1
djρ(N in

D [a] ∩ Pj , a)
.

For each 1 6 j 6 k, the augmenting multiflow would
route a flow of value σdj along Pj , and the flow fj is
updated accordingly. The above value of σ is selected
such that the bottleneck interference-aware congestion
of this augmenting multiflow is exactly one.

The above iterations are repeated for
⌈

m lnm

ln(1 + ε)− ε

1 + ε

⌉

times. The running time of the flow augmentation phase
increases with 1/ε in at most the square order and does
not depend on the number of channels and the number
of radios at each node. Within each iteration of the flow
augmentation phase, the computation of the k shortest
paths can be accelerated by exploiting the capability of
the Dijkstra’s shortest-path algorithm that may com-
pute the shortest path from a common source node to
all other nodes. Therefore, we group the requests by
a common source node, and the number of groups is
at most min{n, k}. The shortest paths of all requests
in the same group can be computed by a single call of
the Dijkstra’s shortest-path algorithm. For k = Θ(n2),
this implementation is a linear factor speedup over the
naive implementation. The final output was proved in
[4] to have an approximate bound (1+ ε)(µ+2) if D is
acyclic and 2(1 + ε)(µ+ 2) otherwise.

4 Maximizing Wireless Network Capacity
Under Physical Interference Model

Maximizing the wireless network capacity under
physical interference model is notoriously hard due to
the non-locality and the additive nature of the wireless
interference under the physical interference model. The
graph-theoretic approach followed by the maximization

∑
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of the wireless network capacity under protocol interfe-
rence model can no longer be applied to the maximiza-
tion of the wireless network capacity under physical
interference model. Our initial algorithmic studies on
maximizing the wireless network capacity under phy-
sical interference model took a different technical ap-
proach. The following algorithmic reductions were es-
tablished in [5] in SC-SR setting but can be extended
to MC-MR setting as well.

• If MWIS has a polynomial µ-approximation al-
gorithm, then all of MWMF, MCMF and SLS have a
polynomial µ-approximation algorithm.

• If MIS has a polynomial µ-approximation algo-
rithm, then all of MWIS, MWMF, MCMF and SLS
have a polynomial O(lnα)µ-approximation algorithm,
where α is the size of largest independent set.

In addition, we have established the following
general algorithmic reduction recently. If MWIS
has a polynomial µ-approximation algorithm in SC-
SR setting, then MWIS has a polynomial (µ + 2)-
approximation algorithm in MC-MR setting. By com-
bining these algorithmic reductions, we obtain the fol-
lowing general algorithmic reductions.

• If MWIS in SC-SR setting has a polynomial µ-
approximation algorithm, then all of MWMF, MCMF
and SLS in MC-MR setting have a polynomial (µ+2)-
approximation algorithm.

• If MIS in SC-SR setting has a polynomial µ-
approximation algorithm, then all of MWIS, MWMF,
MCMF and SLS in MC-MR setting have a polynomial
O(lnα)(µ+2)-approximation algorithm, where α is the
size of largest independent set.

These algorithmic reductions are leveraged by our
studies[6-8] as described below, depending on whether
power control is required or not.

No Power Control. In the setting of no power con-
trol, an assignment of transmission power to links is
pre-specified, and a set I of links is independent if and
only if all links in I can communicate successfully at
the same time under the physical interference model. A
power assignment is said to be monotone if the trans-
mission power of a link is non-decreasing with the link
length, and to be sub-linear if the received power by
a link is non-increasing with the link length. Two ex-
treme and common monotone power assignments are
the uniform power assignment and the linear power
assignment. A uniform power assignment assigns the
same transmission power to all links; a linear power as-
signment ensures that all links have the same received
power. With a monotone and sublinear assignment, we
have explored the rich natures of the physical interfe-
rence and exploited them to develop approximation al-
gorithms for MIS in both the unidirectional mode[7] and

the bidirectional mode[6]. Our algorithms not only out-
put an independent set with stronger properties but
also have a much significantly smaller constant approx-
imation bound. Our better approximation bounds also
immediately lead to improved logarithmic approxima-
tions for other wireless link scheduling problems in-
cluding SLS, MWIS, MWMF, and MCMF. With lin-
ear power assignment, we improve the status quo. By
exploring and exploiting the rich nature of the wire-
less interference with the linear power assignment, we
developed the first and only constant-approximation al-
gorithms for MWIS, SLS, MWMF, and MCMF in [9].

