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ABSTRACT
We study efficientlink schedulingfor a multihop wireless network
to maximize its throughput. Efficient link scheduling can greatly
reduce the interference effect of close-by transmissions. Unlike
the previous studies that often assume a unit disk graph model, we
assume that different terminals could have different transmission
ranges and different interference ranges. In our model, it is also
possible that acommunication linkmaynot exist due to barriers or
is not used by a predetermined routing protocol, while the trans-
mission of a node always result interference toall non-intended re-
ceivers within its interference range. Using a mathematical formu-
lation, we develop synchronized TDMA link schedulings that opti-
mize the networking throughput. Specifically, by assuming known
link capacities and link traffic loads, we study link scheduling un-
der the RTS/CTS interference model and the protocol interference
model with fixed transmission power. For both models, we present
both efficient centralized and distributed algorithms that use time
slots within a constant factor of the optimum. We also present effi-
cient distributed algorithms whose performances are still compara-
ble with optimum, but with much less communications. Our theo-
retical results are corroborated by extensive simulation studies.
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C.2.1 [Network Architecture and Design]: Wireless communi-
cation; G.2.2 [Graph Theory]: Network problems, Graph algo-
rithms.
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1. INTRODUCTION
Wireless multi-hop radio networks such as ad hoc, mesh, or sen-

sor networks are formed of autonomous nodes communicating via
radio. Wireless networks draw lots of attentions in recent years
due to their potential applications in various areas. For example,
wireless mesh networks are being used as the last mile for extend-
ing the Internet connectivity for mobile nodes. These networks be-
have almost like wired networks since they have infrequent topol-
ogy changes, limited node failures,etc.. For wireless mesh net-
works or sensor networks, the aggregate traffic load of each routing
node changes infrequently also. A unique characteristic of wire-
less networks is that the radio sent out by a wireless terminal will
be received by all the terminals within its transmission range, and
also possibly causes signal interference to some terminals that are
not intended receivers. In other words, the communication chan-
nels are shared by the wireless terminals. Thus, one of the major
problems facing wireless networks is the reduction of capacity due
to interference caused by simultaneous transmissions. Using mul-
tiple channels and multiple radios can alleviate but not eliminate
the interference. To achieve robust and collision free communica-
tion, there are two alternatives. One is to utilize a random access
MAC layer scheme. The other is to carefully construct a transmis-
sion schedule. One variant, link scheduling in the context of time
division multiplexing (TDM) is the subject of this paper.

In this paper, we assume that the time is slotted and synchro-
nized. A link scheduling is to assign each link a set of time slots
⊂ [1, T ] on which it will transmit, whereT is the scheduling pe-
riod. A link scheduling isinterference-aware(or calledvalid) if a
scheduled transmission on a linkx → y will not result in a collision
at either nodex or nodey (or any other node). In this context, two
types of collisions must be avoided, namely, primary interference
and secondary interference. Link scheduling has received a great
attention from both networking and theory fields [1, 16–21, 23, 26]
in the past few years due to its application for assigning time slots
in TDMA MAC protocols that eliminate collision, guarantee fair-
ness. Many scheduling problems in wireless networks have been
shown to be NP-complete, including TDMA broadcast schedul-
ing [7], link scheduling [2, 8]. For some of these problems, even
polynomial-time algorithms with constant approximation ratios ap-
pear unlikely for general graphs.

Previous studies on link scheduling either assume a very gen-
eral graph model or assume a very specific graph model such as
unit disk graph (UDG). It is widely accepted in the wireless net-
working community that neither a general graph model nor UDG
model accurately captures unique properties of wireless networks.
A general graph model could not capture a certain geometry prop-
erty of wireless networks,e.g., two nodes must be within certain
distance to be able to communicate directly (or one node’s trans-



mission could interfere the other node’s reception). A unit disk
graph model is idealistic since in practice two nearby nodes may
still be unable to communicate due to various reasons such as bar-
rier and path fading. In this paper, we give efficient centralized and
distributed algorithms to obtain a valid link scheduling with theo-
retically proven performances for a more realistic wireless network
model. The main contributions of this paper are as follows.

• More Realistic Model: We address the link scheduling in a
more realistic networking model: (1) each node has its own
transmission power and thus its own transmission range; (2)
that the receiver must be within the transmission range of the
sender is only a necessary (but not sufficient) condition for
two nodes to communicate directly,i.e., two nearby nodes
may still be unable to communicate directly; (3) if a nodev
is within certain distance of a senderu, then the transmission
by u will interfere the reception of nodev. In summary, the
communication graph could be an arbitrary geometry graph.
Notice that similar realistic models using weighted and un-
weighted flows, modeling interference range to be different
from transmission range, etc. have all been proposed and
modeled in earlier work,e.g. in [15, 18, 21], and heuristic
algorithms have been given for each or all of these. Our
contributions here are that we provide theoretical bounds for
link-scheduling algorithms in these cases.

• Both Weighted and Unweighted Flow:In several wireless
networks (e.g., mesh, sensor networks), we can estimate the
traffic demand by each wireless node. Thus, based on a given
routing algorithm, we can predict the average traffic load`(e)
on each linke of the network. We then design link scheduling
algorithms to meet this traffic demand if possible. We model
this by assuming that each linke has an integralweightw(e)
specifying the number of slots it needed in a period to sup-
port its traffic load. Herew(e) = dT · `(e)

c(e)
e, wherec(e) is

the capacity of linke if there is no interference, andT is a
given period for a schedule. In certain networks, it is diffi-
cult, if not impossible, to estimate the load of every link. We
then assume that each node needs at least one time slot for
transmission and our objective is to design a scheduling that
minimizesT .

• Theoretical Performance Guarantee for Efficient Central-
ized/Distributed Algorithms: We consider two kinds of in-
terference models: RTS/CTS model and protocol interfer-
ence model with fixed transmission power. For both models,
we present both centralized and distributed link scheduling
algorithms that use time slots at most a constant factor of the
optimum. All algorithms involve a novel study of interfer-
ence properties in wireless networks. For the protocol in-
terference model, we require that the interference range of a
node is larger than its transmission range, which is always
true in practice (the interference range of a node is about
twice of its transmission range). One of our distributed al-
gorithms has not only small communication complexity, but
also good performance guarantee that is only logarithmic of
the ratio between the maximum and minimum interference
range. Although some of our algorithms are similar to some
algorithms proposed before, to the best of our knowledge, we
are the first one to prove asymptotical optimal bounds for the
performance. We also present both necessary and sufficient
conditions for schedulable flows under interference.

• Layer Independence:To preserve the independence between
layers, we assume that there is already an existing routing al-
gorithm that will select a path for every pair of source and
destination nodes. The performance guarantee of methods

presented here isindependentof the routing algorithm when
the routing is given. The results presented here can also
be extended to the scenario when we want to maximize the
throughput by optimizing the routing and TDMA link schedul-
ing together.

The rest of the paper is organized as follows. In Section 2, we
discuss the network models and interference models and formally
define the problem studied in this paper. We present our central-
ized algorithms for link scheduling in Section 3. We also analyze
the theoretical guaranteed performances of our algorithms. Our
distributed algorithms are presented in Section 4. In Section 5, we
study how to assign time slots to links when each link has a re-
quirement of the least number of time slots needed. Our simulation
studies are reported in Section 6. In Section 7, we briefly review the
related works in the literature. We conclude our paper in Section 8.

2. SYSTEM MODEL AND ASSUMPTIONS
Interference issues have been studied extensively recently be-

cause it is widely believed that reducing the interference can in-
crease the overall performance of a wireless network. There are dif-
ferent approaches to reduce the interference, including the schedul-
ing on the MAC layer, route selection on the routing layer and
power control on the physical layer. In this section, we first discuss
in detail the interference models we will use and formally define
the problem that we will study in this paper.

2.1 Network and Interference Models
NETWORK MODEL: In this paper, we assume that there is a set
V of communication terminals deployed in a plane. Each wireless
terminal is only equipped withsingle radio interface. The com-
plete communication graph is adirectedgraphG = (V, E), where
V = {v1, . . . , vn} is the set of terminals andE is the set of pos-
sible directed communication links. Every terminalvi has a trans-
mission rangeti such that the necessary condition for a terminal
vj to receive correctly the signal fromvi is ‖vi − vj‖ ≤ ti, where
‖vi − vj‖ (sometimes we denote it asdi,j for simplicity) is the
Euclidean distance betweenvi andvj . Notice that‖vi − vj‖ ≤ ti

is not the sufficient condition for(vi, vj) ∈ E. Some links do
not belong toG because of either the physical barriers or the se-
lection of routing protocols. This is the major distinction of our
model with the majority previous studies on link scheduling. To
the best of our knowledge, only [21] used the similar model as
ours. We always useli,j to denote(vi, vj) hereafter. Each ter-
minalvi also has an interference rangeri such thatvj is interfered
by the signal fromvi if ‖vi − vj‖ ≤ ri andvj is not the intended
receiver. The interference rangeri is not necessarily same as the
transmission rangeti. Typically,ri > ti. We call the ratio between
them as theInterference-Transmission Ratiofor nodevi, denoted
asγi = ri

ti
. In practice,2 ≤ γi ≤ 4. For all wireless nodes, let

γ = maxvi∈V
ri
ti

.

