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ABSTRACT
We study the multicast capacity of a random wireless network con-
sisting of ordinary wireless nodes and base stations, known as a hy-
brid network. Assume that n ordinary wireless nodes are randomly
deployed in a square region and all nodes have the uniform trans-
mission range r and uniform interference range R > r. We further
assume that each ordinary wireless node can transmit/receive at W
bits/second over a common wireless channel. In addition, there
are m additional base stations (neither source nodes nor receiver
nodes) placed regularly in this square region and connected by a
high-bandwidth wired network. For each ordinary node v, we ran-
domly pick k− 1 nodes from the other n− 1 ordinary nodes as the
receivers of the multicast session rooted at node v. The aggregated
multicast capacity is defined as the total data rate of all multicast
sessions in this hybrid network.

We derive asymptotic upper bounds and lower bounds on mul-
ticast capacity of the hybrid wireless networks. The total multi-
cast capacity is O(

√
n√

log n
·
√

m
k
· W ) when k = O( n

log n
), k =

O(m), k√
m
→ ∞ and m = o(a2

r2 ); the total multicast capacity

is Θ(
√

n√
log n

· W√
k
) when k = O( n

log n
), k = Ω(m) and m

k
→ 0.

When k = O( n
log n

) and k = O(
√

m), the upper bound for the
minimum multicast capacity is at most O( r·n

a
· √m · W

k
) and is

at least Ω(W ) respectively. When k = Ω( n
log n

), the multicast
capacity is Θ(W ).
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1. INTRODUCTION
The capacity has been widely studied for different types of wire-

less networks, like ad hoc wireless networks, cellular networks, etc.
The main purpose of this paper is to study the multicast capacity
of hybrid wireless networks when we choose the best protocols for
all layers. A hybrid wireless network consists of two types of net-
work terminals: base stations and wireless nodes. We assume that
all base stations are equipped with wireless network interface cards
such that they can communicate with wireless nodes nearby; We
further assume that a base station is neither a data source nor a data
receiver, it simply serves as a relaying communication gateway.

Basically, there are two different routing strategies in the hybrid
wireless network. The first case is that when a source node and
some of its receiver nodes fall in the same subregion, the source
node will try to reach these receivers by the multicast tree (may
need some relay nodes) inside the subregion. Otherwise, the source
node will try to reach the closest base station first through one- or
multi-hop, and then the latter will relay the data to other base sta-
tions which are closest to those receivers outside the subregion. At
last, each of these base stations carrying the data will act as a root
of a multicast tree to relay the data to receivers by one- or multi-
hop (may need other relaying wireless nodes). We simply call this
routing strategy as pure hybrid routing. On the other hand, with the
increasing number of source nodes inside one subregion, if most of
source nodes have some receivers outside the subregion, the base
stations may have much burden to relay data, thus become bottle-
necks. In this case, the wireless source nodes switch to use glob-
ally multicast trees to send data to their receivers rather than using
base stations. This approach has the same capacity as the ad-hoc
wireless network. We call this routing strategy as pure ad hoc rout-
ing. Thus, a hybrid wireless network actually presents a tradeoff
by combining a traditional BS-oriented network with a pure ad hoc
wireless network.

As in the literature, we mainly consider several types of networks
based on the node density and deployment patterns of the base sta-
tions. We study the capacity of a given hybrid wireless network
where the nodes’ positions are given a priori, and how the capacity
of a hybrid wireless network scales with the number of nodes or
with the number of base stations in the network when given a fixed
deployment region, or scales with the size of the deployment region
for multicast when given a fixed deployment density. We assume



that a set of n wireless nodes are randomly distributed in a square
region with side length a. In addition, a set of m base stations are
regularly distributed in this region. For most results presented in
this paper, we assume that the deployment region is selected such
that the resultant network will be connected with high probability.

The results derived under this model also imply the same results
for the dense model, when n nodes are distributed in a fixed region
(such as a unit square by a proper scaling) and the uniform trans-
mission range of all nodes is selected as the critical transmission
range to get a connected network with high probability (from now
on we abbreviate with high probability to w.h.p.).

For all randomly distributed n nodes, each node vi has randomly
chosen k− 1 destination nodes from other n− 1 wireless nodes, to
which it wishes to send data at an arbitrary data rate λi. The mul-
ticast capacity of a random network is defined as

∑n
i=1 λi when

there is a schedule of transmissions so that all multicast flows will
be received by their destination nodes successfully.

We assume that each wireless node can transmit at W bits/second
over a common wireless channel. For presentation simplicity, we
assume that there is only one channel in the hybrid wireless net-
works. As always, we assume that a wireless node has enough
memory to buffer all the packets it generated or relayed for others
such that no packets will be lost through transmission. We leave it
as future work to study the scenario in which the buffers of inter-
mediate nodes are bounded by some values. For most of the results
presented here, the delay of the routing is not considered, i.e., the
delay in the worst case could be arbitrarily large for some results.

Our Main Contributions: In this paper we derive analytical
upper bounds and lower bounds on multicast capacity of a hybrid
wireless network, in which base stations are distributed regularly
in a grid. Assume that the deployment region and the transmission
range r are selected 1 such that the network is connected w.h.p.
We show that when base stations are distributed regularly, the ag-
gregated multicast capacity of n multicast sessions is

Λk(n) =





O(
√

n√
log n

·
√

m
k
·W ) when k = O( n

log n
)

and k = O(m),

Θ(
√

n√
log n

· 1√
k
·W ) when k = O( n

log n
)

and k = Ω(m),

Θ( r·n
a

√
m
k
·W ) when k = O( n

log n
)

and k = o(
√

m),

Θ(W ) when k = Ω( n
log n

)

(1)

Consequently, the per-flow multicast capacity (with k − 1 re-
ceivers per source node) is the aggregated multicast capacity di-
vided by n.

When the transmission range r is arbitrary and the side length of
the deployment region is a, which is no more than the critical side
length for getting a connected wireless network w.h.p., we have the
following results: When base stations are regularly distributed, the
aggregated multicast capacity of n multicast sessions is

Λk(n) =





O(a
r
·
√

m
k
·W ) when k = O(a2

r2 )

and k = O(m),

Θ(a
r
· 1√

k
·W ) when k = O(a2

r2 )

and k = Ω(m),

Θ( r·n
a

√
m
k
·W ) when k = O(a2

r2 )

and k = o(
√

m),

Θ(W ) when k = Ω(a2

r2 )

(2)

1We give the sufficient conditions for having a connected hybrid
wireless network in section 3.

The rest of the paper is organized as follows. In Section 2 we
discuss in detail the network model used. We present an upper
bound on the side length a (the critical side length which leads to a
connected hybrid wireless network w.h.p.) in Section 3. In Section
4 and 5 we present upper-bounds and lower-bounds respectively on
multicast capacity for the hybrid wireless networks. We review the
related results on network capacities in Section 6 and conclude the
paper in Section 7.

