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ABSTRACT
Information propagation in delay tolerant networks (DTN) is dif-
ficult due to the lack of continues connectivity. Most of previous
work put their focus on the information propagation in static net-
work. In this work, we examine two closely related problems on in-
formation propagation in predicable DTN. In particular, we assume
that during a certain time period, the interacting process among n-
odes is known a priori or can be predicted. The first problem is
to select a set of initial source nodes, subject to budget constraint,
in order to maximize the total weight of nodes that receive the in-
formation at the final stage. This problem is well-known influence
maximization problem which has been extensively studied for stat-
ic networks. The second problem we want to study is minimum
cost initial set problem, in this problem, we aim to select a set of
source nodes with minimum cost such that all the other nodes can
receive the information with high probability. We conduct exten-
sive experiments using 10, 000 users from real contact trace.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless communica-
tion, Network topology; G.2.2 [Graph Theory]: Network prob-
lems, Graph algorithms

General Terms
Algorithms, Design, Theory

Keywords
DTN, propagation, temporal, submodular.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
MobiHoc’13, July 29–August 1, 2013, Bangalore, India.
Copyright 2013 ACM 978-1-4503-2193-8/13/07 ...$15.00.

1. INTRODUCTION
Information propagation in delay tolerant networks (DTN) is d-

ifficult due to the lack of continues connectivity and unstable net-
work structure. Such dynamics are often ignored in most of previ-
ous works e.g., most researches put their focus on the information
propagation in static network [1] [2]. One simple way to model the
time dependent DTN is to represent it using a static graph, nodes in
the graph represent individuals, where we add an edge between any
two nodes if and only if they have been interacted or met during one
period. We may further assign certain weight to each edge to reflec-
t their interacting frequency, e.g., if two nodes meet each other m
times among n time slots, we will add an edge between them with
a probability (weight) m/n. Information propagation processes in
such static networks have already been well studied [1]. However,
this kind of static view fails to capture the network dynamics, that
is shown to be very critical to the information propagation prob-
lem. For example, assume that there are three nodes va, vb and
vc in DTN. Node va interacts with node vb at the first timestep,
and vb meets vc at the next timestep. When taking a static view
of this dynamic network, we may conclude that va and vc has the
same importance since they meet vb with the same frequency. It
turns out that the final results will be totally different by choosing
different one as the initial source node. In particular, if we select
va as the source node, both vb and vc have chance to receive the
information. In contrast, if we pick vc as the source node, neither
va nor vb has chance to get the information.

In this work, we study two closely related problems on informa-
tion propagation in predictable delay tolerant network (DTN). The
first problem is weighted influence maximization problem, we as-
sume that we are given a fixed set of nodes, and the interactions
that happen among nodes over a period of time T can be known a
priori or can be predicted. The objective is to select a subset of n-
odes as initial source nodes such that the total weight of nodes that
can successfully receive the information within a period is maxi-
mized. As shown in [1] [3], find an optimal solution is NP-Hard in
most existing models. We also study the minimum cost initial set
problem. Given a predictable DTN, we aim to select a set of initial
source nodes with minimum total cost such that all the nodes can
receive the information with high probability.

The rest of the paper is organized as follows. Section 2 briefly



review the related results. System model and problem formulation
are presented in Section 3. We study the weighted influence max-
imization problem in Section 4 and the minimum cost initial set
problem in Section 5. We report extensive experimental results in
Section 6 and conclude the paper in Section 7.

2. RELATED WORK
In many applications, data propagation in DTN is needed. Prop-

agation protocols (including multicast and broadcast protocols) al-
low sending data packets from a source to multiple receivers. They
are more effective, for data dissemination and multi-party commu-
nications, than unicast routing protocols. Chaintreau et al. [4] and
Chierichetti et al. [5] both studied simple gossip-based protocols
(including geographic and social gossip) to propagate information
in mobile social networks. Zhou et al. [6] proposed new semantic
multicast models for DTN multicast and developed several multi-
cast routing algorithms with different routing strategies. Recently,
Gao et al. [7] studied multicast in DTNs from the social network
perspective. Unweighted influence maximization in dynamic net-
works is studied in [8]. Similar problem is also studied in [9].

3. SYSTEM MODEL

3.1 Network Model
In this work, we represent the time-evolving DTN by a sequence

of static networks. Each static network represents the contact in-
formation among users at that timeslot. See Fig. 1 (a) (b) for illus-
tration. Here we highlight two important observations which can
be found in many kinds of social based DTNs (e.g., cell phone net-
work, bus-based disruption-tolerant network) [10] [11]: 1) nodes
usually interact with each other in a regular way instead of moving
randomly; 2) the interaction occurs among nodes can be predicted
with sufficient history information. We call these networks pre-
dictable DTN, and we mainly study the information propagation
problem on predictable DTN in this paper. Throughout this paper,
we assume that the information of the dynamic network within a
certain period can be pre-obtained through certain existed predic-
tion method or statistical analysis.