INTERFERENCEMODELS: To schedule two links at the same time
slot, we must ensure that the schedule will avoid the interference.
Two different types of interference have been studied in the lit-
erature, namely,primary interferenceandsecondary interference.
Primary interference occurs when a node transmits and receives
packets at the same time. Secondary interference occurs when a
node receives two or more separate transmissions. Here all trans-
missions could be intended for this node, or only one transmission
is intended for this node (thus, all other transmissions are interfer-
ence to this node). In addition to these interferences, there could
have some other constraints on the scheduling,e.g., the radio net-
works that deploy the IEEE802.11 protocol with request-to-send



and clear-to-send (RTS/CTS) mechanism will pose some additional
constraints. Several different interference models have been used
to model the interferences in wireless networks. We briefly review
them in the following.

Protocol Interferences Model (PrIM): It was first proposed
in [13]. In this model, a transmission by a nodevi is successfully
received by a nodevj iff the intended destinationvj is sufficiently
apart from the source of any other simultaneous transmission,i.e.,
‖vk − vj‖ ≥ (1 + η)‖vi − vj‖ for any nodevk 6= vi. Here con-
stantη > 0 models situations where a guard zone is specified by
the protocol to prevent a neighboring node from transmitting on
the same channel at the same time. This modelimplicitly assumed
that each nodevk will adopt the power control mechanism when
it transmits signals. Simulation analysis [12] as well as the analyt-
ical results [3] indicate that the protocol interference model does
not necessarily provide a comprehensive view of reality due to the
aggregate effect of interference in wireless networks. However, it
does provide some good estimations of interference and most im-
portantly it enables a theoretical performance analysis of a num-
ber of protocols designed in the literature. Link scheduling using
PrIM interference model and network model similar to ours has
been studied in [21].

Fixed Power Protocol Interferences Model (fPrIM): We adopt
the following interference model throughout this paper. We assume
that a node willnot dynamically change its power based on the
intended receiver in a packet-level. Note that this assumption does
not preclude the power control that can further reduce the power
consumption. We only assume that there is no power adaptation at
the packet level and the power is not adjustable for a certain period
of time, which is close to the real situation. However, we do assume
that each nodevi has its own fixed transmission power and thus a
fixed transmission rangeti. We also assume that each nodevk has
aninterference rangerk such that any nodevj will be interfered by
the signal fromvk if ‖vk − vj‖ ≤ rk and nodevk is sending signal
to some node other thanvj . In other words, the transmission from
vi to vj is viewed successful if‖vk − vj‖ > rk for every nodevk

transmitting in the same time slot using the same channel.
RTS/CTS Model: This model was also studied previously,e.g.,

[1]. For every pair of transmitter and receiver, all nodes that are
within the interference range of either the transmitter or the receiver
cannot transmit. Figure 1(a) shows the case that communication
from B to A andC to D cannot take place simultaneously due
to RTS. Figure 1(b) shows the case that communication fromA
to B andD to C cannot take place simultaneously due to CTS.
Although RTS/CTS is not the interference itself, for convenience
of our notation, we will treat the communication restriction due to
RTS/CTS asRTS/CTS interferencemodel. Thus, for every pair of

D
BA C D

BA C

(a) Due to RTS (b) Due to CTS

Figure 1: Communication Restriction by RTS/CTS.

simultaneous communication links, sayvivj andvpvq, it should
satisfy that (1) they are distinct four nodes,i.e., vi 6= vj 6= vp 6=
vq; (2) vi andvj are not in the interference ranges ofvp andvq, and
vice versa. Theinterference region, denoted byIi,j , of a link li,j
is the union of the interference region of nodesvi andvj . When a
directed linkvivj (or vjvi) is active, all simultaneous transmitting
links vpvq cannot have an end-point inside the areaIi,j . Notice, it

is possible that neithervp nor vq is in Ii,j but lp,q still interferes
with li,j sincevi or vj may be insideIp,q.

Physical Interference Model (PhIM): In this model, the signal-
to-interference-and-noise ratio (SINR) is used to describe the ag-
gregate interference in the network. The transmission from node
vi is successfully received at nodevj if and only if the SINR is at
least the minimum SINR threshold required by nodevj .

In this paper, we mainly focus on link scheduling for the fPrIM
model and the RTS/CTS model. Notice that these two models are
different. For example, in Figure 1(a), linksBA andCD can be
assigned the same channel in the protocol interference model, but
not in the RTS/CTS model. Similar statement holds for linksAB
andDC in Figure 1(b).

2.2 Problem Formulation
Assume that the communication links in the wireless network are

predetermined, either by some existing routing protocol as AODV,
DSR or can be predicted from the existing routes. Given a commu-
nication graphG = (V, E), we use theconflict graph(e.g., [15])
FG to represent the interference inG. Each vertex (denoted byli,j)
of FG corresponds to a directed link(vi, vj) in the communication
graphG. There is anedgebetween vertexli,j and vertexlp,q in FG

if and only if li,j conflicts withlp,q due to interference. Recall that
whether two links conflict depends on the interference model used
underneath,e.g., protocol interference model or RTS/CTS model.
Thus, for a given communication graphG, the interference graph
FG may be different. To avoid the confusion, we useF P

G to denote
the interference graph under the protocol interference model and
F D2

G to denote interference graph under RTS/CTS model.
Our objective is to give each linkl ∈ G a transmission schedule

S(l), which is the list of time slots it could send packets such that
the schedule is interference-free and the overall throughout of the
network is maximized. LetXe,t ∈ {0, 1} be the indicator variable
which is1 iff e will transmit at timet. We will focus on periodic
schedules in this paper. A schedule is periodic with periodT if, for
every linke and time slott, Xe,t = Xe,t+i·T for any integeri. For
a link e, let I(e) denote the set of linkse′ that will cause interfer-
ence ife ande′ are scheduled at the same time slot. A schedule
S is interference-freeif Xe,t + Xe′,t ≤ 1 for any e′ ∈ I(e). In
the graph theory terminology, the interference free link scheduling
problem is essentially thevertex coloringof FG.

When the traffic load of links are unknown, the objective of link
scheduling is to find a scheduling with the minimum period. If
we schedule all links within a periodχ such that no two links in
same time slot interfere with each other, then at least one packet
can be delivered over each communication link in everyχ time
slots. Thus,1/χ is often used to estimate thethroughputof the
network based on this schedule. The second case is that the average
traffic load`(e) of each link is known in advance. We model this
by assuming that each communication linke (vertex in the conflict
graph) has aweightw(e) specifying the minimum number of time
slots it required in each period. Herew(e) = dT · `(e)

c(e)
e, where

c(e) is the capacity of linke andT is a given period for a schedule.
Our main focus in this paper is how to schedule the communication
links in an interference-free manner such that the throughput of the
network is maximized,i.e., with the smallestT .

There are a number of distinctions of the model used here with
the models used in previous study: (1) We assume that each wire-
less node has an interference range, which may be different from
its transmission range; (2) We do not require the same transmission
range (also same interference range) for every wireless node; (3)
We do not require the communication graph to be complete,i.e.,
some communication links may not exist due to barriers or may be



not used by routing selection.
Notice that for simplicity we assume that there is only a single-

channel in the network. All our results can be easily extended to
the case when multiple channels are available as in [1]. If nodes
has a pre-assigned channels for each link, then the link scheduling
with multiple channels is just the simple union of a set of schedul-
ings, where each scheduling is for all links using the same channel.
However, we agree that the static assignment of correct channels to
appropriate links is a bigger factor in determining the performance.
If links can dynamically switch channels, then our greedy algo-
rithms will find the channel with the smallest available time slot for
each link to be scheduled and the same performances hold.

3. CENTRALIZED SCHEDULING
In this section, we will propose centralized algorithms for link

scheduling under different interference models. The performances
of centralized algorithms will then be used as a certain benchmark
to evaluate the performances of our distributed algorithms.

3.1 Scheduling under RTS/CTS Model
A number of centralized algorithms for link scheduling have

been proposed in the literature,e.g., [1, 21]. A common approach
is to assign each link the best possible channels (smallest time slots
here) by greedy. The difference between them is the processing or-
der of links: [21] processes links with smaller lengths first while [1]
processes links in an arbitrary order (since it uses UDG graph mod-
els for both communication and interference). Our centralized al-
gorithm is will process links in a special order as in [14]. The basic
idea is to first sort links as follows: every time we pick a link, sayl,
from the remaining graph that has the smallest number of interfered
links in the remaining graph and then removel from this graph; re-
peat this till the graph becomes empty. We then assign time slots to
links in the reverse order of picked links using the smallest time slot
available (not used by interfering links). In summary, a linke with
largerI(e) will be more likely processed earlier by our algorithm.

