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ABSTRACT
We propose novel solutions for unicast routing in wireless net-
works consisted of selfish terminals: in order to alleviate the in-
evitable over-payment problem (and thus economic inefficiency) of
the VCG (Vickrey-Clark-Groves) mechanism, we design a mecha-
nism that results in Nash equilibria rather than the traditional strate-
gyproofness (using weakly dominant strategy). In addition, we sys-
tematically study the unicast routing system in which both the relay
terminals and the service requestor (either the source or the destina-
tion nodes or both) could be selfish. To the best of our knowledge,
this is the first paper that presents social efficient unicast routing
systems with proved performance guarantee. Thus, we call the pro-
posed systems: Optimal Unicast Routing Systems (OURS).

Our main contributions of OURS are as follows. (1) For the prin-
cipal model where the service requestor is not selfish, we propose a
mechanism that provably creates incentives for intermediate termi-
nals to cooperate in forwarding packets for others. Our mechanism
substantially reduces the overpayment by using Nash equilibrium
solutions as opposed to strategyproof solutions. We then study a
more realistic case where the service requestor can act selfishly. (2)
We first show that if we insist on the requirement of strategyproof-
ness for the relay terminals, then no system can guarantee that the
central authority can retrieve at least 1

n
of the total payment. (3) We

then present a strategyproof unicast system that collects 1
2n

of the
total payment, which is thus asymptotically optimum. (4) By only
requiring Nash Equilibrium solutions, we propose a system that
creates incentives for the service requestor and intermediate termi-
nals to correctly follow the prescribed protocol. More importantly,
the central authority can retrieve at least half the total payment. We
verify the economic efficiency of our systems through simulations
that are based on very realistic terminal distributions.
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1. INTRODUCTION
Wireless networks continue to gain importance with wide-spread

demand for high-bandwidth applications such as multimedia stream-
ing in ad hoc environments. The past years have seen a consider-
able amount of research in wireless networks on various aspects
including routing, quality of service, security, power management,
and traffic and mobility modelling. The vast majority of these
protocols rely on the assumption that each wireless terminal will
follow the prescribed protocol without any deviation. However,
this assumption of cooperation is not true in many application sce-
narios [1, 4, 20, 22, 25]. In many scenarios, the wireless terminals
are owned by individual profit-maximizing entities such as human
users who will cooperate only if it suits their needs and interests. In
practice, wireless terminals are often powered by batteries, thus it is
not in the best interest of a wireless terminal to always forward data
packets for other terminals as doing so depletes its battery without
providing utility to its owner. Thus, the most rational strategy for an
individual user is to always turn off its device except when the user
wants to participate in a communication as source or destination;
such behavior in turn can be detrimental to network performance,
and in the case of ad hoc networks it inevitably leads to discon-
nected networks. In order to overcome this strategy, stimulation
mechanisms are required to encourage users to provide service to
other terminals.

Two different approaches for dealing with selfish behavior have
been proposed by the research community: reputation-based sys-
tems [3–5,12,20] keep records of the cooperative behavior and pun-
ish non-cooperating terminals; incentive-based systems [1, 22, 25]
actively pay terminals for collaboration. In this paper, we pursue an
incentive-based approach that allows us to apply and extend con-
cepts from game theory, which results in provable properties. The
key issue that any incentive-based system needs to solve is how
much terminals should be paid for forwarding data packets such
that the system reaches kind of steadiness. One of the usual ap-
proaches so far is to induce terminals to tell the truth with regards
to their cost. A system or mechanism that achieves this is called



strategyproof. The best-known mechanism that can induce strate-
gyproofness is the VCG(Vickrey-Clark-Groves) mechanism. An-
deregg et al. [1] have proposed a routing protocol for unicast rout-
ing in a wireless ad hoc network based on the VCG mechanism.
Wang et al. [22] have generalized the result and proposed some
non-VCG mechanism for multicast routing in wireless ad hoc net-
works. In [25], Zhong et al. presents an alternate view of the selfish
routing problem that very elegantly distinguishes between a routing
and an actual forwarding phase.