2. NETWORK MODEL
We assume that there is a set V = {v1, v2, · · · , vn} of n ordi-

nary wireless terminals randomly deployed in a square region Ω,
with side length a. Each wireless node has a transmission range r
such that nodes vi and vj can communicate successfully iff the Eu-
clidean distance |vi − vj | ≤ r. We further assume that there are m
base stations (with wireless transmission range r) Z = {z1, z2, · · · , zm}
regularly placed in the region Ω. For example, the base stations are
placed regularly at positions ( a

2
√

m
+ i a√

m
, a

2
√

m
+ j a√

m
) with

0 ≤ i ≤ √
m− 1, and 0 ≤ j ≤ √

m− 1.
Clearly, these m regularly distributed base stations divide the

original square region into m subregions as Voronoi diagrams with
side length a√

m
. Here we generally assume that m is a square of

some integer for simplicity, and use Si to denote the subregion cen-
tered at the base station zi. We further assume that m = O(a2

r2 )
throughout the whole paper because of the following observation
that when the number of base stations m is no less than a2

r2 , basi-
cally, the union of transmission range of m base stations will cover
all wireless nodes, thus a hybrid wireless network will act as a cel-
lular network.

The complete communication graph is a graph G = (V ∪Z, E),
where V = {v1, v2, · · · , vn} and Z = {z1, z2, · · · , zm} and E is
the set of all possible communication links uv where both u and v
belong to V or at most one of u and v belongs to Z. In this paper,
we mainly assume that the transmission range r is fixed and thus
normalized to one unit throughout the paper. Under this assump-
tion, the deployment region Ω will be a function of n.

In wireless networks, to schedule two links at the same time slot,
we must ensure that the schedule avoids interference. In this paper,
we mainly focus on the protocol interference model introduced in
[6]. We assume that each node vi has a fixed interference range
R = Θ(r). Under the protocol interference model, any node vj

will be interfered by the signal from vk if ‖vk − vj‖ ≤ R where
node vk is sending signal to some node other than vj .

Capacity Definition: We give the formal definition of capacity
in our model (also used in [10]).

DEFINITION 1 (FEASIBLE RATE VECTOR). A multicast rate
vector λ = (λ1, λ2, · · · , λn−1, λn) bits/sec is feasible if there is
a spatial and temporal scheme for scheduling transmissions such
that by operating the network in a multi-hop fashion and buffering
at intermediate nodes when awaiting transmission, every node vi

can send λi bits/sec average to its chosen k− 1 destination nodes.
That is, there is a T < ∞ such that in every time interval (with unit
seconds) [(i − 1) · T, i · T ], every node can send T · λi bits to its
corresponding k − 1 receivers.

DEFINITION 2 (THROUGHPUT CAPACITY). An aggregated mul-
ticast throughput Λk(n) bits/sec is feasible for multicast (each ses-
sion with k nodes) if there is a rate vector λ = (λ1, λ2, · · · , λn−1, λn)
that is feasible and Λk(n) =

∑n
i=1 λi. Similarly, we say λk(n) =∑n

i=1 λi

ns
is a feasible per-flow multicast throughput capacity with

ns multicast sessions.



DEFINITION 3 (CAPACITY OF RANDOM NETWORKS). We say
that the multicast capacity per flow of a class of random networks is
of order Θ(f(n)) bits/sec if there are deterministic constants c > 0
and c < c′ < +∞ such that

lim
n→∞

Pr (λk(n) = cf(n) is feasible) = 1

lim inf
n→∞

Pr
(
λk(n) = c′f(n) is feasible

)
< 1

The aggregated multicast capacity of a class of random networks is
defined similarly.

NOTATIONS: Throughout this paper, for a continuous region Ω, we
use |Ω| to denote its area; for a discrete set S, we use |S| to denote
its cardinality; for a tree T , we use |T | to denote its total Euclidean
edge length; x → ∞ denotes that variable x takes value to in-
finity. In addition, for simplicity we use Nn,m,a to denote a hybrid
wireless network in which there are n wireless nodes randomly and
uniformly distributed in the 2-dimensional unit square Ω with side
length a, and m base stations are regularly distributed in Ω.

3. THE UPPER-BOUND ON THE SIDE
LENGTH A

We first study the asymptotic upper-bound on the side length
a for both routing strategies such that the resultant network G =
(V ∪ Z, E) is connected with probability going to 1 as n goes to
infinity.

According to the pure ad hoc routing strategy, we know that if
there are n nodes, each with transmission range r, randomly and
uniformly deployed in a square region of side length a, the resulting
network will be connected with probability at least ee−β

when a
r
≤√

nπ
log n+β

for β →∞ from the result of [10].

Next, we show the upper bound of the side length a when pure
hybrid routing is used. Obviously, when the base stations are used
in the communications, the whole network is connected iff all nodes
(including the base station) falling in each subregion form a con-
nected subnetwork. Let ni denote the number of nodes falling in
subregion Si (including zi) and Mi be the length of longest edge
of the Euclidean minimum spanning tree of nodes in Si. For a set
of nodes, the critical transmitting range (CTR) for connectivity is
always the length of the longest edge of the Euclidean minimum
spanning tree (EMST) of this set of nodes. Based on the assump-
tion that m = o(a2

r2 ), we show the following lemma first:

LEMMA 1. There is a sequence of δ(n) → 0 such that
Pr

(∀i : ni ≥ Θ( n
m

)
)

> 1 − δ(n) when m = O( n
log n

). Here
1 ≤ i ≤ m.

PROOF. Let C be the class of axis-aligned squares of side-length
a√
m

. Notice that the probability that a node falls in such a square
is 1

m
. In addition, we know the VC-dimension of C is 3 from the

result in [10]. Hence, for any subregion S, by VC-Theorem,

Pr
(

sup
S∈C

|# of nodes in S

n
− 1

m
| ≤ ε(n)

)
> 1− δ(n)

whenever n ≥ max{ 32

ε(n)
· log

13

ε(n)
,

4

ε(n)
log

2

δ(n)
}

This condition is satisfied when ε(n) = 1
2m

, δ(n) = 2
n

. Thus

Pr
(

sup
S∈C

{# of nodes in S ≥ n

2m
}
)

> 1− 2

n
.

Hence, Pr
(∀i : ni ≥ Θ( n

m
)
)

> 1− 2
n

.

THEOREM 2. Assume in hybrid wireless network Nn,m,a, each
node has transmission range r. When a

r
≤

√
cnπ

log(c n
m

)+β
for

β → ∞, the resulting network G = (V ∪ Z, E) is connected
with probability at least 1

ee−β , which goes to 1 if β →∞.

PROOF. According to the result of [10, 12], we know for any β,

lim
ni→∞

Pr

(
niπ · (Mni,a,m

a√
m

)2 − log ni ≤ β

)
=

1

ee−β
.

Let ni be the number of points distributed uniformly at random
in the 2-dimensional square with side length a√

m
, and Mni,a,m

be the random variable denoting the length of the longest edge of
EMST built on this set of ni nodes. Assume ni = c · n

m
for some

constant c from Lemma 1, then with probability 1

ee−β , the longest

edge length Mni,a,m is at most
√

β+log(c n
m

)

cnπ
·a. Thus, when β →

∞ and a ≤
√

cnπ
log(c n

m
)+β

· r, we know that the longest edge of

EMST has length at most r almost surely. For example, we can set
a = r

√
cn

log n
where β = (π − 1) log n + log m

c
.