Algorithm 1 Centralized Scheduling under RTS/CTS Model

Input: A communication graphG = (V, E) of m links.
Output: An interference-free link scheduling.
1: Construct the conflict graphF D2

G and let graphG′ = F D2
G .

2: while G′ is not emptydo
3: Find the vertex with thesmallesttotal degree inG′ and re-

move this vertex fromG′ and all its incident edges. Letlk
denote the(m− k + 1)th vertex removed, and the degree of
lk in graphG′ just before it is removed be itsδ-degree.

4: Process links froml1 to lm and assign to eachlk the smallest
time slot not yet assigned to any of its neighbors inF D2

G .

We first present some necessary definitions and properties needed
to prove the performance of our algorithms. Given a communi-
cation link li,j , we define theinterference radius of linkli,j as
ri,j = max{ri, rj}. If ri > rj or ri = rj and ID of nodevi

is larger than the ID of nodevj , thenvi is called thehead (de-
noted ashi,j) of link (vi, vj) andvj is the tail (denoted asti,j)
of this link. Notice that here, theheadof a link is not necessarily
the sender of the directed communication link. Given a nodevk,
we useR(vk, x) to denote the disk centered atvk and with radius
x · rk. A nodevk interferes a nodevi if nodevi is inside the inter-
ference region (i.e., disk R(vk, 1)) of nodevk. We say a linklp,q

interferes a nodevk if either vp or vq interferesvk. For a given
nodevk, we useN≥(vk, α) to denote the set of nodes satisfying
that (1) each of their interference radius is at leastrk; (2) each of

them interferes some nodes inR(vk, α). Notice that a node from
N≥(vk, α) could be arbitrarily far away from nodevk. Similarly,
for a link li,j , let R(li,j , x) denote the union of two disks cen-
tered atvi andvj respectively with radiusx · ri andx · rj respec-
tively. Let N≥(li,j , α) denote the union of node setsN≥(vi, α)
andN≥(vj , α). The following theorem estimates the local chro-
matic number based on node degree.

THEOREM 1. For a given nodevk and any node setVk ⊆
N≥(vk, α) with constantα, there exists a subsetV ′

k of Vk with
cardinality |Vk|/Cα such that each node interferes with each other,
whereCα ≤ (6α + 1)2 + 11.

PROOF. We consider a partition ofVk: the nodes in and outside
regionR(vk, 3α), denoted byV 1

k andV 2
k respectively.

First, we consider the node setV 1
k . Using a simple area argu-

ment, there are at most
π((3α+ 1

2 )rk)2

π( 1
2 rk)2

= (6α + 1)2 disks with

radiusrk
2

can be placed inside the diskR(vk, 3α). Thus, there ex-
ists a node set inV 1

k with size at least|V 1
k |/(6α + 1)2 such that

each node in the set interferes with each other.

kv v

v

va

b

k3ark

(a) Divide the space into11 cones (b) Two nodes interfere in same cone

Figure 2: Illustration of the partition of the region.

Second, we consider the node setV 2
k . We divide the whole space

into 11 equal cones using11 rays fromvk as shown Figure 2(a). If
va andvb are in the same cone, then∠vavkvb < 33◦. Let da,b =
‖va − vb‖. Sinceva ∈ N≥(vk, α), va interfere with some nodes
in R(vk, α), da,k ≤ ra+α·rk. Similarly,db,k ≤ rb+α·rk. Thus,
max{da,k, db,k} ≤ max{ra, rb}+α ·rk. On the other hand, since
bothva andvb are outsideR(vk, 3α), min{da,k, db,k} ≥ 3α · rk.
As shown in Figure 2 (b), forva andvb,

d2
a,b < d2

a,k + d2
b,k − 2 cos(33◦) · da,k · db,k

= max{da,k, db,k}2 + min{da,k, db,k}2 −
5

3
max{da,k, db,k} ·min{da,k, db,k}

≤ max{da,k, db,k}
�
max{da,k, db,k} − 2

3
min{da,k, db,k}

�
≤ (max{ra, rb}+ α · rk) · [max{ra, rb}+ α · rk − 2α · rk]

≤ max{ra, rb}2 − α2 · r2
k < max{ra, rb}2.

The transition between the second and third inequalities is because
max{da,k, db,k} ≤ max{ra, rb}+ α · rk andmin{da,k, db,k} ≥
3α · rk. Thus,va interferes withvb. Therefore, each pair of nodes
in the same cone interfere with each other. This proves that there
exists a node set inV 2

k with size at least|V 2
k |/11 such that the

nodes in the set interfere with each other.
Consequently, there exists a node set with size at least

max{|V 1
k |/(6α + 1)2, |V 2

k |/11} ≥ |V 1
k |+ |V 2

k |
(6α + 1)2 + 11

=
|Vk|
Cα

such that all nodes in the set interfere with each other. Here,Cα ≤
(6α + 1)2 + 11, and we call it theα-hop interference number.
Notice that(6α + 1)2 + 11 is an upper bound onCα and it can be
improved by using a more tight analysis.



Table 1: Summary of Main Notations
Term Definition
vi a wireless node fromV = {v1, v2, · · · , vn}

li,j or (vi, vj) edge/link betweenvi andvj
ti andri transmission range and interference range ofvi

γi andγ γi = ri/ti, γ is the maximum ratio for allvi
Ii,j ,hi,j ,ti,j interference region/head/tail of linkli,j

ri,j interference radius ofli,j , max{ri, rj}
Xe,t indicator variable whethere transmits at timet
F D2

G interference graph under RTS/CTS model
F P

G interference graph under fPrIM model
δ(F X

G ) maximumδ-degree in the interference graph
∆(F X

G ) maximum degree in the interference graph
R(vk, x) the disk centered atvk and with radiusx · rk

R(li,j , x) the union of two disks centered atvi and vj re-
spectively with radiusx · ri andx · rj

N≥(vk, α) the set of nodes who interferes some nodes in
R(vk, α) and has interference radius at leastrk

N≥(li,j , α) the union of node setsN≥(vi, α) andN≥(vj , α)
I≥(e) the set of links with larger radius thane and inter-

fering withe under RTS/CTS model
d

in/out
i,j (G) incoming/outgoing degree of vertexli,j in G

∆in/out(G) maximum incoming/outgoing degree ofG
d≥i,j(F

D2
G ) number of adjacent vertices that precedeli,j

φ(F D2
G ) maxli,j d≥i,j(F

D2
G )

Hi all links that containvi as the head
Mi,M+

i ,M−
i all links that /∈ Hi and interfere withHi; all links

in Mi that precede every link inHi; Mi −M+
i

ψ ratio between max and min interference ranges
N≥(vk, α, β) the set of nodes who interferes some nodes in

R(vk, α) and has interference radius at leastrk
β

N≥(li,j , α, β) the union ofN≥(vi, α, β) andN≥(vj , α, β)
∆(α, β) maxli,j |N≥(li,j , α, β)|
χ(F X

G ) optimal number of colors for graphF X
G

M
in/out
i.j all incomging/outgoing links fromli,j

w(e),`(e),c(e) weight, traffic load and capacity of linke

Notice that Theorem 1 works for the interference on nodes only.
For a linke = li,j , letI≥(e) be the linkse′ interfering withe under
RTS/CTS model and whose radius is not smaller thane. Following
theorem shows a counterpart that works for links also.

THEOREM 2. For a given linke = li,j , at least|I≥(e)|/(2C1)
time slots are needed to schedule all links inI≥(e).

PROOF. For each linklp,q ∈ I≥(e), without loss of generality,
we assume thatrp ≥ rq. Recall thate′ = lp,q ande interfere by
definition. Following we discuss by cases.

Case 1:The interference region ofvp covers eithervi or vj .
Case 2: The interference region of nodevp can neither cover

vi nor vj , andvq is outsidethe unionR(lij , 1) of interference re-
gion of vi andvj . Clearly, in this casevp must also be outside of
R(lij , 1). Sincee ande′ interfere, it must be that the interference
region ofvq covers eithervi or vj .

Case 3:The interference region of nodevp can neither covervi

nor vj , andvq is inside the unionR(lij , 1) of interference region
of vi andvj . Thenvp will “interfere” a dummy nodevq.

In summary, we conclude that at least one end node oflp,q inter-
feres with some nodes in regionR(li,j , 1), i.e., the head oflp,q is in
N≥(li,j , 1). Recall thatN≥(li,j , 1) = N≥(vi, 1)

S
N≥(vj , 1).

The head oflp,q is either inN≥(vi, 1) or N≥(vj , 1). Without loss
of generality, we assume that at least|I≥(e)|/2 heads of the links
in I≥(e) are in N≥(vi, 1). From Theorem 1, there are at least
|I≥(e)|/(2C1) heads that interfere with each other. Thus, there are

at least|I≥(e)|/(2C1) links in I≥(e) that interfere with each other.
This finishes the proof.