Notice that none of these systems showed how to obtain the
money to pay for the relay terminals. One natural explanation is
that these money is collected from the service requestor who ini-
tiate or benefit from the routing, e.g., source node or destination
node or both. However, it is not likely that the service requestor
is always willing to pay the money to relay terminals when it is
arbitrarily large. Thus, we assume that the service requestor has a
budget constraint w to indicate how much it is wiling to pay for
the service. Therefore, the whole system we study is composed
of not only the relay terminals but also the service requestor, who
may also be selfish and falsely report its budget constraint. A good
illustration of such system is a commercial WIFI scenario shown
in Figure 1. In the system, one node (big square) acts as the des-
tination, which could either be a service access point that provides
services to the other nodes, e.g., WIFI or mesh network provider.
Note that although in the Figure 1 there is only one access node,
it is possible that there exist multiple access nodes. A service re-
questor node (shaded circle) is a regular terminal that would like
to be provided with a specific service. It communicates with the
access point in a multi-hop fashion via intermediate terminals.

Service
requester

Access
node

Intermediate 
Terminals

Figure 1: Network players

In this paper, we assume that each wireless terminal is not able
to adjust their transmission power. It simplifies our model and en-
ables us to focus on the non-cooperative issue. Note that our results
are critical and can be borrowed to deal with the adjustable trans-
mission power scenario. With the fixed transmission power, each
terminal vi incurs a cost of h·ci to transmit a data packet of size h to
its neighbors. Note that the cost ci not only can be the deterministic
cost under the binary link model where a packet is always received
if the transmission power is above a threshold, but also can be the
expected cost under the more realistic model where a packet is re-
ceived with a probability [7,24]. We assume that there is an central
authority who collects payments from service requestors and dis-
tributes payments to the forwarding intermediate terminals. The
service requestor’s properties with respect to how much it is will-
ing to spend (i.e., its private type) can be captured by two models:

• Axiom Model (AM). The service requestor must receive the
service, or equivalently, the service requestor has an infinitely
large budget constraint for this service. In this model, we use
η=∞ to denote that the budget constraint of the service re-
questor is infinity.

• Valuation Model (VM). The requestor t has a budget con-

straint w indicating the maximum value that t is willing to
pay. In this model, t is selfish and can declare a budget con-
straint η that may not equal its actual budget constraint w.

Eidenbenz et al. [8] proposed a unicast system to charge the ser-
vice requestor an amount that equals the cost of the second shortest
path (i.e., global disjoint replacement path) and pay the relay ter-
minals according to the VCG mechanism. Their unicast system
is strategyproof for both the service requestor and the relay ter-
minals. However, solely achieving strategyproofness for both the
relay terminals and service requestor is trivial: we can charge the
service requestor zero or some arbitrarily high amount and pay the
relay terminals according to VCG mechanism. The main draw-
back of the unicast systems we mentioned is that the central au-
thority either gets nothing or too much from unicast routing. Thus,
budget-imbalance issue should be taken into account through the
notion of (α, β)-budget-balanced: A mechanism is (α, β)-budget-
balanced if the central authority (1) can retrieve at least a fraction
α of the total payment from the service requestor, and (2) can never
retrieve more than β times of the total payments. In literature, ei-
ther α or β is assumed to be 1. For all results presented in this pa-
per, we assume that β = 1 and simply call (α, 1)-budget-balanced
as α-budget-balanced. All our results for α-budget-balanced can
be easily extended to (α, β)-budget-balanced by replacing α in
our formulas with α

β
. Besides the strategyproofness and budget-

balance, another important property often required for a mecha-
nism is social efficiency. A mechanism is �-social-efficient if the
output of the mechanism has cost at most � times of the optimum.
If � = 1, then the mechanism is simply called social efficient. For
example, a unicast mechanism is social efficient if it always uses
the path with the least true cost (not necessarily the least declared
cost by relay agents). It is well-known that no mechanism can be
strategyproof, social efficient and budget-balanced simultaneously.