4. UPPER BOUNDS ON MULTICAST CA-
PACITY

4.1 When k = O(m) and k ≥
√

8m ln n

In this section, we first study the multicast capacity of the hy-
brid wireless network when the number of receivers k = O(m)
which is at most O(a2/r2). For each source node vi, when we
multicast the data from vi to all its k − 1 receivers in node set
Ui = {vi1 , vi2 , · · · , vik−1}, the resulting multicast tree will con-
tain at least k nodes. More possibly, when a non-leaf node vj in the
multicast tree sends data to its children, all nodes within its trans-
mission range will receive the data or at least they cannot transmit
simultaneously. In this case, we say all these nodes are charged a
copy of the data. Generally, let C be the number of nodes that will
get a copy of the data when k − 1 receivers are randomly selected
for each possible source node v, the total multicast capacity is at
most, w.h.p., n·W

C
.

The rest of the subsection is devoted to give a better lower bound
on C, thus get a tighter upper bound of multicast capacity of the
hybrid wireless network. For simplicity, hereafter when we say k
receivers, we mean that one source node pluses all its k − 1 re-
ceivers.

Assume k receivers are randomly distributed in the square region
with side length a, which is regularly divided by m base stations,
we show that the length of resulting multicast tree (or say forest)
has some lower bound.

LEMMA 3. Assume s is the number of subregions which con-
tain at least one of k receivers, then s = Θ(k) with high probabil-
ity when k ≥

√
8m ln n.

PROOF. Let yj = {0, 1} be an indicator denoting whether sub-
region Sj contains at least one receiver. Clearly, s =

∑j=m
j=1 yj

and the expected value E(s) of s is

E(s) = m(1− (1− 1

m
)k) ≥ m(1− e−

k
m ) ≥ m

k

2m
=

k

2

because Pr (yj = 1) = 1− (1− 1
m

)k.



Consequently, according to Binomial Distribution, we have

Pr
(

s ≤ k

4

)
≤ e

−2(E(s)−b)2

m ≤ e−2( k
2− k

4 )2 = e−
k2
8m → 0

So, s ≥ k
4

with a probability ≥ 1 − e−
k2
8m ≥ 1 − 1

n
, and we also

know s is at most k. Thus s = Θ(k) with probability at least 1− 1
n

.
We assume s = c0k for some constant c0.

LEMMA 4. Assume Si is a subregion containing at least one of
k receivers, then the expected length Li between the base station
and one receiver is c1 · a√

m
, here π

12
< c1 <

√
2π
6

.

PROOF. Assume the node is u and the base station is zi. Thus
the expected length E(Li) = E(||uzi||). Then, E(||uzi||) >
∫ a

2
√

m

0
2πr

( a√
m

)2
· r dr. So E(||uzi||) > π

12
· a√

m
. On the other

hand, we have E(||uzi||) <
∫ a√

2m
0

2πr
( a√

m
)2
· r dr. So E(||uzi||) <

√
2π
6
· a√

m
. This finishes the proof.

Next, we show the bound of total length of the multicast tree
(forest) T spanning all k − 1 receivers for source node v.

LEMMA 5. In hybrid wireless network Nn,m,a, for the source
node v, we randomly pick k− 1 nodes from remaining n− 1 nodes
as receivers of v. Then, the total length L of the multicast tree
T spanning these k nodes is at least c1·c0

2
( a√

m
) · k and at most

3c1·c0
2

( a√
m

) · k w.h.p.

PROOF. Let Li denote the length of subtree for connecting all
receivers in subregion Si. Then the total length L of multicast tree
consisting of these subtrees satisfies E(L) = E(

∑i=m
i=1 Li) ≥

c1
a√
m
· s from Lemma 4. Here, s is the number of subregions

which contain at least one receiver. Clearly, for some constant c2,

Var(L) = Var(

i=m∑
i=1

Li) ≤ c2(
a√
m

)2s

From Pr (L− E(L) ≥ A) ≤ Var(L)

A2 , we have

Pr
(
|L− c1

a√
m

s| > c1

2

a√
m

s

)
≤

c2(
a√
m

)2s

c21
4

( a√
m

)2s2
=

4c2

c2
1

1

s
→ 0.

Thus, we have

Pr
(

c1c0

2
(

a√
m

)k ≤ L ≤ 3c1c0

2
(

a√
m

)k

)
= 1− 4c2

c2
1 · c0

1

k
→ 1

when k goes to ∞. Here s = c0k for some constant c0 from
Lemma 3.

For each source node v, assume Ti is the tree spanning all re-
ceivers falling into subregion Si, then multicast tree (forest) T
is the union of all such sub-multicast trees, i.e., T = ∪m

i=qTi.
Given the length |T | of multicast tree (forest) T spanning k nodes,
we know the lower-bound on the number of nodes (including leaf
nodes) C in T is at least |T |

r
.

Actually we know that when nodes on the multicast tree relay
data from the source node to all receivers, not only their down-
stream nodes that will get a copy of data, but all their neighboring
nodes will get one copy of the data. We then give a tighter bound
for C by analyzing the number of nodes which will get a copy of
data.

Given a multicast tree (forest) T , let |D(T )| denote the region
covered by all transmitting disks of all transmitting nodes (internal

nodes of T), we first prove that |D(T )| is at least
c2·k· a√

m
·r

c0
w.h.p.

LEMMA 6. The area of the region D(T ), denoted by |D(T )|,
w.h.p., is at least

c2·k· a√
m
·r

c0
when the number of receivers k <

θ1 · a2

r2 for some constant θ1.
PROOF. For any multicast tree T spanning all k receivers, we

can use the similar methods as in [10] to build a connected domi-
nate set (CDS), and make sure the source node and all base stations
needed will be selected into the CDS, and construct a multicast tree
T ′ which is rooted at the source node s by a simple breadth-first-
search computed from the CDS.

Based on Lemma 6, we show the following lemma:

LEMMA 7. With high probability, the number C of nodes that
get a copy of the multicast data is > c2·k·r·n

2c0
√

ma
when k√

m
→∞.

PROOF. Consider a multicast tree T . Let Xi = {0, 1} be an
indicator variable denoting whether the ith node vi falls inside the
region D(T ) for a multicast tree T . Thus, Pr (Xi = 1) = |D(T )|

a2 .

Recall that, we already proved that |D(T )| ≥ c2·k· a√
m
·r

c0
w.h.p..

Thus, we have

Pr (Xi = 1) ≥ c2 · k · r
c0
√

ma

Clearly, X =
∑n

i=1 Xi is the expected number of nodes falling
inside the region D(T ), which is also the number C of nodes that
will get a copy of the data by multicast. Then E(X) ≥ c2·k·r·n

c0
√

ma
.