Consequently, we have the following necessary condition for any
interference-free link scheduling under RTS/CTS model:

LEMMA 3. For any time slotτ , any valid RTS/CTS interference-
free link schedulingS must satisfy that

Xe,τ +
X

e′∈I≥(e)

Xe′,τ ≤ 2C1.

Notice that above theorems hold for any multi-hop wireless net-
works in which both the transmission range and interference range
could be heterogenous and some links could be missing due to var-
ious reasons. If the interference range is homogenous, then the
constantCα could be improved.

Let δ(F D2
G ) be themaximumδ-degree of all linkslk in the Step

2-3 of Algorithm 1. We now prove that Algorithm 1 has the fol-
lowing performance guarantee.

THEOREM 4. Under RTS/CTS model, Algorithm 1 needs at most
2C1 · δopt time-slots for all links without interference, whereδopt

is the minimum schedule periodT .

PROOF. LetH be the vertex induced subgraph ofF D2
G such that

each vertex inH has degree at leastδ(F D2
G ). The existence ofH is

straightforward from the definition ofδ(G). Without loss of gener-
ality, let li,j be the vertex inH with the smallest interference range.

From Theorem 2, there exists a clique of size at leastδ(F D2
G )+1

2C1
in

F D2
G . The optimal solution thus needs≥ δ(F D2

G )+1

2C1
colors. Algo-

rithm 1 uses≤ δ(F D2
G ) + 1 colors. This finishes our proof.

3.2 Scheduling under fPrIM Model
Kumar et al. [21] studied the scheduling under a different pro-

tocol interference model (with parameterδ): where a transmission
by a nodevi is successfully received by a nodevj iff ‖vk − vj‖ ≥
(1 + δ)‖vi − vj‖ for any nodevk 6= vi. This needs every node
to dynamically change its transmission power based on receiving
node. Recall that in this paper, we assume that any node will have
a fixed transmission power. It is not difficult to design network
examples where the methods (processing links in the order of de-
creasing length) developed in [21] will not work under our model.

Under RTS/CTS model, we essentially showed that the optimal
color assignment needs at leastδ(F D2

G ) colors. Note that when
the graph is modelled by UDG,δ(F D2

G ) is essentially∆(F D2
G ),

where∆(F D2
G ) is the maximum degree of the conflict graphF D2

G .
Thus, almost any greedy based coloring method (using at most
∆(F D2

G ) + 1 colors) has a constant approximation ratio. Several
previous literatures claimed the same result (that the optimal col-
oring needsΘ(∆(F P

G )) colors) under the fPrIM model and pro-
posed some algorithms to color the communication graphG using
O(∆(F P

G )) colors, where∆(F P
G ) is the maximum degree of the

conflict graphF P
G under fPrIM model. We can also defineδ(F P

G )
as the maximumδ-degree of theF P

G which can be computed by
applying Step 2-3 of Algorithm 1 onF P

G . However, as we will
show later, there are examples of communication graphs whose op-
timal coloring needs constant colors, while, on the other hand, both
∆(F P

G ) andδ(F P
G ) areO(n1−ε) for any0 ≤ ε < 1 if all nodes

have the same transmission range andti = ri = r. This shows
that any greedy algorithm that usesΘ(∆(F P

G )) or evenΘ(δ(F P
G ))

colors could be very bad compared to the optimal solution.
We now describe such an example as in Figure 3. Here all nodes

have same transmission range and interference ranger. The links



formed several groups such that all links in each group are parallel
and each link has lengthr. The groups are placed in a cyclic man-
ner such that any sender of one group interferes with all receivers in
the previous group and does not interfere with any other receivers in
other groups. The number of links in each group isn1−ε and there
are nε groups. Obviously, in the conflict graphF P

G , the degree
of each vertex (corresponding to a physical link) isn1−ε. Thus,
∆(F P

G ) = δ(F P
G ) = n1−ε. On the other hand, we can use at most

3 colors to color all the links without conflict: we color groups in
clockwise order, and all links in the same group are assigned the
same color that is the smallest available.

Figure 3: Bad example for simple greedy

The above example shows that it is unclear whether Algorithm 1
can find a scheduling that approximates the optimal solution when
the interference range equals the transmission range (the proof of
Theorem 4 does not extend to this scenario). Fortunately, the ra-
tio of the interference range over the transmission range is usually
around2 in practice. Next, we utilize this property to design an
efficient link scheduling with a constant approximation ratio.

Given any two nodesli,j andlp,q in conflict graphF P
G such that

vj andvq are receivers, ifli,j andlp,q interfere with each other, then
it is possible that (1)vi interferesvq, or (2)vp interferesvj , (3) or
both. Ifvp interferesvj , then we treat the link betweenli,j andlp,q

as anincoming linkfor li,j . Similarly, if vi interferesvq, we treat
the link as anoutgoing linkfor li,j . Letdin

i,j(F
P
G ) anddout

i,j (F P
G ) be

the incoming and outgoing degree ofli,j in the conflict graphF P
G

respectively. The number of incoming links of a vertex inF P
G is its

incoming degree, and the number of outgoing links are its outgo-
ing degree. Similarly, we define∆in(F P

G ) and∆out(F P
G ) as the

maximum incoming and outgoing degree in graphF P
G respectively.

Whenγi > 1 for each nodevi, we will show that the optimal color-
ing needs at leastΘ(∆in(F P

G )) colors, where the hidden constant
depending onmini γi (which is typically2 in practice).

LEMMA 5. Consider any communication linkli,j , wherevj is
the receiver. Consider two linkslp,q andls,t that areli,j ’s incoming
links in conflict graphF P

G , wherevq and vt are the receivers. If
∠vqvjvt ≤ arcsin γ−1

2γ
, then linklp,q interferes with linkls,t.

PROOF. Draw two raysvjva, vjvb emanated from nodevj such
that∠vavjvb = arcsin γ−1

2γ
andvq, vt are in the cone as shown in

Figure 4(a). Without loss of generality, we assume that‖vj − vq‖ ≥
‖vj − vt‖. Draw a circleC centered atvj with radius‖vj − vq‖.
Letu1u2 be the line passingvq that is tangent to circleC andu1, u2

are the intersections of this line with linevjva, vjvb respectively.
Since∠u1vjvq ≤ arcsin γ−1

2γ
, we have

‖u1 − vq‖ ≤ ‖vj − vq‖ · γ − 1

2γ
≤ 2rp · γ − 1

2γ
= rp · γ − 1

γ
.

Thus,‖vp − u1‖ ≤ ‖vp − vq‖+‖u1 − vq‖ ≤ rp · 1
γ

+rp · γ−1
γ

=

rp. Similarly, ‖vp − u2‖ ≤ rp. Following we prove that nodevp

interferes withvt by cases.
Case1: vpu1u2vj is a convex quadrangle as shown in Figure

4(a). In this case,vt is either inside trianglevpvju2 or triangle
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Figure 4: Links in a small neighborhood will interfere with
each other in protocol interference model.

vpu1u2. Since both‖vp − u1‖, ‖vp − u2‖ and‖vp − vj‖ are not
greater thanrp, we have‖vp − vt‖ ≤ rp.

Case2: vj is inside4u1u2vp as shown in Figure 4(b). In this
case,vt is inside triangle4u1u2vp. Then it is easy to show that
‖vp − vt‖ ≤ max{‖vp − u1‖, ‖vp − u2‖} ≤ rp.

Case3: vp is inside4u1u2vj as shown in Figure 4(c). In this
case,vt is inside one of the three triangles:4u1u2vp, 4u1vjvp,
4u2vjvp. Similarly, we have‖vp − vt‖ ≤ rp.

Obviously, the above three cases covers all possible situations.
This proves that linklp,q interferes withls,t.

Similar to Lemma 3, we have the following necessary condition
for interference-free link scheduling under fPrIM model.

LEMMA 6. For any time slotτ , any valid interference-free link
schedulingS under protocol interference model must satisfy that

Xe,τ +
X

e′∈Iin(e)

Xe′,τ ≤ d 2π

arcsin γ−1
2γ

e,

whereIin(e) is the set of incoming links ofe that interferee.

This is because that for all incoming neighboring links of linke,
Lemma 5 implies that there are at mostd 2π

arcsin γ−1
2γ

e links that can

be scheduled at any same time slot. We then present our main the-
orem about the optimum coloring for fPrIM model withγi > 1.

THEOREM 7. Optimal vertex coloring for conflict graphF P
G

needsΘ(∆in(F P
G )) colors ifmini γi is some constant> 1.