3.2 Information Propagation Model
We adopt Independent Cascade Model [1] [8] [12] [13] in this

work. Independent Cascade Model describes a spreading process
comprising of two sets of individuals, source node and non-source
node. In a predictable DTN, a source node v tries to send the in-
formation to each of its current neighbors with success probability
p(vw). If v succeeds in propagating information to w at timestep t,
then w will act as new source node in the following timesteps. If
v fails to transmit information to w at timestep t, v will try again
in the subsequent timesteps as long as they meet each other. This
process continues until timestep T , let ProgSet(S) denote the set
of nodes which received the information until T , corresponding to
the set of initial source nodes S. Let vt denote node v at timestep
t, and let V t denote all nodes at timestep t.

3.3 Discussion on Network Modeling
Remember that in our problem formulation, we assume that the

temporal contact pattern is known deterministically in advance. One
may challenge the practicability of this assumption e.g. the current
and future network topologies may not be predicted exactly. Ac-
tually, it will not affect the generality of our results even we take
the “uncertainty” associated with the contact pattern into consider-
ation. One way to resolve this issue is to regard the “uncertainty” as

(a) (b)

Figure 1: (a) illustrates the information propagation happens at
each timestep by selecting node 3 as the initial source node; (b)
describes the equivalent processing under the new constructed
graph G. As shown in (a), if we choose node 3 as the initial
source node, all of the nodes will receive the information (be-
come light) at last. Equivalently, all nodes in V T can be reached
by node 3 in G.

part of the success probability. For example, assume that the prob-
ability that nodes v1 and v2 contact each other during t and t + 1
is p, and the success probability in the original problem formula-
tion is p

(vt
1,v

t+1
2 )

. Then we can define a new success probability
as p × p

(vt
1,v

t+1
2 )

. By introducing the new success probability, we
can ensure the feasibility of our results even under uncertain con-
tact pattern. We may also formulate it as a robust optimization or
stochastic optimization formulation which is left as possible future
works.

4. WEIGHTED INFLUENCE MAXIMIZA-
TION PROBLEM

We first study the weighted influence maximization problem. We
assume that each node is associated with certain cost at which it can
be selected as initial source node. We are interested at finding a set
of initial source nodes, A, under the budget constraint such that the
total weight of the propagated set is maximized.

Let w(S) denote the the expected weight of the final propagated
set under the initial source nodes S, we can prove that w(S) is sub-
modular monotone and non-negative. Our problem can be tackled
by a simple greedy algorithm. We first compute two candidate sets
for A: The first candidate set A[1] contains a single node which can
maximize the expected total weight; the second candidate set A[2]

is computed by Hill Climbing Algorithm in which we always add
the node v that can maximize the expected incremental marginal
gain: w(A[2] ∪ {v}) − w(A[2])/c(v) until the budget constraint
is violated. Then we choose the better one as A. Based on [14]
and the submodularity of w(S), we can prove that this algorithm
achieves 1

2
· (1− 1

e
− ϵ) approximation.

5. MINIMUM COST INITIAL SET PROB-
LEM

In the previous sections, we mainly study how to select a set of
initial source nodes under limited budget such that the final prop-
agation range is maximized. We next study a symmetric problem:
Minimum Cost Initial Set Problem. In particular, given a pre-
dictable DTN, we aim to select a set of initial source nodes with
minimum total weight such that all the nodes can receive the in-
formation at last. We study this problem under both deterministic
model and probabilistic model. Note that when we study the prob-
lem under probabilistic model, we are interested at finding the set



of initial source nodes in order to let all the nodes receive the infor-
mation with high probability.

Deterministic Model: Under the deterministic model, we as-
sume that the success probability on each link is 1. Therefore, each
node is associated with a determined propagated set. Naturally, our
problem can be converted to a standard weighted set cover problem
where the ground set is composed of the nodes in VT , and each
node in V0 acts as a subset which can cover the nodes in its cor-
responding propagated set, and the classic greedy algorithm is a
lnn-approximate algorithm.

Probabilistic Model: We also studied this problem under the
probabilistic model. In the probabilistic model, the success prob-
ability on each link is some value in [0,1], we aim to select the
minimum cost initial source nodes such that the information can
be propagated to the whole network with high probability (e.g., the
probability is lower bounded by certain value). We propose several
heuristics to tackle this problem. In some scenarios, the hill climb-
ing greedy algorithm can achieve constant approximation ratio.

6. EXPERIMENT RESULTS
In this section, we conduct extensive experiments to evaluate the

performance of our algorithm.
The Network Data: A typical predictable DTN can be found

in university campuses, e.g., the National University of Singapore
(NUS) student contact trace model [15]. We download the sched-
ules of the 4,885 classes and enrollment of 22, 341 students for
each week of 77 class hours.