From the Hoeffding’s inequality, Pr (X ≤ b) ≤ e
−2(n·p−b)2

n ,
where constant 0 < b ≤ n · p. By letting b = n · |D(T )|

2a2 , we have

Pr
(

C ≤ n · |D(T )|
2a2

)
≤ e

−n·(c2)2·k2·r2

2(c0)2·m·a2 ≤ e
− (c2)2·k2·log n

2πc20·m

The last formula is = 1

n

(c2)2·k2

2πc20·m
, will go to 0 when n goes to∞ and

k√
m
→ ∞. Thus, from Lemma 6, when n → ∞ and k√

m
→ ∞,

we have Pr
(
C > c2·r·k·n

2c0·
√

m·a

)
≥ Pr

(
C > n · D(T )

2a2

)
→ 1.

THEOREM 8. The multicast capacity with k − 1 receivers for
each source node of n nodes in hybrid wireless network Nn,m,a, is
at most c3 · a

r
· W

k
·√m for some constant c3 when k = O(m) and

k =
√

Ω(m ln n).

PROOF. Notice that the multicast capacity is at most nW
C

and
C ≥ c2·r·k·n

2c0·
√

m·a w.h.p. when k < θ1 · a2/r2. Thus, the multicast
capacity Λk(n) is at most

nW · 2c0
√

ma

c2 · r · k · n = c3 · a

r
· W

k
· √m

for a constant c3 = 2c0
c2

. This finishes the proof.

To guarantee that we have a connected network w.h.p., we need
a ≤ r

√
nπ

log(c· n
m

)+β
for β → ∞. Thus, if m = o(

√
n) and we let

γ = c3
√

π, we have the following corollary:

COROLLARY 9. The multicast capacity for a random hybrid
wireless network Nn,m,a, when k = O(m) and k =

√
Ω(m ln n),

is at most

Λk(n) ≤ γ ·
√

n√
log n ·

√
k
·W = O(

√
n√

log n
·
√

m

k
·W ).

Consequently, the multicast capacity per flow is

λk(n) =
Λk(n)

n
= O(

1√
n log n

·
√

m

k
·W ).



4.2 When k = O(a2/r2) and m
k
→ 0

In this subsection, we give an upper bound on the multicast ca-
pacity when the number of base stations is much smaller than the
number of receivers.

LEMMA 10. When the number of receivers k = O(a2

r2 ) and
k
m
→ ∞, the number of subregions which contain at least one

receiver is bigger than c4·m with probability at least 1−e−(2c4)2·m

which goes to 1 when m → ∞, here c4 is a constant which is less
than 1.

PROOF. The proof procedure is similar as that of Lemma 3.

In addition, we assume that the subregion Si contains ki re-
ceivers. Clearly, we have k =

∑i=m
i=1 ki. According to the result

in [10], we know that the expected length of spanning tree Li cov-
ering ki potential receivers in a subregion with length a√

m
satisfies

Li ≥ τ a√
m

√
ki when ki → ∞. Here τ is a constant. Next, we

prove that the Euclidean length of multicast tree T has a bigger
lower bound.

LEMMA 11. The total length L of the multicast tree (forest) T
which spans all k receivers among all m subregions is at least δ2 ·
a ·
√

k, when k = O(a2/r2), k = Ω(m) and m
k
→ 0, here δ2 is a

constant.

PROOF. For any subregion Si which contains at least one re-
ceiver, we let qij ∈ {0, 1} be an indicator variable denoting whether
the jth receiver will fall inside Si, here 1 ≤ i ≤ m and 1 ≤ j ≤ k.
Hence, ki =

∑j=k
j=1 qij is the number of receivers falling inside the

subregion Si.
Clearly, Var(qij) = 1

m
(1− 1

m
), then

Var(ki) =

j=k∑
j=1

Var(qij) =
k

m
(1− 1

m
)

From Chebyshev’s Inequality, we have

Pr (|ki − E(ki)| > δE(ki)) ≤ Var(ki)

δ2E(ki)2
= δ

m− 1

k
→ 0

because m
k
→ 0 and E(ki) = k

m
. Here δ is a constant. Thus,

(1− δ)
k

m
< ki < (1 + δ)

k

m

with probability at least 1−δ·m−1
k

, which goes to 1 when k
m
→∞.

Thus, the length of multicast tree T , L =
∑m

i=1 Li satisfies

L ≥ τ
a√
m

√
(1− δ)

k

m
× c4m

with probability (1 − δ m−1
k

) · (1 − e−(2c4)2·m), which goes to 1

when k
m
→ ∞ and m → ∞. By letting δ2 = c4τ

√
1− δ, we

finish the proof.

LEMMA 12. The total area covered by tree T is at least c7 ·
√

k·
a · r, here c7 is a constant, when k = O(a2/r2) and k = Ω(m),
m
k
→ 0.

PROOF. Assume |D(Ti)| denotes the area covered by all trans-
mitting disks of all transmitting nodes (internal nodes) in the multi-
cast tree Ti. As shown before, Li ≥ τ a√

m

√
ki and (1−δ) k

m
< ki,

then based on the proof of Lemma 6, we get

|D(Ti)| >
τ
√

(1− δ) k
m

a√
m

r

c0

Consider one subregion Si, it has at most 8 neighbor subregions.
So the area covered by the tree Ti in the subregion Si overlapping
with other subregions (possibly 4 rectangles with area r · a√

m
and

4 sectors with radius r), is at most 4 a√
m
·r+4π ·r2. From Lemma

3, the total area of the multicast tree (forest) T satisfies:

|D(T )| ≥ c4 ·m · |D(Ti)| − (4
a√
m
· r + 4π · r2) ·m

≥ c4 · τ ·
√

1− δ ·
√

k · a · r
c0

We finish the proof by letting c7 = c4·τ ·
√

1−δ
c0

.

Consequently we have the following lemma.

LEMMA 13. The number C of nodes that get a copy of the mul-
ticast data satisfies C ≥ c7·

√
k·r·n

2a
w.h.p. when n and k go to

∞.

PROOF. Let Xj = {0, 1} be an indicator variable denoting
whether the jth node vj will fall inside the region D(T ) for a
multicast tree T . Clearly, we have Pr (Xj = 1) = |D(T )|

a2 ≥
c7·
√

k·r
a

from Lemma 12. Thus, the expected number of node X =∑n
j=1 Xj falling into |D(T )| is

E(X) ≥ c7 ·
√

k · r · n
a

According to the Hoeffding’s inequality and by letting b = n ·
|D(T )|

2a2 , we have

Pr
(

C ≤ n · |D(T )|
2a2

)
≤ e

−2
(

n· |D(T )|
a2 −n· |D(T )|

2a2

)2

n

≤ e
− c27·k·n·r2

2a2 ≤ e
− c27·k·log n

2a2 =
1

n
c27·k

2

→ 0

when both n and k go to ∞. The last inequality comes from that
a ≤ r

√
nπ

log c· n
m

+β
. Thus, Pr

(
C ≥ c7·

√
k·r·n

2a

)
→ 1 when n and

k go to ∞. This finishes the proof.

Finally, through Theorem 8 and Corollary 9, we have the follow-
ing results:

THEOREM 14. The multicast capacity with k − 1 receivers for
each source node of n nodes in hybrid wireless network Nn,m,a, is
at most 2aW

c7·r
√

k
for some constant c7 when k = O(a2/r2) and m

k

→ 0.