PROOF. For any linkli,j such thatvj is the receiver, we parti-
tion the space usingb equal-sized cones apexed at nodevj , where
b = d 2π

arcsin γ−1
2γ

e. From the Pigeon hole principle,li,j has at

leastdin
i,j(F

P
G )/b links whose receivers are in the same cone. From

Lemma 5, all links in the same cone interfere with each other. Thus,
li,j has at leastdin

i,j(F
P
G )/b in-coming links such that they interfere

with each other. It implies that any valid coloring will use at least
din

i,j(F
P
G )/b among the incoming neighbors of linkli,j . Thus, the

optimal coloring needs at least∆in(F P
G )/b + 1 colors.

Note that∆(F P
G ) could be arbitrary larger than∆in(F P

G ). Thus,
simple greedy algorithm using∆(F P

G ) colors does not work,e.g.,
the algorithm proposed in [1] for UDG networking model. It is
known that the optimal coloring can be obtained by using greedy
approach on a certain ordering of vertices inF P

G . Next, with a care-
ful selection of link ordering, we present our centralized scheduling
method (Algorithm 2) that needs at most2 ·∆in(F P

G ) + 1 colors.

THEOREM 8. Algorithm 2 uses at most2·∆in(F P
G )+1 colors.

PROOF. The key observation is that in any directed graph, the
sum of all vertices’ incoming degree equals the sum of outgoing
degree. For the linkli,j with the largestdin

i,j(G
′)−dout

i,j (G′) in G′,
we must havedin

i,j(G
′) ≥ dout

i,j (G′). Thus, when we assign color



Algorithm 2 Centralized Scheduling under Protocol-Interference

Input: A communication graphG = (V, E) of m links.
Output: An interference-free link scheduling.
1: Construct the conflict graphF D2

G and let graphG′ = F D2
G .

2: while G′ is not emptydo
3: Find the linkli,j with the largestdin

i,j(G
′)− dout

i,j (G′) in G′

and remove this vertex fromG′ and all its incident edges.
Let lk denote thekth vertex removed.

4: Process the sequences of linksli,j from lm to l1. Assign each
link lk the smallest time slot not yet assigned to any of its
neighbors inF P

G .

(or time-slot) for the linkli,j , the subgraph induced by all the links
that have already been processed is exactly the subgraphG′ right
before vertexli,j was removed in thewhile loop of Algorithm 2.
Therefore, there are at most2·din

i,j(G
′) adjacent neighbors ofli,j in

F P
G that have already been processed. In other words, the smallest

time-slot assigned toli,j is at most2 ·din
i,j(G

′)+1, which is at most
2 ·din

i,j(F
P
G )+1. This proves that we need at most2 ·∆in(F P

G )+1
time-slots for an interference-free schedule.

4. DISTRIBUTED ALGORITHMS
In a wireless network, centralized algorithm may not be possi-

ble and even if possible, due to the dynamic features of wireless
networks, it is inefficient to update the coloring using a centralized
algorithm. Thus, in this section, we design efficient distributed al-
gorithms to get a valid coloring with good performance guarantee.

4.1 Algorithm For RTS/CTS Model
In literatures, several distributed algorithms have been proposed

for the vertex coloring. The first solution is to simply apply a dis-
tributed vertex coloring on the conflict graphF D2

G . Recall that all
previous distributed algorithms work for the general graph. By tak-
ing advantage of special properties of conflict graph defined here,
we are able to obtain a deterministic distributed coloring algorithm
that colors the links withO(∆(F D2

G )) colors in almost constant
time when the interference ranges are homogenous. On the other
hand, as shown in our centralized algorithm, the optimal color is
Θ(δ(F D2

G )) which could be much smaller than∆(F D2
G ) when in-

terference ranges are heterogenous. Thus, simply applying a col-
oring algorithm with ratioΘ(∆(F D2

G )) may not achieve a good
performance. The first instinct is to design a distributed version
of Algorithm 1. However, finding the node with the global max-
imum degree iteratively does not seem promising for distributed
algorithm. Thus, we need to find some lower bound for the optimal
color other thanO(δ(F D2

G )).
Given two nodesvi andvj , we say thatvi precedesvj if and

only if ri > rj or ri = rj andi > j. Given a pair of linksli,j
andlp,q with different headshi,j 6= hp,q, we say thatli,j precedes
lp,q if ri,j > rp,q or ri,j = rp,q andhi,j > hp,q. Recall that
ri,j = max{ri, rj}. We also say that the corresponding vertexli,j
precedeslp,q in the conflict graph in this case. For a vertexli,j in
graphF D2

G , let d≥i,j(F
D2
G ) be the number of adjacent vertices that

precedeli,j , which is calledefficient degreeof li,j . From Theo-
rem 2, there are at leastd≥i,j(F

D2
G )/(2C1) vertices adjacent to and

precedingli,j that form a clique in which each vertex (i.e., the cor-
responding link in the communication graph) interferes with each
other. Letφ(F D2

G ) = maxli,j d≥i,j(F
D2
G ), then Theorem 2 shows

that optimal coloring algorithm needs at leastφ(F D2
G )/(2C1) col-

ors. Thus, finding a coloring algorithm using at mostΘ(φ(F D2
G ))

colors is a constant-ratio approximation algorithm. Unlike the cen-

tralized Algorithm 1 in which the lower bound ofδ(F D2
G ) could

not be found by using only local information, the lower bound of
φ(F D2

G ) could be easily obtained by any linkli,j by simply count-
ing the number of interfering links that precede itself,i.e., with
larger link interference radius. Algorithm 3 presents our distrib-
uted coloring method that uses at mostφ(F D2

G ) colors.

Algorithm 3 Distributed Coloring Algorithm for RTS/CTS Model

Input: A communication graphG = (V, E).
Output: A valid coloring of all links.
1: Each nodevi collects all communication links, sayHi, that

containvi as the head,i.e., all links li,j with ri ≥ rj .
2: Each nodevi collects all communication links, denoted byMi,

that are not inHi and interfere with some linksHi.
3: Node vi finds M+

i , which is the subset of links inMi that
precedeseverylink in Hi and letM−

i = Mi −M+
i .

4: Nodevi sets all links inM+
i as uncolored.

5: while some links inM+
i are uncoloreddo

6: Nodevi listens messages from other nodes.
7: if vi receives a messageColor(p, q, k) then
8: Nodevi markslp,q with color ID k if lp,q is in M+

i .
9: for each nodevj in Hi do

10: Find the color with minimum color ID, sayk, that is not
used by any link that is conflicted withli,j . Color link li,j
with color ID k.

11: Sends the messageColor(i, j, k) to all heads of the links
adjacent toli,j in M−

i .

THEOREM 9. Algorithm 3 computes a valid coloring using at
mostφ(F D2

G ) colors, which is asymptotically optimal.

PROOF. First, we show that the algorithm does terminate. Since
it is straightforward that the number of nodes inHi is bounded by
φ(F D2

G ), thefor loop terminates inO(n) iterations. Thus, the max-
imum time needed for all other processes other thanwhile loop is
bounded by a finite timeT and our main focus is to show that the
while loop does terminate for any nodevi. Let (vσ1 , vσ2 , . . . , vσn)
be the sorted list of nodes in the decreasing order of their interfer-
ence range. Thus,vσi precedesvσj if and only if i < j. Sincevσ1

precedes every other nodes,M+
σ1 is empty andvσ1 colors all links

that are adjacent tovσ1 in timeT . Now consider the nodevσ2 and
M+

σ2 . If lp,q ∈ M+
σ2 , then eithervp or vq is vσ1 . Thus, all links in

M+
σ2 are colored. Therefore, all links that are adjacent tovσ2 are

colored before time2T . Similarly, all links that are adjacent tovσj

are colored before timej · T . Thus, all links are colored in time
n ·T . It is straightforward to show that, by assuming color one link
takes a unit time, the running time of this algorithm is at mostm,
wherem is the number of directed communication links.

Second, we show that the computed coloring is valid,i.e., no two
conflict links have the same color. Consider conflict linksli,j and
lp,q, following we discuss by cases.

Case 1:li,j andlp,q have the same head. Without loss of gener-
ality, we assume thatvi = vp is the head of the links. Thus, both
li,j andlp,q are inHi. Therefore,li,j andlp,q have different colors.

Case 2:li,j andlp,q have different heads. Then, without loss of
generality, we can assume thathi,j = i, hp,q = p andvi precedes
vp. Sinceli,j ∈ M+

p , li,j is colored beforeM+
p becomes empty.

Thus,lp,q is colored afterli,j is. Therefore, whenvp colors lp,q,
it uses a color that is different from the color ofli,j based on our
algorithm.

Third, it is straightforward that Algorithm 3 uses at mostφ(F D2
G )

colors,i.e., it has a constant approximation ratio.