We call a mechanism system α-perfect if it (I) is strategyproof
for both the relay terminals and the service requestor; (II) is α-
budget-balanced; (III) satisfies some other requirements (namely
NPT, CS) that will be discussed in detail later. In this paper, we
prove that α ≤ 1

n
for any unicast system that is α-perfect, where n

is the number of terminals in the network (Section 4); the proof is
based on an intuitive counter-example. We then present a unicast
system that is 1

2n
-perfect, which is asymptotically optimal (also

Section 4). The mechanisms for this system relies on the novel
graph-theoretic concept of Least Bridge Covers.

If a unicast system is α-perfect, then the central authority can
run into a deficit of up to a fraction of 1 − α of the total payments
to the relay terminals. From the negative results we show, the cen-
tral authority can not avoid suffering large balance lost if they insist
on that unicast system should be strategyproof for the relay termi-
nals. In order to further reduce this budget imbalance, we propose
to relax the strategyproof requirement for the relay terminals. Con-
cretely, we propose to to design mechanisms that use Nash Equi-
librium solutions instead of (weakly) dominant strategy solutions.
We propose the LCPA mechanism with this property in the axiom
model (Section 3). Note that Nash Equilibrium notation has a ma-
jor drawback compared to strategyproof mechanism because it is
very hard to make the system converge to a certain Nash Equilib-
rium in a distributed setting. It is indeed that LCPA mechanism can
induce infinite number of different Nash Equilibria and we are not
able to find the Nash Equilibrium with minimum payment even in
a centralized manner. However, under our LCPA mechanism, we
proved that the payment of any Nash Equilibrium is at most 2 times
the minimum. This showed that in real implementation, we do not
need to care much about to which Nash Equilibrium the system
converges. Based on LCPA mechanism, we design a system that is



budget-balanced with ε additive for any fixed positive ε under the
valuation model (Section 4.2).

It is generally acknowledged that the unicast system based on
strategyproof solution is very steady while we show in this paper
that the unicast system based on LCPA mechanism achieves con-
stant budget balance with arbitrary small additive. Thus, both the
unicast systems could be used in practice according to different
requirements of the application. It is worth to point out that our
main intention in this paper is not to show which system is better.
Our main focus is to design optimal unicast systems under both
solutions, which could be used in wireless mesh networks, wire-
less hot-spots and more. To the best of our knowledge, our work
is the first one that designs the optimal unicast systems based on
strategyproof or Nash Equilibrium solutions. Therefore, we call
the proposed systems: Optimal Unicast Routing Systems (OURS).

We conclude by discussing the details of the efficient implemen-
tation for different application needs (Section 5), presenting sim-
ulation results that validate our claims for efficiency and budget
imbalance in realistic scenarios (Section 6), and by summarizing
remarks (Section 7).

2. SCENARIO DESCRIPTION
We need to recall a few definitions and concepts from mecha-

nism design. A standard model for mechanism design is as follows.
There are n agents 1, . . . , n. Each agent i has some private infor-
mation ti, called its type, only known to itself. For example, the
type ti can be the cost that agent i incurs for forwarding a packet in
a network or can be the maximum payment that the agent i is will-
ing to pay for a service as a service requestor. The agents’ types
define the type vector t = (t1, t2, . . . , tn). Each agent i has a set
of strategies Ai from which it can choose. For each strategy vec-
tor a = (a1, . . . , an) where agent i plays strategy ai ∈ Ai, the
mechanism M = (O,P) computes an output o = O(a) and a
payment vector P(a) = (P1(a), . . . ,Pn(a)). Here the payment
Pi(·) is the money given to agent i and depends on the strategies
used by the agents. A valuation function vi(o) assigns a monetary
amount to agent i for each possible output o. Let ui(o) denote the
utility of agent i at the output o of the game. Following a common
assumption in the literature, we assume that the utility for agent i is
quasi-linear, i.e., ui(o) = vi(o)+Pi(a). We adopt the assumption
in neoclassic economics that every agent will optimize its utility.