The theorem follows the following observation. Clearly, Λk(n) is
at most

n ·W
C

≤ 2nW · a
c7 · r

√
k · n =

2aW

c7 · r
√

k
.

Or we use the other formula to the multicast capacity as

Λk(n) = O(

√
n√

log n ·
√

k
·W ).

Consequently, the multicast capacity per flow is

λk(n) =
Λk(n)

n
= O(

1√
n log n ·

√
k
·W )



4.3 When k = o(
√

m)

Clearly, when k = o(
√

m), the expected number of subregions
which contain at least one receiver, E(s) = k w.h.p. from Lemma
3.

LEMMA 15. When k = o(
√

m) and m → ∞, for any subre-
gion Si which contains at least one receiver, Si contains exactly
one receiver with high probability.

PROOF. ∀ Si, assume ki is the number of receivers in Si, then
the probability for Si containing at least one receiver is

Pr (ki ≥ 1) = 1− (1− 1

m
)k

In addition, the probability for Si containing at least two receivers
is

Pr (ki ≥ 2) = 1− (1− 1

m
)k − k · (1− 1

m
)k−1 · 1

m

Then for any subregion Si which contains at least one receiver, the
probability for Si containing at least two receivers is

Pr (ki ≥ 2|ki ≥ 1) = 1−
k
m

(1− 1
m

)k−1

1− (1− 1
m

)k

In addition, we know when m → ∞ and k
m
→ 0 from k =

o(
√

m). Assume x = k
m

, so we have

lim
k
m
→0 and m→∞

k
m

(1− 1
m

)k−1

1− (1− 1
m

)k
= lim

x→0 and m→∞

x · 1
1− 1

m

· e−x

1− e−x

= lim
x→0

1− x = 1

So, when k
m
→ 0 and m → ∞, Pr (ki ≥ 2|ki ≥ 1) goes to 0. This

finishes proof.

We then prove the lower bound of the length of multicast tree
(forest) T of source node v by the following lemma.

LEMMA 16. For any source node v, the length of multicast tree
(forest) T which spans all k receivers of v is at least c3·a·k

2
√

m
with

probability at least 1 − π
2·k , which goes to 1 when k → ∞ and

k = O(a2

r2 ) and k = o(
√

m).

PROOF. For any source node v, we know that there are k sub-
regions containing one of k receivers w.h.p. from Lemma 15. As-

sume L =
∑k

i=1 Li

k
which denotes the mean of the total Euclidean

length for all k pairs of base stations/receivers. Then according to
the Weak Law of Large numbers,

Pr
(|L− µ| < ε

) ≥ 1− δ2

k · ε2
By letting µ be the expected value of E(Li) (E(Li) = c3

a√
m

by
Lemma 4) and letting ε = 1

2
E(Li) we have

Pr
(
|L− E(Li)| < 1

2
E(Li)

)
≥ 1− δ2

k · ( 1
2
E(Li))2

≥ 1−
π
8
· c2

3(
a√
m

)2

k · 1
4
c2
3(

a√
m

)2
= 1− π

2 · k

which goes to 1 when k → ∞. Here, δ2 = V ar(Li) = E(L2
i )−

E2(Li) thus is less than
∫ a√

2m

0

2πr

( a√
m

)2
· r2 dr − (c3

a√
m

)2 = (
π

8
− c2

3)(
a√
m

)2

from Lemma 4. So, we know the total Euclidean length L =∑k
i=1 Li satisfies

c3 · a · k
2
√

m
< L <

3c3 · a · k
2
√

m
(3)

w.h.p. This finishes proof.

Hence, the total expected number of nodes Cj (existing on the
tree Tj) which receives one copy of data from source vj satisfies

Cj ≥ |Tj |
r

≥ c3

2

a√
m · r · k

w.h.p. Thus we have the following theorem;

THEOREM 17. The multicast capacity for hybrid wireless net-
work Nn,m,a is at most 2

c3

r·n
a

√
m
k
·W when k = o(

√
m).

PROOF. As we know, for ns source nodes and each of them can
transmit data by rate at most W bits/sec, the total bits transmit-
ted through the network per second cannot exceed ns · W , thus∑ns

j=1 λj · Cj ≤ ns ·W . Hence,

ns∑
j=1

λj ≤ ns ·W
c3
2

a√
m·r · k

=
2

c3

r · ns

a

√
m

k
·W

when the number of source node is equal to n.

4.4 When k = Ω( a2

r2 )

In [10], Li has proved that when k = Ω(a2

r2 ), the union of the
transmission disks of these k receiver nodes in a multicast will
cover at least a constant fraction, say 0 < ρ2 ≤ 1, of the deploy-
ment region. Thus the capacity of hybrid wireless network will
approximately be equal to the broadcast capacity. So we have the
following theorem:

THEOREM 18. When k ≥ θ · a2/r2 for a constant θ, the total
multicast capacity Λk(n) of all nodes is bounded from above by

Λk(n) ≤ W · a2

ρ2a2
=

W

ρ2
= O(W )

where ρ2 is a constant depending only on θ.

5. LOWER BOUNDS ON MULTICAST CA-
PACITY

In this section, we will derive lower bounds on the multicast ca-
pacity Λk(n). Specifically, we will provide a multicast scheme and
prove that the multicast capacity achieved by our scheme matches
the asymptotic upper bounds.

5.1 Good Approximation of MCDS
We use the similar idea as [10] to get a multicast scheme which is

based on a good approximation of a minimum connected dominat-
ing set (MCDS) of a random network. First, we partition the region
with side length a into squarelets, each with side length r√

5
, here

r is the transmission range. We can guarantee two things by this
partition:(1) Any two nodes from two squarelets (sharing a com-
mon side) will be able to communicate with each other directly;
(2) Every squarelet contains at least one node almost surely (Re-
sults in [10]). Then if we randomly pick up one node from each
squarelet, clearly, these nodes will automatically form a dominat-
ing set.

Given the CDS, for any node v in it, if we let ∆ be the maximum
number of nodes in CDS whose transmission will interfere with the



transmission of v in CDS, then by using the area argument, we can
show that ∆ ≤ π·(R+2r)2

r2/5
= 5π(2 + R

r
)2.

Clearly, this property ensures that we can schedule the transmis-
sions of all nodes in CDS by a TDMA manner such that all nodes
will be able to transmit at least once in every ∆ time slots, that
guarantees that for any node in the CDS in some subregion, it can
transmit at least once in every ∆ time slots regardless of our two
candidate routing strategies.

5.2 When k = O(m) and k√
m
→∞

When the number of receivers, plus the source node, k is at most
θ1

a2

r2 , we will construct a multicast tree in each subregion Si span-
ning ki receivers inside and thus obtain a multicast tree (forest)
which spans all k receivers.

Consider an instance of a random network G = (V ∪Z, E) and
also an instance of multicast with vj as the source node and Uj =
{vj1 , vj2 , vj3 , · · · , vjk} as the receiver nodes plus the source node.
Here for simplicity we assume vj = vj1 . Let U i

j = {vi
j1 , vi

j2 , · · · ,

vi
jt

, zi} denote all the receivers of source node vj existing in the
subregion Si plus the base station zi. Here t is the number of re-
ceivers of source node vj existing in the subregion Si. We will
construct a multicast structure for U i

j by Algorithm 1.