Notice that in Algorithm 3, we start to color a link after all in-
terfering links preceding it are colored. Thus, in the worst case, it
may take timeO(n) to color all the links, wheren is the number
of nodes in the network. Here we assume that in one time unit,
a node can color all its incident links. Comparing with previous
poly-logarithmic time distributed coloring algorithms that color the
graph using∆(F D2

G ) colors, Algorithm 3 may take longer time.
However, following example shows that∆(F D2

G ) could be as large

u1 v1

u2
v2 vi

vk
u ui k

1

wkwiw2

w

(a) The Original network (b) The Conflict Graph

Figure 5: ∆ could beΘ(n) of number of colors used by Alg. 3.

asO(n) times of the color used by Algorithm 3, wheren is the
number of the nodes in original network. In Figure 5(a), there are
k pairs of transmission linksu1v1, . . . , unvn. Nodesu1, v1 have
interference range1 and all other nodes have interference rangeε,
whereε is a small positive constant such that nodeui does not in-
terferevj for i, j > 1. The corresponding conflict graph is shown
in Figure 5(b). It is not difficult to see that we only need two colors
while the degree ofl1,1 is n − 1. In other words, compared with
previous poly-logarithmic time methods withΩ(n) approximation
ratios, our method has a constant approximation ratio using larger
worst-case running time.

4.2 Faster Algorithm For RTS/CTS Model
Although Algorithm 3 computes a coloring that is at most con-

stant times of the optimal, it may need linear number of rounds to
compute the coloring. In certain circumstances, we would prefer
the distributed algorithms that run fast to the distributed algorithms
that have good performance as long as the fast distributed algo-
rithm does not perform much worse. Following we present another
distributed algorithm that computes the coloring very fast with a
good performance guarantee ofO(log(ψ) + 1), whereψ is the
ratio between the maximum interference range over the minimum
interference range among all nodes.

Algorithm 4 Fast Distributed Coloring Algorithm For RTS/CTS

Input: A communication graphG = (V, E).
Output: A valid coloring of the communication graph.
1: Nodevi computes a subset, sayHi, of all communication links

containingvi such that linkli,j ∈ Hi if and only if ri > rj .
2: while nodevi failed to obtain the channeldo
3: Nodevi monitors the channel and competes for the channel.
4: for each linkli,j ∈ Hi do
5: Color link li,j with the smallest color ID, sayk, that is not

used by any link that conflicts withli,j .
6: Broadcasts the messageColor(i, j, k) to each head of links

that conflict withli,j .

Algorithm 4 assumes that there is certain competition based MAC
layer (e.g., 802.11 with RTS/CTS) available for a node to obtain the
channel. We use this MAC mechanism to obtain a link scheduling
that is efficient and interference free. Algorithm 4 is very simple
and can be implemented without much additional computation on
each node. However, the proof of the performance guarantee is
not straightforward. To prove the main theorem, we need some

notation in order to extend the Theorem 1 and Theorem 2. For
a given nodevk, Let N≥(vk, α, β) be a node set composed of
the nodes satisfying that (1) each of their interference radius is at
least rk

β
; (2) each of them interferes some nodes inR(vk, α). Let

N≥(li,j , α, β) be the union ofN≥(vi, α, β) and N≥(vj , α, β).
The proofs of the following Lemma 10 and 11 are similar to the
proofs of Theorem 1 and 2 respectively and thus are omitted here.

LEMMA 10. For any nodevk and any setVk ⊆ N≥(vk, α, β),
there exists a subsetV ′

k of Vk with cardinality at leastd|Vk|/Cα,βe
such that nodes inV ′

k interfere with each other whereCα,β =
(6αβ + 1)2 + 11.

LEMMA 11. For any linkli,j and any setVij ⊆ N≥(li,j , α, β),
there exists a subsetV ′

ij ofVij with cardinality at leatdVij/(2Cα+1,β)e
such that links inV ′

ij interfere with each other.

Let ∆(α, β) = maxli,j |N≥(li,j , α, β)| andχ(F D2
G ) be the op-

timal number of colors. Based on Lemma 11, the following theo-
rem is straightforward, for any fixedα, β,

THEOREM 12. χ(F D2
G ) ≥ d∆(α, β)/(2Cα+1,β)e.

THEOREM 13. Algorithm 4 computes a coloring that is at most
O(log(ψ) + 1) times of optimumχ(F D2

G ).

PROOF. Without loss of generality, let linkli,j be the link that
has the maximum color ID, sayg. To prove the theorem, we will
show thatg ≤ 2C1,2 · (log(ψ) + 1) · χ. Following we prove
it by contradiction and for the sake of contradiction, assume that
g > 2C1,2 · (log(ψ) + 1) · χ.

We first argue that for any0 ≤ k ≤ log(ψ), there exists a
link li(k),j(k) such thatri(k),j(k) < ri,j/2k and its color ID is not
smaller thang− 2C1,2 · k · χ. We prove this argument by induc-
tion onk. If k = 0, then the argument trivially holds. Assume for
k ≤ p, the argument holds. From Theorem 12, by lettingα = 0
andβ = 2, χ ≥ ∆(0, 2)/(2C1,2). In other words, the number
of links, that interfere or are interfered by linkli(p),j(p) and whose
radius is not smaller thanri(p),j(p)/2, is at most2C1,2 · χ. Thus,
there must exist a linkli(p+1),j(p+1) such that

1. li(p+1),j(p+1) interferes or is interfered byli(p),j(p) ;
2. ri(p+1),j(p+1) < ri,j/2p+1; and
3. li(p+1),j(p+1) ’s color ID is at leastg− 2C1,2 · (p + 1) · χ.

This finishes the induction.
Thus, letk = blog(ψ)c, link liblog(ψ)c,jblog(ψ)c has the color

ID not smaller thang − 2C1,2 · blog(ψ)c · χ. This implies that
liblog(ψ)c,jblog(ψ)c has at least2C1,2 · χ + 1 adjacent links. Since,

ri(blog(ψ)c),j(blog(ψ)c) < ri,j/2blog(ψ)c) andrp,q ≥ ri,j/2log (ψ),
all links that interfere or are interfered by linkliblog(ψ)c,jblog(ψ)c

have interference radius at leastriblog(ψ)c,jblog(ψ)c
/2. From Lemma

11, χ ≥ d 2C1,2·χ+1

2C1,2
e = χ + 1, which is a contradiction. Thus,

g≤ 2C1,2 · (log(ψ) + 1) · χ. This finishes the proof.

4.3 Distributed Algorithm Under fPrIM Model
From Theorem 8, any coloring algorithm that usesO(∆in(F P

G ))
colors under the fPrIM model has a constant approximation ratio.
Here we give a distributed algorithm (Algorithm 5) that bears the
similar idea of our centralized method (Algorithm 2).

Regarding the distributed method (Algorithm 5), we have:

THEOREM 14. Algorithm 5 computes a valid coloring with at
most2 ·∆in(F P

G )+1 colors withO(m) messages, wherem is the
number of communication links.



Algorithm 5 Distributed Scheduling for fPrIM model

Input: A communication networkG = (V, E).
Output: A valid coloring of all links.
1: Assign each communication link a labelWHITE.
2: The header of each communication linkli,j collects all incom-

ing links and outgoing links, denoted byM in
i,j andMout

i,j .
3: while link li,j is WHITE do
4: Link li,j monitors the channel.
5: If some link e in M in

i,j

S
Mout

i,j announces that it becomes
GRAY with time-stampk, link li,j locally stores the label of
link e asGRAY and the time stampk.

6: if the number ofWHITE links in M in
i,j is not smaller than the

number ofWHITE links in Mout
i,j then

7: Link li,j competes for the channel.
8: if Link li,j obtains the channelthen
9: Link li,j labels itselfGRAY with a time stampt + 1

wheret is the maximum time stamp of allGRAY links
stored locally. Heret = 0 is noGRAY links are stored.
Link li,j send to all adjacent links inF P

G the message
thatli,j becomesGRAY with the time stampt+1. Link
li,j makes a list of linksSi,j composed of the current
WHITE links in M in

i,j

S
Mout

i,j .
10: while there exists some links inSi,j not coloreddo
11: Link li,j listens to the announcement. If a linke′ in Si,j

announces its color, then linkli,j locally updates the status
of e′ as colored together with the color ofe′.

12: Link li,j colors itself using the smallest color available that
will not produce any conflict with links inSi,j . It then sends to
all adjacent links inF P

G without a color the message about its
current color assigned.

PROOF. Notice that for each linkli,j , it uses the smallest color
that is not used by any links inSi,j . Since the number of incom-
ing links is not smaller than the outgoing links inSi,j , link li,j is
colored with a color not greater than2 · din

i,j(F
P
G ) + 1. Thus, Al-

gorithm 5 computes a valid coloring with at most2 ·∆in(F P
G ) + 1

colors. Note that each linkli,j only announces twice in our distrib-
uted scheduling algorithm: when it becomesGRAY and when it is
colored. Thus, the overall message complexity isO(m).