A strategy vector a is called a Nash Equilibrium if ai maximizes
the utility of agent i when the strategies of all the other agents
are fixed as a−i, where a−i = (a1, . . . , ai−1, ai+1, . . . , an) de-
notes the strategies of all the other agents except i. A strategy ai

is (weakly) dominant for agent i if it maximizes its utility regard-
less of possible strategies of the other agents, i.e., ui(ti,O(ai)) ≥
ui(ti,O(a′

i,a−i)) for all a′
i �= ai and all strategies a−i.

A direct-revelation mechanism is a mechanism in which the only
actions available to each agent are to report its private type either
truthfully or falsely to the mechanism. A direct-revelation mecha-
nism is incentive compatible (IC) if reporting valuation truthfully is
a dominant strategy. Another very common requirement in the liter-
ature for mechanism design is so called individual rationality (IR):
the agent’s utility of participating in the output of the mechanism is
not less than the utility of the agent if it did not participate at all. A
direct-revelation mechanism is called truthful or strategyproof if it
satisfies both IC and IR properties. Notice that strategyproof mech-
anism always pays a certain amount that is not less than the actual
cost to induce the truthfulness. The difference between the total
amount paid and the total cost the agents should spend are usually
called the premium or overpayment.

The generalized VCG mechanisms by Vickrey [21], Clarke [6],

and Groves [10] may be arguably the most important positive re-
sult in mechanism design. An objective function g(o, t) is called
utilitarian if g(o, t) =

∑
i v(ti, o). The VCG mechanisms ap-

ply to (affine) maximization problems where the objective func-
tion is utilitarian and the set of possible outputs is finite. A direct-
revelation mechanism M = (O,P) belongs to the VCG family if
(1) the output O(t) computed based on the type vector t maximizes
the utilitarian objective function, and (2) the payment to agent i is
Pi(t) =

∑
j �=i vj(tj ,O(t)) + hi(t−i). Here hi(·) is an arbitrary

function of t−i. Green and Laffont [9] proved that, under mild as-
sumptions, the VCG mechanisms are the only truthful mechanism
for utilitarian maximization problems.

We are now ready to describe our scenario in more detail and
propose new definitions. Formally, we assume that there is a net-
work G = (V, E), where V = {v1, v2, . . . , vn} is the set of the
wireless terminals and E = {e1, e2, . . . , em} is the wireless com-
munication links in which ek = vivj means that terminal vi and vj

can communicate with each other directly. Without loss of general-
ity, we assume that s is the source, t is the service requestor and s
and t are in V . We also assume that there is a fixed cost ci for wire-
less terminal vi to transmit a unit size data and the cost to transmit
a traffic of size h is h ∗ ci. Let c be the cost vector of the terminals,
i.e., c = (c1, c2, . . . , cn). Every wireless terminal vi is required to
declare a cost, say di, for forwarding the unit size data. The set of
all terminals’ declared cost is denoted as d = (d1, . . . , dn). Notice
that di may not equal ci, which is vi’s actual cost. For simplicity
of our analysis, we normalize the traffic to unit size data. Dropping
this assumption does not change the results. Our aim is to design
unicast systems.

DEFINITION 1. A unicast system (US) Ψ = (M,S) consists
of a routing mechanism M = (O,P) and a charging mechanism
S = (σ, ξ). Let d be the vector of declarations by all relay agents
and η be the declared maximum willing payment by the requestor.
O(η,d) = (O1(η,d), . . . ,On(η,d)) is an output function vector
such that Oi(η,d) indicates the times terminal vi should send a
packet, i.e., Oi(η,d) = 1 indicates that terminal vi should send
the packet once. P(η,d) = (P1(η,d), . . . ,Pn(η,d)) is a pay-
ment function vector that computes the payment for the terminals,
i.e., Pi(η,d) is payment to terminal vi. σ(η,d) is an indication
function for service requestor t, i.e., σ(η,d) = 1 or 0 indicates
whether the service requestor t can receive the data or not. ξ(η,d)
is a charging function for the service requestor t, i.e., ξ(η,d) com-
putes how much the service requestor t should be charged for the
data transmission. If the requestor t can receive the data, then the
data must be routed along the least cost path between access point
s and requestor t, i.e., our unicast system is social efficient.