Information Propagation Model: We conduct extensive exper-
iments under three basic information propagation models. In the
first model, which is called uniformly setting, we assigned a unifor-
m success probability p to each edge of the graph, and for simplicity
we choose p = 10% in results reported here. In the second model,
which is called randomly setting we assign p to each edge random-
ly at uniform, choosing from 0% to 100%. In the third model,
which is called deterministic setting, we assigned the propagation
probability as 1 to each edge of the graph.

The Algorithms and Implementation: For the weighted influ-
ence maximization (WIM) problem, we implement a greedy algo-
rithm (HC Selection) that selects the initial source nodes one by one
such that the expected incremental marginal gain is maximized, un-
til the budget is violated. For the Minimum Cost Initial Set (MCIS)
problem, we modify the greedy algorithm to select the nodes one
by one until the influential probability for each node is met. We
compare our greedy algorithm with the following heuristics: 1).
Randomized Selection: for the WIM problem, we randomly select
the initial source nodes one by one until the budget constraint is
violated; for the MCIS problem, we randomly select the nodes one
by one until the influential probability for each node is met. We
run the experiment 1000 times and choose the average weight as
final results; 2). Top-k Selection: We first order all the nodes in
the decreasing order of |ProgSet(v)|. For the WIM problem, we
pick the nodes one by one in order until the budget is violated; and
for the MCIS case, we select the nodes in order until the influential
probability constraint is met. 3). Minimum Cost Selection: This
method is evaluated only for the WIM problem. We select the n-
odes one by one in the increasing order of their cost until the budget
is violated.

The Results: First we present the results of our algorithms un-
der the WIM problem settings. In this set of experiments, we com-
pare all above algorithms under weighted probabilistic model with
budget constraint. The network size is fixed to 10, 000 if not other
specified.

Fig. 2(a) and Fig. 2(b) demonstrate the comparison results un-

der the weighted probabilistic model, with p = 10% and random
p ∈ [0, 1] respectively. As shown in Fig. 2(a), when the budget is
relatively small, e.g. less than 100, there is no huge difference on
the performance among these four algorithms. However, as bud-
get goes to larger, our greedy algorithm performs much better than
the other three methods, e.g. with a budget over 700, the expected
weight of propagation set exceeds 10, 000 using greedy algorith-
m, the greedy algorithm outperforms the other heuristics by 30%.
Fig. 2(b) tell us similar results, there is no huge difference among
different algorithms when the budget is small, when the budget be-
comes larger and larger, the greedy algorithm outperforms the other
heuristics by up to 30%. Remember that in the Top-k Selection, we
choose the nodes which can perform best individually. The experi-
mental results show that the performance of this algorithm is almost
the worst. This basically tells us that significantly better marketing
results can be obtained by explicitly considering the dynamics of
information in a network, rather than relying solely on some prop-
erties of single node.

Furthermore, we present the results of our algorithms under the
MCIS problem settings. We compare three algorithms: greedy al-
gorithm, Top-k Selection and Random Selection. For random al-
gorithm, the result is averaged over 1, 000 experiments. Fig. 2(c)
shows the results under the weighted deterministic model where
propagation probability of each link is set to be 1. We plot the cost
of the initial node set such that all the nodes receive the informa-
tion with at least a certain probability (influential probability). As
shown in the figure, when the influential probability is low, there
is no significant difference observed among the three algorithms.
However, as the influential probability increases, the greedy algo-
rithm outperforms the other two algorithms. Moreover, we evaluate
the performance of the algorithms under the weighted probabilistic
model. The results in Fig. 2(d) and Fig. 2(e) compare the algo-
rithms with p = 10%. Fig. 2(d) shows that the cost of initial node
set increases as the influential probability increases, and that the
greedy algorithm achieves the lowest initial cost. Then we fix the
influential probability to 90% and vary the number of nodes and
the results are shown in Fig. 2(e). Again, the greedy algorithm per-
forms the best. At last, we fix the influential probability to 90%
and evaluate the performance of the algorithms under varied prop-
agation probability p. As shown in Fig. 2(f) the greedy algorithm
achieves the lowest initial cost and outperforms the other two algo-
rithms in all cases.

7. CONCLUSION
We studied several information propagation problems in DTN by

exploring the temporal information of the intermittent connections.
There are a number of interesting problems left for future research.
One problem is to design practically efficient methods when we
know that the DTN network is some random network, instead of
being an arbitrary network. For example, the network structure at
every timestep could be a graph with power-law, while the graphs
of different timesteps are independent.
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Figure 2: Performance evaluation under weighted probabilistic model and deterministic model.
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