5. WEIGHTED COLORING AND SCHEDU-
LABLE FLOWS

5.1 Scheduling With Traffic Load
In TDMA system, the minimization of the number of colors is

closely related to the maximization of the network throughput. One
intrinsic assumption behind the idea of coloring is that each com-
munication link has the same packet arrive rate,i.e., the number of
traffics that need to go through each communication link is same.
However, this is not likely to be true and it is possible that some
communication link carries more traffic than others.
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Figure 6: Simple example: unweighted coloring is inefficient.

Consider a simple example of multihop wireless network com-
posed ofk source and destination pairs(si, ti) as shown in Figure
6(a). For simplicity of our presentation, we assume that every node
in the network can transmit ata bps if it uses all time slots. Observe
that we need at leastk+1 colors, which can be obtained by assign-
ing colori to linkssiv1 andv2ti, and colork +1 to link v1v2 as in
Figure 6(b). This implies that communication linkv1v2 can trans-
mit once everyk + 1 time slots. However, the path between each
source destination pair needs to go through linkv1v2. Thus, link
v1v2 becomes the bottleneck and the overall network throughput is
only a

k+1
bps. For each source destination pair, its throughput is

approximately a
k·(k+1)

bps, which is inefficient. Thus, we need to
generalize the coloring that can take the traffic rate on each com-
munication link into account. In this paper, we use theweighted
coloring to capture this, which is defined as follows.

DEFINITION 1. Given a graphG = (V, E) whereV is the set
of vertices andE is the set of links. Every linkei ∈ E has an
integral weightwi ≥ 0. A weighted link coloring is an assignment
of at leastwi distinct colors to each linkei such that no two links
sharing the same color interfere with each other.

By introducing the notation of weighted coloring, we can as-
sign different weight to different communication links. For ex-
ample, given a set ofk flow requirementsfi from si to ti, 1 ≤
i ≤ k, a certain routing algorithm will determine the routing path
for each flow. The weight of a linke is then the total flow pass-
ing throughe divided by the bandwidthc(e) of link e, i.e., we =P

fi:fi using e fi

c(e)
. Let us see how the weighted coloring can help to

improve the throughput using the example shown in Figure 6. By
assigning weight1 to each linksiv1, v2ti for 1 ≤ i ≤ k andk
to v1v2, obviously a valid2k coloring can be obtained. It is not
difficult to observe that the total throughput is nowa/2 bps and
each communication pair has a throughput ofa/2k. This increases
the throughput obtained from the unweighted coloring by an order
of k. Following, we show how to obtain a valid weighted coloring
based on the unweighted coloring.

Algorithm 6 Weighted Coloring Algorithm Based on Unweighted
Coloring AlgorithmA
Input: A communication graphG = (V, E) with weight on each
link and an unweighted coloring algorithmA.
Output: A valid coloring of the links.
1: Build the conflict graphFG based on original graphG and

interference model. Assign weightwi,j to vertexli,j ∈ FG.
2: Construct a new conflict graphF ′G from FG as follows: for

each vertexli,j with weightwi,j , we createwi,j vertices,l1i,j ,
l2i,j , . . ., l

wi,j

i,j and add them toF ′G. Add to graphF ′G the edges

connectinglai,j , lbi,j for 1 ≤ a < b ≤ wi,j . Add to graphF ′G
an edge betweenlai,j and lbp,q if and only if there is an edge
betweenli,j andlp,q in graphFG.

3: Run the unweighted vertex coloring algorithmA onF ′G.
4: Assign linkli,j all the colors that are used bylki,j for 1 ≤ k ≤

wi,j in F ′G.

We then show that Algorithm 6 has a performance guarantee that
is not worse than that of the unweighted coloring algorithmA.

THEOREM 15. If A uses at mostα times of the optimal colors
for unweighted coloring, then Algorithm 6 also needs at mostα
times of the optimal colors for weighted coloring.



PROOF. Notice that for any valid weighted coloring forFG, li,j
is assigned at leastwi,j colors. By assigning each vertexlki,j in F ′G
a distinct color that is assigned toli,j , we obtain a valid unweighted
coloring for F ′G. Thus, χ(F ′G) ≤ χ(FG). Hereχ(F ′G) is the
minimum number of colors needed for unweighted coloring inF ′G
and χ(FG) is the minimum number colors needed for weighted
coloring in FG. SinceA will return a coloring with at mostα ·
χ(F ′G) colors, Algorithm 6 produces a coloring with at mostα ·
χ(F ′G) ≤ α · χ(FG) colors. This finishes the proof.

The basic idea of Algorithm 6 is to create a clique of sizewi,j

for each linkli,j and color the new graph using unweighted color-
ing methodA. Although this gives a general framework to design
weighted coloring, its time-complexity could be large if the weight
is large. Fortunately, Algorithm 6 could be simplified without much
overhead compared to the unweighted algorithm: the main idea is
to assign colors for one link at once: instead of assigning one time-
slot to a link lk, we assignwk time-slots to linklk when process
link lk. As an example, we modify the Algorithm 4 to obtain a fast
weighted coloring (Algorithm 7). Following we show that Algo-
rithm 7 has the same performance guarantee as Algorithm 4.

Algorithm 7 Fast Distributed Weighted Coloring Algorithm

Input: A communication graphG = (V, E).
Output: A valid coloring of links in the communication graph.
1: Nodevi computes a subset, sayHi, of all communication links

containingvi such that linkli,j ∈ Hi if and only if ri > rj .
2: while nodevi failed to obtain the channeldo
3: Nodevi monitors the channel and competes for the channel.
4: for each linkli,j ∈ Hi do
5: Color link li,j with the first fitwi,j colors that are not used

by any link that interferes or is interfered byli,j . Here, the
assigned colors are not required to be continuous.

6: Broadcasts the messageColor(i, j, k) to each head of links
that conflict withli,j .

THEOREM 16. Algorithm 7 finds a coloring that needs at most
O(log(ψ) + 1) times of optimum.

PROOF. Let Aw be the coloring algorithm by applying Algo-
rithm 6 based on Algorithm 4. Observe that the coloring ofAw is
nondeterministic,i.e., the output could be different because of the
randomization introduced by the different processing time of dif-
ferent nodes. However, it is true that the output of Algorithm 7 is
one of the possible outputs ofAw. From Theorem 15, any coloring
output byAw is at mostO(log(ψ) + 1) times the optimal. Thus,
Algorithm 7 computes a coloring that needs at mostO(log(ψ)+1)
times optimal color.

Similarly, we can modify Algorithm 1 and Algorithm 3 to obtain
efficient weighted coloring methods with the same time complexi-
ties and approximation ratios. The details are omitted here.

5.2 Necessary and Sufficient Conditions for
Schedulable Flows

Similar to [1,17,21], we also make the connection with flows on
the links of a wireless networkG and the link scheduling. We will
give both a necessary and a sufficient condition on the link flows
such that an interference-free link scheduling is feasible. Recall
that we usè (e), c(e) to denote the load and the capacity of a link
e respectively. From Lemma 3 and Theorem 4, it follows that

THEOREM 17. Under the RTS/CTS model, any link flow` that
permits an interference-free link scheduling must satisfy the con-

straint `(e)
c(e)

+
P

e′∈I≥(e)
`(e′)
c(e′) ≤ 2C1. On the other hand, if`(e)

c(e)
+P

e′∈I≥(e)
`(e′)
c(e′) ≤ 1, then any link floẁ permits an interference-

free link scheduling.

Similarly, under the fPrIM Model, we have

THEOREM 18. Under the fPrIM model, any link floẁthat per-
mits an interference-free link scheduling must satisfy the following

constraint `(e)
c(e)

+
P

e′∈Iin(e)
`(e′)
c(e′) ≤ d 2π

arcsin γ−1
2γ

e. On the other

hand, if `(e)
c(e)

+
P

e′∈Iin(e)
`(e′)
c(e′) ≤ 1, then any link floẁ permits

an interference-free link scheduling.

The proofs of the above theorems are similar to those of [1,
17, 21] for other interference and networking models, and are thus
omitted here due to space limit. Similar theorems can be obtained
for networks with multiple channels and multiple radios.

6. PERFORMANCE EVALUATION
We evaluate the performances of our new link scheduling algo-

rithms for RTS/CTS model by conducting simulations with random
networks.

Network Settings: In these simulations, we randomly generate
n wireless nodes uniformly in a10× 10 unit region. The transmis-
sion range is randomly drawn from1.8 to 2 unit, while the interfer-
ence range is randomly set to be1.5 to 2 times of its transmission
range. Typically, a unit represents about 50 meters here. We as-
sume there is a sink (or an access point) in the network, all traffics
are towards it. The sink is placed in the center of the region in
the simulations. We vary the node numbern from 40 to 200. For
each numbern, 100 vertex sets (networks) are randomly generated.
Given a sampled network, we not only test the number of colors and
the network throughput resulted by our various link scheduling al-
gorithms, but also count the number of messages and rounds used
by the distributed algorithms. The average of these performances
over all these 100 randomly sampled networks are reported. For
each source, we run the classical shortest path algorithm to deter-
mine the traffic route. Notice that our scheduling algorithms do
not rely on any particular routing algorithms, here the shortest path
routing is used as an example.