Let P(η,d) be total payment to the terminals, i.e., P(η,d) =∑
vi
P(η,d). For notational simplicity, we also use O(η,d) to

denote the terminal set that is selected to route the data. Under Ax-
iom Model (AM), the service requestor always receives the service
and pays the total payment. Thus, the focus is on the routing mech-
anism M = (O,P) in that case. But ideally, a unicast system
should satisfy some requirements under Valuation Model (VM).

DEFINITION 2. Under the VM, a unicast system Ψ = (M,S)
is perfect if it satisfies that

1. Strategyproof: M is strategyproof for relay terminals, and
S is strategyproof for the service requestor t. In other words,
every terminal declares di = ci and requestor t declares
η = w to maximize their utility.

2. Budget Balance (BB): System Ψ satisfies Cost Recovery if
ξ(η, c) ≥ P(η, c), i.e., the total payment is recovered from



the service requestor. Ψ satisfies Competitiveness if ξ(η, c) ≤
P(η, c), i.e., no surplus is created. Because if any surplus is
created then a competitor who provides the same service may
come at a cheaper price by reducing surplus.
Ψ is budget balanced if both cost recovery and competitive-
ness are satisfied. When budget-balance cannot be met, we
relax it to α-budget-balanced: α · P(η,d) ≤ ξ(η,d) ≤
P(η,d), for some given parameter α ∈ [0, 1], which is called
the budget balance factor (BBF).

3. No Positive Transfer (NPT): The charge for service requestor
t should not be negative. In other words, we don’t pay the
service requestor to receive the data.

4. Consumer Sovereignty (CS): The charging mechanism can-
not arbitrarily exclude a service requestor; the requestor will
get the service if η is sufficiently large while others are fixed.

Since our unicast system is always social efficient, obviously we
cannot have a perfect unicast system. As a variation, we say that,
under the VM, a unicast system Ψ = (M,S) is α-perfect if it sat-
isfies NPT, CS, strategyproof and α-budget-balance for α ∈ [0, 1).

Instead of insisting on strategyproofness, we may design some
mechanisms that use solution of Nash equilibria, based on the fol-
lowing definitions.

DEFINITION 3. A unicast system Ψ is α-NE-budget-balanced
if α · P(η, b̃) ≤ ξ(η, b̃) ≤ P(η, b̃) holds for any bid vector b̃
that is a NE for Ψ, where α ≤ 1. Similarly, Ψ satisfies NE-CS if
for any fixed NE b̃ of Ψ, there exists a valuation x for t such that
σ(η, b̃) = 1 for any η > x. Ψ is α-NE-perfect if (1) Ψ satisfies
NPT, NE-CS, (2) it is strategyproof for the service requestor, and
(3) it is α-NE-budget-balanced.

Notations. Following we introduce some terminologies and sym-
bols that will be used later. For a simple path P = vi � vj , we
define the weight of the path under cost vector d as ω(P,d) =∑

vk∈P−vi−vj
dk. The path between two terminals s, t under de-

clared cost vector d with minimal weight is denoted as LCP(s, t,d),
which stands for lease cost path. Among all paths between s, t with
terminal vk on it, the shortest path is denoted as LCPvk(s, t,d).
Similarly, among all paths between s, t without terminal vk on it,
the shortest path is denoted as LCP−vk(s, t,d).

Let s(P) and t(P) be two end terminals of P. If s(P) and t(P)
are the only two terminals that is also on LCP(s, t,d), then P is
a bridge over LCP(vi, vj ,d). P covers vk if it is an internal node
of LCP(vi, vj ,d). Without loss of generality, we also assume that
s(P) is the terminal closer to s than t(P).

We summarize the notations used in the following table.