Power Control. In the setting of power control, a
set I of links is independent if and only if there exists
a transmission power assignment to I at which all
links can communicate successfully at the same time
under the physical interference model. The problem
MIS with power control involves the joint selection
and power assignment of a largest number of given
links which can communicate successfully at the same
time under the physical interference model. All prior
studies on MIS with power control in either bidirec-
tional mode or unidirectional mode have to assume un-
bounded maximum transmission power for the purpose
of avoiding the technical obstacle due to the ambient
noise. The algorithms developed by us in [6] and [8]
not only outperform existing work, but also are ap-
plicable to bounded maximum transmission power, ar-
bitrary path-loss exponent and arbitrary dimension of
the deployment space. Both the design and the analy-
sis of our approximation algorithms are built upon the
new power assignments including canonical mean power
assignment and canonical iterative power assignments
developed by our studies. Our algorithms not only out-
put an independent set with stronger properties but
also have a much significantly smaller constant approx-
imation bound. These algorithms immediately lead to
logarithmic approximations for MWIS, SLS, MWMF,
and MCMF.

5 Maximum Stable-Efficiency Link Scheduling

In [10-11], we conducted a queuing-theoretic study
of wireless link scheduling in MC-MR wireless networks
under the protocol interference model. A wireless link
scheduling algorithm takes as an input a set of node-
level links together with their backlogs of packets wait-
ing for transmission, and outputs a set of packets which
can be transmitted successfully at the same time. We
assume that time is slotted and for each t ∈ N, the t-
th time slot is the time interval (t − 1, t]. Any packet
arriving in a slot is assumed to arrive at the end of the
slot, and may only be transmitted in the subsequent
slots. In addition, the packet arrivals are assumed to
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be mutually independent and temporally independent
and identical processes with arrival rate vector d. Con-
sider a wireless link scheduling algorithm A. In each
time-slot, a set of backlogged packets are selected to
be transmitted using the algorithm A. Let X(t) (re-
spectively, Y (t)) denote the vector of the cumulative
number of packets arriving (respectively, transmitted)
in the first t time slots, and Z(t) denote the vector of
the number of packets queued at the very end of time
slot t. Then,

Z(t) = Z(0) +X(t)− Y (t).

The network is said to be stable if the Markov chain
(Z(t)) is positive recurrent. The stability region of the
wireless link scheduling algorithm A, denoted by Λ, is
the set of arrival rate vectors d such that the network is
stable. Since the maximum stability region of the net-
work, which consists of arrival rate vectors such that
there exists a scheduling policy stabilizing the network,
is the set

Ωo = {d ∈ RA
+ : χ∗(d) < 1},

the stable efficiency of the wireless link scheduling al-
gorithm A is defined to be

sup{γ ∈ R+ : Λ ⊇ γΩo}.
The problem Maximum Stable-Efficiency Link Schedul-
ing seeks a wireless link scheduling algorithm with the
largest stable efficiency.

Given a link ordering ≺, a greedy link scheduling
algorithm (GLS) developed by us in [3] schedules the
transmissions by all links in ≺ as follows. Each link
transmits as many packets as possible from its queue us-
ing the radios at its two endpoints which have not been
used by any preceding links and the channels which
have not been used by any preceding conflicting links.
The choice of ≺ is essential to both the implementation
simplicity and the throughput efficiency. A link order-
ing ≺ is dynamic if it may vary with the queue lengths
of the links, and static if it does not vary with the
queue lengths of the links. The GLS in a dynamic link
ordering requires the expensive recomputation of the
link ordering in each time-slot, and, in return, it may
achieve better stable efficiency. On the other hand, the
GLS in a static link ordering only needs a single pre-
computation of the link ordering and therefore enjoys
much simpler implementation.