In the first scenario, we assume the system does not know the
volume of each traffic. So it is an unweighted case where we need
to assign one color for each link involved in the traffics. We test our
centralized and two distributed algorithms (Algorithm 1 [Cent], Al-
gorithm 3 [Dist-1], and Algorithm 4 [Dist-2]). The simulation re-
sults are reported in Figure 7. First, for the number of colors and the
throughput, three algorithms have similar performances. When the
node number increases, more colors are needed and the throughput
decreases. The centralized algorithm has the best throughput while
the fast distributed algorithm has the worst, as our expectation. For
both distributed algorithms we also count the number of messages
and rounds used. It shows that Dist-1 algorithm used much more
messages and rounds than Dist-2 (fast distributed algorithm). The
large number of rounds and messages needed by Dist-1 is due to
the first two steps in Algorithm 3, which collect all communication
links inHi andMi. The large number of rounds of Dist-1 is mainly
due to conflicts among messages for collecting information. Notice
that two adjacent links in the conflict graph need to compete for the
channel first. After a nodevi obtained the channel, it uses a unit of
time to assign colors to all links inHi and inform other interfering
links about the coloring used.
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Figure 7: Scheduling without traffic load information.

In the second scenario, we randomly draw the traffic produced
by each node from1 to 10 units. Then for each linkli,j , its weight
wi,j is the total volumes of traffics that need to go through it, which
could be0. The simulation results are given in Figure 8. The
throughput of weighted methods are much better than those of un-
weighted methods. Our centralized and distributed methods have
similar throughput.
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Figure 8: Scheduling with nonunform traffic load.

7. RELATED WORK
Scheduling has been studied extensively in the past few years

due to its application for assigning time slots in TDMA MAC pro-
tocols that eliminate collision, guarantee fairness. Scheduling can
be reduced to different coloring problems:edge coloringandvertex
coloring.

Edge coloring, in which every edge corresponds to a valid com-
munication link, is a natural way to capture the link scheduling
problem. An edge coloring isvalid if no two incident edges share

the same color. Vizing’s theorem [4] states that a valid edge color-
ing for anindirectedgraph can be obtained by using at most∆ + 1
colors, where∆ is the maximum node degree in the graph. On the
other hand, any edge coloring needs at least∆ colors. Any edge
coloring that usesΘ(∆) colors is close to the optimal. Panconesi
and Srinivasan [25] proposed a randomized distributed edge color-
ing method that uses at most2∆ + 1 colors.

To some extent, this captures some transmission restrictions in
wireless ad hoc and sensor network in which no node can receive
or send at the same time slot, but it did not address some other inter-
ferences such as secondary interference. When one has a valid edge
coloring, it can be easily mapped to a TDMA scheduling. How-
ever, it is possible that two communication links sharing the same
color still interfere with each other in a wireless network. In order
to remedy this, Gandhamet al. [10] proposed to use a two phase
scheduling method: in the first phase, a distributed valid edge col-
oring is obtained; in the second phase, a valid scheduling taken into
account the secondary interference is obtained. In essence, [10] is
based on the protocol interference model. The overall scheduling
in [10] only provided a performance guarantee when the conflict-
ing links form a tree. In [15], Jainet al. proposed a new concept
conflict graphthat captures the interference in a wireless networks.

Vertex coloring is one of the most fundamental NP-hard prob-
lems in graph theory and has been thoroughly studied. A vertex
coloring isvalid iff any two adjacent vertices receive different col-
ors. The minimum number that is needed for a valid vertex coloring
for a graphG is known as thechromatic numberχ(G). It is known
that for general graph, the chromatic number cannot be approxi-
mated withinn1−ε for any ε > 0, unless ZPP=NP [9]. For ver-
tex coloring of a general graphG, it was proved that, every graph
G can be colored usingδ(G) + 1 colors. Then Hochbaum [14]
presented a method to find the value ofδ(G) and colorG using
δ(G) + 1 colors in O(|V | + |E|) time. Ramanathan [26] pro-
posed a unified framework for TDMA, FDMA and CDMA based
multi-hop wireless networks. They also proposed a timeslot as-
signment to edges; the number of timeslots required is at most
O(θ) times the optimum, whereθ is the thickness of a graph,i.e.,
the minimum number of planar graphs into which the network can
be decomposed. Krumkeet al. [19] proposed efficient approxi-
mation algorithms for the distance-2 vertex coloring problem for
various geometric graphs including(r, s)-civilized graphs, planar
graphs, graphs with bounded genus, etc. In [20], Kumaret al. stud-
ied packet-scheduling under RTS/CTS interference model and gave
polylogarithmic/constant factor approximation algorithms for vari-
ous families of disk graphs and randomized near-optimal approxi-
mation algorithms for general graphs.

Several distributed algorithms that useO(∆) colors have been
proposed in literatures. A(∆ + 1)-coloring can be computed in
timeO(log n + ∆) [24] or O(∆ log n) [11]. In [22], Maracoet al.
proposed a distributed algorithm that computed anO(∆)-coloring
in time O(log n). All of the above distributed algorithms do not
take the interference into account and is based on the message pass-
ing model, which implies that the actual time used in a wireless
environment could be much larger [23]. Recently, Moscibrodaet
al. [23] proposed anO(∆) distributed coloring method with time-
complexityO(∆ log n). It is worth to point out that the coloring
in [23] considered a simple interference model and the time is close
to time needed in practice. However, the coloring in [23] is based
on the assumption that the wireless ad hoc network can be mod-
eled as a unit disk graph (UDG),i.e., their method will return a
coloring that only guarantees that any nodes that are adjacent in the
UDG will get different colors; nodes that are not adjacent in UDG
may get the same color. In addition, they assumed that all nodes



have the same transmission range and same interference range as
its transmission range. This is different from the interference-free
scheduling studied in this paper.

Kodialam and Nandagopal [16] studied the effect of interfer-
ence on the achievable rate region in multi-hop wireless networks.
They treated the interference models as linear constraints and solve
the flow problem using linear program. In [17], the same authors
considered the problem of jointly routing the flows and schedul-
ing transmissions to achieve a given rate vector using the proto-
col model of interference. They developed necessary and suffi-
cient conditions for the achievable rate vector. They formulated
the problem as a linear programming problem and implemented
primal-dual algorithms for solving the problem. The scheduling
problem is solved as a graph edge-coloring problem using existing
greedy algorithms. In [18], they extended their work to the multi-
radio multi-channel wireless mesh networks.

Kumar et al. [21] developed analytical performance evaluation
models and distributed algorithms for routing and scheduling which
incorporate fairness, energy and dilation (path-length) requirements
and provide a unified framework for utilizing the network close to
its maximum throughput capacity. Alicherryet al. [1] mathemati-
cally formulated the joint channel assignment and routing problem
in multi-radio mesh networks, and established necessary and suffi-
cient conditions under which interference free link communication
schedule can be obtained and designed an simple greedy algorithm
to compute such a schedule. Notice that the studied network in [1]
is restricted to be a UDG,i.e., the uniform interference range is as-
sumed to be a fixed multiple of the uniform communication range.

Recently, Chenet al. [5,6] also studied the cross-layer optimiza-
tion of congestion control and routing together with scheduling
problem under both primary and secondary interference.

8. CONCLUSION
In this paper, we considered the problem of obtaining a good

interference-aware link scheduling for a wireless network to max-
imize the throughput of the network. We used the link coloring to
resolve this and assumed a general model for wireless networks,
i.e., nodes could have different transmission ranges and different
interference ranges, and a linkuv may not exist even if‖uv‖ is less
than the transmission range of nodeu. We presented both central-
ized algorithms and efficient distributed algorithms that use time-
slots within a constant factor of the optimum. We also pointed out
that the simple link coloring does not imply a good throughput, and
then proposed a general weighted link coloring problem and gave
efficient algorithms to obtain TDMA link scheduling with proven
performances. We also conducted extensive simulations to study
the performances of our algorithms. Our theoretical results are cor-
roborated by our simulation studies.

There are still a number of challenging questions left for future
research. The first question is how to efficiently collect the infor-
mation about the interfering links of a given link in a wireless net-
working environment. This is not an issue in the previous studies
since they assumed a unit disk graph model and assumed the same
interference range for all nodes. The second question is how to
improve the overall time complexity of our distributed algorithms.
The results presented in [23] may give some insights on this but it is
not obvious because of the model used in this paper is more compli-
cated than the model used in [23]. We suspect the existence of poly-
logarithmic time distributed algorithms for problems studied in this
paper under the unstructured environment [23]. The third question
is to study the link scheduling in an asynchronized environment.
We believe that our methods still apply with small modifications.
The last but not the least question is to study the link scheduling in

a dynamic environment where the traffic load on links could have
some small changes.
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