Algorithm 1 Multicast Routing for Nodes U i
j inside subregion Si

1: for each subregion Si do
2: We partition the deployment square into squarelets, each

with side length r/
√

5 (as in [14]. Thus, for subregion Si,
we have d 5a2

m·r2 e squarelets. Each squarelet is denoted by
(l1, l2) when it is the l1th column and l2th row.

3: Let Pji = {pi
j,1, p

i
j,2, · · · , pi

j,t, p
i} be the set of randomly

and independently selected points used to find the terminals
U i

j = {vi
j1 , vi

j2 , · · · , vi
jt

, zi}}, here pi denote the position
of the base station zi . Recall that for any 1 ≤ t ≤ |U i

j | − 1,
vi

j,t is the closest node to point pi
j,t.

4: We build an Euclidean spanning tree, denoted as EST (P i
j ),

connecting points in P i
j , as in [10, 11].

5: For each link uv in the tree EST (P i
j ), assume that u and

v are inside squarelet (l1u, l2u) and squarelet (l1v, l2v) respec-
tively. Find a point w in squarelet (l1v, l2u) (or squarelet
(l1u, l2v)), i.e., uwv is a Manhattan path connecting u and v.
The resulted structure by uniting all such paths for all links
in EST (P i

j ) will serve the routing guideline for multicast.
6: For each edge uw in EST (P i

j ), find a node in each of the
squarelets that are crossed by line uw. We connect these
nodes in sequence to form a path, denoted as P(u, v), con-
necting points u and v. Notice that here such structure may
not be a tree. If this is the case, we could remove the cycles
that do not contain nodes from P i

j . Denote the resulting tree
as MT (P i

j ).
7: For each receiver vl1,l2 , if it is not inside the squarelet s

containing point pl1,l2 , let v′l1,l2 be the node selected in-
side the squarelet s. Notice that, such v′l1,l2 exists for every
squarelets, with probability at least 1 − 2/n. Node v′l1,l2

then relay the data to node vl1,l2 (the relay takes at most 2
hops). The final tree (including these additional relays) are
called multicast tree MTR(U i

j).
8: end for
9: The final tree (forest) consists of MTR(U i

j) is the multicast
tree (forest) MTR(Uj).

Under this case, from Lemma 5, the length of multicast tree (for-
est) T spanning all k receivers is at most 3c1

2
a√
m
·s with probability

1− 4c2
c21·s

→ 1 when s goes to ∞, here c1 and c2 are constants and
s is the number of subregions which contain at least one of k re-
ceivers. Thus, from Lemma 3, we have

L ≤ 3c1

2
· ( a√

m
) · c7 · k = ρ1 · a√

m
· k

with probability (1 − 4c2
c21·s

)(1 − e−
k2
8m ) → 1 when s → ∞ and

k2

m
→∞, where ρ1 = 3c1·c8

2
.

Clearly, the area of D(T ), denoted by |D(T )|, is at most

|D(T )| ≤ 2r · L + k · πr2/2 ≤ 2ρ1 · a√
m
· k · r +

θ1 · πa2

2

from k ≤ θ1
a2

r2 .
Before we present the lower bound capacity, we show the upper

bound of the number of nodes that will receive a copy of data first.

LEMMA 19. Given a multicast tree (forest) constructed by Al-
gorithm 1, the number of nodes that will get a copy of multicast
data is, with high probability, at most 4ρ1 · k√

m
· r

a
· n + θ1 · π · n,

when k = O(m), k√
m
→ ∞ and m = o(a2

r2 ), here ρ1 is a con-
stant.

PROOF. Consider a set of receivers Uj for the source node vj .
Let T be the multicast tree (forest) MT (Pj) constructed by Algo-
rithm 1. Let Xi be the indicator variable denoting whether the ith
node vi will fall inside the region D(T ) for a multicast tree (forest)
T . Clearly, Pr (Xi = 1) = |D(T )|

a2 . Notice that the area of D(T ),
denoted by |D(T )|, is at most 2ρ1 · a√

m
· k · r + k · πr2/2.

Assume X is the number of nodes falling inside the region of
D(T ). Clearly, X =

∑n
i=1 Xi and X is binomial distribution. By

the Hoeffding’s inequality, we have

Pr
(
C > |D(T )| · 2n

a2

) ≤ |D(T )|· 2n
a2 ·(1−

|D(T )|
a2 )

(|D(T )|· 2n
a2−

n·|D(T )|
a2 )2

≤ 2a2

n·|D(T )| ≤ 2c0
√

c
c2

·
√

m
k

1√
n·log n

which goes to 0 when n →∞ and k√
m
→∞.

The last inequality comes from the assumption that a
r
≤

√
c·n

log n

from Theorem 2. Consequently, the number of nodes that can get a
copy of the data for multicast within nodes Pi, w.h.p., is at most

|D(T )| · 2n

a2
≤ 4ρ1 · k√

m
· r

a
· n + θ1 · π · n

This finishes the proof.

Recall that, we can guarantee that each node will be able to trans-
mit once every ∆ time-slots. This implies that the total bits/sec
achieved by all nodes is at least n ·W/∆. Consequently, the mul-
ticast capacity is at least

n ·W/∆

4ρ1 · k√
m
· r

a
· n + θ1 · π · n

=
W · a · √m

4ρ1∆kr + ∆θ1π
√

ma

≥ W · a · √m

4ρ1∆c9
√

ma + ∆θ1π
√

ma
=

W

4ρ1∆c9 + ∆θ1π

The last inequality comes from Lemma 20.

LEMMA 20. When k = O(m) and k√
m
→∞, we have k · r ≤

c9
√

m · a.



PROOF. According to our assumption at the beginning
√

m ≤
a
r

. In addition k
m
≤ θ2, here θ2 is a constant. So we have

k

m
≤ θ2 ≤

a
r√
m
· θ2

Thus, k√
m
≤ θ2

a
r

. Hence, k · r ≤ θ2
√

m · a, then the lemma
follows by setting c9 = θ2.

THEOREM 21. The total multicast capacity Λ(n) achievable by
all multicast flows is at least ρ3 ·W , when k = O(m), k√

m
→∞,

m = o(a2

r2 ). Here ρ3 = 1
4ρ1∆c9+∆θ1π

.

Observed that the correctness of Theorem 21 relies on the fact
that a

r
≤

√
cn

log n
and k ≤ θ1

a2

r2 . Thus, by letting a
r

=
√

cn
log n

for

some small constant c, and ρ4 = τ3
√

c, based on Theorem 21, we
have

COROLLARY 22. The multicast capacity for a hybrid wireless
network Nn,m,a, when k = O(m), k√

m
→ ∞, m = o(a2

r2 ) and

a/r ≤
√

cn
log n

, is at least

ρ4 ·W
Thus, the multicast capacity per flow (with n sources) is at least

λk(n) =
Λk(n)

n
= Ω(

W

n
)

Remember the above result is based on the pure hybrid routing,
actually we can get tighter lower bound which is Ω(

√
n√

log n·
√

k
·W )

(Results in [10]) for multicast capacity when we use the pure ad hoc
routing strategy. This is because when the number of receivers for
each source node is strictly less than the number of base stations,
to constrict all wireless nodes to transfer data to their closest base
stations first will not improve the capacity of the hybrid wireless
network, even degrade the capacity.