A renowned dynamic link ordering is the Longest-
Queue-First (LQF) ordering, which sorts the links in
the decreasing order of backlog lengths. In [10], we de-
rived a stability subregion of the GLS in LQF ordering
with closed form

Q∗ = {d ∈ RA
+ : ∆∗(d) < 1},

and proved that γΩo ⊆ Q∗ where γ is
• 1/(2(dπ/arc sin c−1

2c e + 1)) in the unidirectional
mode,

• 1/20 in the bidirectional mode,
• 1/10 in the bidirectional mode with symmetric

interference radii,
• 1/8 in the bidirectional mode with uniform interfe-

rence radii.
The value of γ is thus a lower bound on the through-

put efficiency ratio of the LQF scheduling.
For an arbitrary static link ordering ≺, we derived

in [11] a stability subregion of the static GLS in ≺ with
closed form

Q≺ = {d ∈ RA
+ : ∆≺(d) < 1},

and proved that

1
µ+ 2

Ωo ⊆ Q∗,

where µ is the BLIN of ≺. Hence, the stable efficiency
ratio of the GLS in ≺ is at least 1

µ+2 . Motivated by
this discovery, we adopt one of the following two static
orderings in the bidirectional mode.

• Interference Radius Decreasing Ordering. The
interference radius of a link is defined to be the larger
one of the interference radii of its endpoints, and all
links are sorted in descending order of the interference
radius.

• Lexicographic Ordering. All links are sorted in the
lexicographic order of their left endpoints.

With arbitrary interference radii, the GLS in interfe-
rence radius decreasing ordering has stable efficiency at
least 1/25. With symmetric interference radii, the GLS
in interference radius decreasing ordering has stable ef-
ficiency at least 1/10. With uniform interference radii,
the GLS in lexicographic ordering has stable efficiency
at least 1/8.

The membership of both Q∗ and Q≺ can be tested
in polynomial time. This computational tractability
is particularly favorable for cross-layer optimization,
where one needs to allocate the link rates efficiently
while still ensuring the network stability. In contrast,
such stability subregions of computational tractability
were even missing in SC-SR wireless networks prior to
our studies. Since Q≺ ⊆ Q∗, the stability subregion Q≺

of the GLS in ≺ is also a stability subregion of the GLS
in LQF ordering. On the other hand, with uniform (re-
spectively, symmetric) interference radii, both the GLS
in LQF ordering and the GLS in lexicographic ordering
(respectively, interference radius decreasing ordering)
have the same lower bounds on the stable efficiency.
With arbitrary interference radii, the GLS in LQF or-
dering only has slightly better stable efficiency than the
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GLS in interference radius decreasing ordering. There-
fore, with uniform (respectively, arbitrary) interference
radii, we advocate the GLS in lexicographic ordering
(respectively, interference radius decreasing ordering)
due to its implementation simplicity and comparable
stable efficiency.

All the existing studies on the stability analysis of
a greedy link scheduling in SC-SR wireless networks
established the stability by a classic fluid-limit crite-
rion in the general context of multiclass queuing net-
works. One crucial condition of this criterion is that
the queuing service discipline is working-conserving : a
server is idle only when there is no customer waiting
for the service. Apparently, the greedy scheduling in
wireless networks is not working-conserving, as a link
with non-empty queue/backlog may be idle due to the
interference from other nearby links. So, the direct ap-
plicability of classic fluid-limit criteria to wireless link
scheduling is questionable. Instead, our stability ana-
lyses were accomplished by an innovative sample-path
argument, which pushes the deterministic arguments
as far as possible while trying to avoid the heavy ma-
chinery of stochastic processes. A clear advantage of
this approach is that the algorithmic-theoretic disco-
veries can be easily leveraged to establish the stability.
Sample-path argument also helps pinpoint what and
when stochastic conditions are needed to guarantee the
stability. For example, the packet arrival process in
[10-11] is only required to be mutually independent and
temporally i.i.d., while the packet arrival processes in
all existing work have to meet additional conditions.

6 Conclusions

The NSFC Project 61128005 conducted comprehen-
sive algorithmic-theoretic and queuing-theoretic stu-
dies of maximizing wireless networking capacity in MC-
MR wireless networks and fundamentally advanced the
state of the art. We expect the new techniques and tools
developed in this project will have wide applications in
capacity planning, resource allocation and sharing, and
protocol design for wireless networks, and will serve as
the basis for future algorithm developments in wireless
networks with advanced features, such as multi-input
multi-output (MIMO) wireless networks.
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