5.3 When k = O(a2/r2) and k = Ω(m), m
k
→ 0

Assume for any subregion Si, the number of receivers existing in
Si is ki, then we know the expected value of ki, E(ki) = k

m
→∞

when m
k
→ 0.

LEMMA 23. The total length of the multicast tree (forest) MT (Pi)

spanning all k receivers among all m subregions is at most τ1 ·
√

k ·
a w.h.p., when k = O(a2/r2), k = Ω(m) and m

k
→ 0, here τ1 is

a constant depending only on θ1.

PROOF. According to the result of [11], we know that the total
length L of spanning tree (forest) T is,

L ≤
m∑

i=1

(4
√

2 +
2
√

10

5
· √θ1) ·

√
ki · a√

m

Clearly, L will get to its upper bound when ki = k
m

for every i,
1 ≤ i ≤ m. Thus,

L ≤ (4
√

2 +
2
√

10

5
· √θ1) ·

√
k · a

The theorem follows by letting τ1 = (4
√

2 + 2
√

10
5

· √θ1).

LEMMA 24. Given a multicast tree (forest) constructed by Al-
gorithm 1, the number of nodes that will get a copy of multicast
data is, with high probability, at most τ2

r·
√

k·n
a

, when k ≤ θ1
a2

r2

and m
k
→ 0, here τ2 is a constant depending only on θ1.

PROOF. Consider a set of receivers U1 for the source node v1.
Let T be the multicast tree (forest) MT (Pi) constructed by Algo-
rithm 1. Let Xi be the indicator variable denoting whether the ith
node vi will fall inside the region D(T ) for a multicast tree (forest)
T . Clearly, Pr (Xi = 1) = |D(T )|

a2 . Notice that the area of D(T ),
denoted by |D(T )|, is at most

|D(T )| ≤ 2r · L + k · πr2/2 ≤ (2τ1 +
π

2

√
θ1) · r ·

√
k · a

from Lemma 23 and k ≤ θ1
a2

r2 .
Assume X is the number of nodes falling inside the region of

D(T ). Clearly, X =
∑n

i=1 Xi and X is binomial distribution.
From Hoeffding’s inequality, and using the similar prove in Lemma
13, we have

Pr
(

C ≤ |D(T )| · 2n

a2

)
≥ 1− 2c7

√
c

1√
n · log n · k

which goes to 1 when n goes to ∞. Here, c and c7 are constants.
Thus the number of nodes that can get a copy of the data for multi-
cast within nodes Pi, w.h.p., is at most

|D(T )| · 2n

a2
≤ (4τ1 + π

√
θ1) · r

a
·
√

k · n

Setting τ2 = 4τ1 + π
√

θ1 finishes the proof.

Remember that we can guarantee that each node will be able to
transmit once every ∆ time-slots. This implies that the total bits/sec
achieved by all nodes is at least n · W/∆. Thus, the multicast
capacity is at least

n ·W/∆

τ2 · r
a
·
√

k · n =
1

τ2 ·∆
a

r

W√
k

By setting τ3 = 1
τ2·∆ , we have the following theorem.

THEOREM 25. The total multicast capacity Λ(n) achievable by
all multicast flows is at least τ3

a
r

W√
k

, when k ≤ θ1
a2

r2 and m
k
→ 0

and a/r ≤
√

cn
log n

for some constants c and τ3.

Based on Theorem 25, we have

COROLLARY 26. The multicast capacity for a random network
of n nodes and m base regularly distributed base stations, when
k ≤ θ1

a2

r2 and m
k
→ 0 and a/r ≤

√
cn

log n
, is at least

Λ
(
kn) ≥ τ4

√
n√

log n ·
√

k
·W = Ω(

√
n√

log n ·
√

k
·W )

The multicast capacity per flow (with n sources) is at least

λk(n) =
Λk(n)

n
= Ω(

1√
n · log n ·

√
k
·W )

Under this case, our lower bound unifies the lower bound in [11],
which means that when the number of receivers for each source
node is strictly bigger than the number of base stations, two routing
strategies give us same lower capacity bound for hybrid wireless
network. Unfortunately, under the pure hybrid routing strategy,
all source nodes existing in some subregion Si will send data to
the base station zi when some receiver node(s) falling outside of
Si. Thus, the base station will become the bottleneck of the net-
work when the number of source nodes exceeds some value. As-
sume every node is the source node, then the expected (source)



nodes falling into subregion Si is n
m

, so the total expected capacity
achieved in Si is

n

m
· 1√

n · log n ·
√

k
·W

from corollary 26. On the other hand, the data rate for any base sta-
tion to receiver from adjacent wireless node is also W . Therefore
base station zi will become a bottleneck when n

m
· 1√

n·log n·√k
·

W > W . i.e.,
√

n

log n
> m ·

√
k

Thus, when the above equation satisfies, we will turn to pure ad hoc
routing strategy rather than pure hybrid routing strategy to avoid the
bottleneck and get the same lower bound capacity.

5.4 When k = O(
√

m)

By Lemma 15, there are total k subregions which contain exactly
one receiver inside w.h.p. under this case. Now, we show that the
total length of multicast tree (forest) Tj which spans all receivers
of source node vj has upper bound by the following lemma.

LEMMA 27. For each source node vj , the total length of mul-
ticast tree (forest) Tj which spans all k receivers of vj is at most
c12 · a·k√

m
with high probability when k = O(

√
m).

PROOF. According to the Lemma 16 and equation 3, we know
the mean Euclidean distance between one pair of base station/receiver
satisfies L < 3

2
E(Li) = 3c3·a

2
√

m
.

Assume, for source node vj , the receiver existing in the subre-
gion Si is vi, we will construct a multicast structure for U i

j by Al-
gorithm 1 where U i

j = {vi, zi}. For simplicity, assume we pick up
w2 in the Algorithm 1, then the Euclidean distance |uw2|+ |w2v|
is at most

√
2|uv|. Thus the number of squarelets crossed by line

uw2 and w2v is at most
√

2|uv|
r√
5

+ 1. Then the length of resulting

multicast tree T i
j spanning v and u satisfies

|T i
j | ≤ (

√
2|uv|

r√
5

+ 1)

√
2r√
5

= 2|vizi|+
√

2r√
5

Then we have the total length of tree (forest) |Tj | satisfies

|Tj | =
k∑

i=1

|T i
j | ≤

k∑
i=1

(2|vizi|+
√

2r√
5

)

≤ 3c3 · a · k√
m

+

√
2r√
5
· k ≤ (3c3 +

√
2√
5
) · a · k√

m

The last inequality comes from
√

m < a
r

. This finishes the proof
by letting c12 = 3c3 +

√
2√
5

.

Notice the length of Tj here satisfies the same condition as the
case when k = O(a2/r2), k = Ω(m) and m

k
→ 0. So we know

that given a multicast tree (forest) Tj constructed by Algorithm 1,
the number of nodes Cj that will get a copy of multicast data from
the source node vj is at most

4c12 · k√
m
· r

a
· n + θ1 · π · n

w.h.p. from Lemma 19. Thus, we have

THEOREM 28. The multicast capacity for hybrid wireless net-
work Nn,m,a is at least Θ(W ) when k = O(

√
m).

PROOF. Recall that, based on Algorithm 1, we can guarantee
that each node will be able to transmit once every ∆ time-slots.
This implies that the total bits/sec achieved by all nodes is at least
ns ·W/∆. So, from

∑n
j=1 λj · Cj ≥ n·W

∆
, we have

n∑
j=1

λj ≥ n ·W
∆(4c12 · k√

m
· r

a
· n + θ1 · π · n

)

When the number of source node ns goes to n and by Lemma 20,
the theorem follows.

5.5 When k = Ω( a2

r2 )

In this case, we have proved that the upper bound on the total
multicast capacity is only Θ(W ). Obviously, the total multicast
capacity for hybrid wireless network is at least the lower bound
of the capacity for broadcast no matter we use either pure hybrid
routing or pure ad hoc routing. In [9], Keshavarz-Haddad et al..
present a broadcast scheme to achieve capacity Θ(W ). Thus, we
have

THEOREM 29. The total multicast capacity Λk(n) achievable
by all multicast flows is at least c7W , where c7 ≤ 1

∆+1
is a con-

stant.

6. LITERATURE REVIEW
Gupta and Kumar [6] studied the asymptotic unicast capacity of

a multi-hop wireless networks for both two different models. Un-
der a non-interference protocol, when each wireless node is capable
of transmitting at W bits per second using a constant transmission
range, the throughput achievable by each node for a randomly cho-
sen destination is Θ( W√

n log n
) bits per second. Here n in num-

ber of nodes. Furthermore, even the nodes are optimally assigned
and transmission range is optimally chosen, the throughput is only
Θ( W√

n
) bits per second for each node.

Grossglauser and Tse recently showed that the unicast capacity
can be improved by the mobility of wireless nodes regardless of
delay. Their main result shows that the average long-term through-
put per source-destination pair can be kept constant even when the
number of nodes per unit area increases. Gastpar and Vetterli stud-
ied the capacity of random networks using relay in [1]. Chuah et
al. [2] studied the capacity scaling in MIMO wireless systems un-
der correlated fading. The capacity scaling in delay tolerant net-
works with heterogeneous mobile devices was studied by Garetto
et al. [3]. Keshavarz-Haddad et al. studied the bounds for the ca-
pacity of wireless multihop networks imposed by topology and de-
mand in [8]. Their techniques can be used to study unicast, multi-
cast and broadcast capacity.

Broadcast capacity of both arbitrary networks and random net-
works has been studied in [9, 13]. They showed that the broadcast
capacity of a given network is Θ(W ) for single source broadcast
and the achievable broadcast capacity per flow is only Θ(W/n) if
each of the n nodes will serve as a source node. Keshavarz-Haddad
et al. [4] studied the broadcast capacity with dynamic power ad-
justment for physical interference model.

Multicast capacity was also studied in the literature. Jacquet and
Rodolakis [5] studied the scaling properties of multicast for random
wireless networks. They claimed that the maximum rate at which
a node can transmit multicast data is O( W√

kn log n
). Recently, rig-

orous proofs of the multicast capacity were given in [11, 14]. Li et
al. [11] studied asymptotic multicast capacity for a large-scale ran-
dom wireless networks. They showed the total multicast capacity
is Θ(

√
n

log n
· W√

k
) when k = O( n

log n
) and when k = Ω( n

log n
),



the total multicast capacity is equal to the broadcast capacity, i.e.,
Θ(W ). In addition, they used VC-theorem to show that the capac-
ity achieved by the multicast scheme in [11] matches the asymp-
totic upper bounds with avoiding the bottleneck.

The capacity for hybrid wireless networks was not fully stud-
ied in the literature. Liu et al. [16] studied the unicast capacity of
hybrid wireless network (a wireless ad hoc network with infras-
tructure). They essentially studied the unicast capacity of hybrid
wireless networks under different network models. For the one-
dimensional network model, they showed that in a hybrid wireless
network with n ordinary nodes and b base stations, the gain in ca-
pacity is substantial, increasing linearly with the number of base
stations as long as b log b ≤ n. Based on the two-dimensional strip
model, a hybrid wireless network requires a large number of base
stations b = Ω(

√
n) in order to obtain such a capacity increase.

Kozat and Tassiulas [15] also studied the unicast capacity of ad
hoc networks with a random flat topology under the present sup-
port of an infinite capacity infrastructure network. They showed
that the per source node capacity of Θ(W/ log N) can be achieved
in a random network scenario based on some assumptions, like the
number of ad hoc nodes per access point (base station) is bounded,
etc.

7. CONCLUSIONS
In this paper, we essentially studied the multicast capacity that

can be achieved by hybrid networks with randomly distributed wire-
less nodes and regularly distributed base stations. We derived an-
alytical upper bounds and lower bounds on multicast capacity of a
wireless hybrid network based on different cases.

Observe that all our results are proved when the deployment re-
gion is a square with side-length a and the transmission range of
all nodes is uniform with value r. It is not difficult to show that all
our results still apply when the deployment region is a fixed square
with side length a = 1, while the transmission range is selected ap-

propriately, i.e., r = Θ(
√

log n
c·n ) for some constant c. In addition,

our results still hold when r = 1 while the deployment region has
a bounded aspect ratio such as a disk or a rectangular area when
ratio width/height is bounded. Further, we considered the proto-
col interference model for random networks. The details of some
computations are omitted here due to space limit.

There are some interesting questions left for study for multicast
capacity of the hybrid networks. The first question is what is the
multicast capacity when m base stations randomly distributed. The
second question is what is the multicast capacity when the link ca-
pacity is not uniform: shorter links will have larger capacity. The
third question is what is the multicast capacity when the Gaussian
channel is used, instead of assuming that each node has a fixed
transmission range and has a fixed data rate W .
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APPENDIX
LEMMA 30 (CHEBYSHEV’S INEQUALITY). For a variable X ,

Pr (|X − µ| ≥ A) ≤ V ar(X)

A2
,

where µ = E(X), V ar(X) is the variance of X , and A > 0.

LEMMA 31 (HOEFFDING’S INEQUALITY). Let X1, x2, · · · ,
Xn be independent random variables and Pr(Xi ∈ [ai, bi]) = 1.
Let S =

∑n
i Xi and E(S) be its expected value. Then, for t > 0,

Pr(S − E(S) ≥ nt) ≤ exp

(
− 2n2t2∑n

i=1(bi − ai)2

)

LEMMA 32. Consider n independent variables Xi ∈ {0, 1},
p = Pr (Xi = 1), and X =

∑n
i=1 Xi.

Pr (X ≤ ξ) ≤ e
−2(n·p−ξ)2

n , when 0 < ξ ≤ n · p.

Pr (X > ξ) <
ξ(1− p)

(ξ − n · p)2
, when ξ > n · p.