V The set of wireless terminals in the network
E The set of wireless communication links
c The actual cost vector of terminals
d Declared cost vector of terminals

ω(P,d) The weight of path P under cost vector d
LCP(s, t,d) Least cost path between s and t under d

w Actual budget constraint of service requestor t
η Declared budget of service requestor t

O Output function selects the relay terminals
P Payment function computes the payment
P Total payment to the relay terminals

M = (O,P) Routing mechanism composed of O and P
σ Method decides whether t receives the service
ξ Method computes how much t is charged

S = (σ, ξ) Charging scheme composed of σ and ξ
Ψ = (M,S) Unicast system with a routing mechanism M

and a charging scheme S

3. UNICAST SYSTEM UNDER AM MODEL

3.1 Dominant Strategy - VCG Revisited
Unicast routing game has been studied extensively since it is in-

troduced by Nisan and Ronen [18]. They solved the unicast routing
game by applying the VCG mechanism in a centralized way. Let
PVCG denote the VCG payment for unicast mechanism under AM,
and d|kd′

k = (d1, . . . , dk−1, d′
k, dk+1, . . . , dm). The payment to

terminal vk ∈ LCP(s, t,d) according to VCG mechanism is

PVCG
k (η=∞,d) = |LCP(s, t,d|k∞)| − |LCP(s, t,d|k0)|,

where η=∞ means that the service requestor has an infinity valua-
tion. Following is a simple property of the VCG mechanism.

FACT 1. For any vi ∈ LCP(s, t,d), di ≤ PVCG
k (η=∞,d).

VCG mechanism based unicast system is social efficient, strate-
gyproof, but its budget balance factor could be as small as 1

n
: the

total payment to relay agents could be n times of their actual costs.

3.2 Nash Equilibrium for Terminals
In light of the potential large overpayment of the VCG mecha-

nism, which is the only strategyproof mechanism based on the LCP,
it is natural to relax the dominant strategy to the Nash equilibrium,
which is a weaker requirement. In this section, we design a new
mechanism, which we call Least Cost Path Auction (LCPA) mech-
anism, that can induce some Nash Equilibria under AM model.

Usually, a naive mechanism coming into one’s mind is that each
terminal declares a single bid, and we select the LCP based on
the bids and pay the terminals on the path whatever they declared.
However, the naive mechanism suffers from two major problems.
Consider a network shown in Figure 2 where the number in the
bracket shows the actual costs of the terminals. We assume that
sv3t is always selected if the weight of the two paths are the same
(called tie break afterward). When v1 declares x, v2 and v3 both de-
clare x− 1 where x is any value greater than 9, the system reaches
a NE. Thus, the system could reach some NE that need arbitrary
large overpayment compared with VCG payment. The root cause
of this problem is that the terminals who are not selected do not
have incentive to declare their true costs. Even we can ensure that
the terminals who are not selected always declare their true costs,
the existence of the NE is not guaranteed. Consider the network
in Figure 2 again and terminal v3 declares its true cost 9. If there
exits a NE, since sv3t always wins over sv1v2t when there is a tie
break, the sum of the declared costs of v1 and v2 must be smaller
than 9. On the other hand, if the total declared costs of v1 and v2 is
9 − ε for any ε, either v1 or v2 can increase its declared cost by ε

2
to increase their payment. Thus, there does not exist any NE.

The LCPA mechanism solves the above two problems by requir-
ing two bids instead of one from each terminal. The LCPA mecha-
nism is divided into two phases: broadcast phase and unicast phase.
In the broadcast phase, each terminal sends a“dummy” packet and
receives a small payment such that its utility is maximized if and
only if it bids its true cost no matter what other terminals do. Since
those terminals are not selected finally only receive payment in
broadcast phase, they always declare their true costs, which enables
LCPA mechanism to remedy the first problem of the naive system.
More detailed discussion of what the dummy packets contain and
how often it should be sent is discussed in Section 5.1. In unicast
phase, we first choose a candidate LCP LCP(s, t,b) using the first
bid vector b. A bid vector h is composed of the second bids from
terminals on candidate LCP and first bids from terminals not on
candidate LCP, i.e., we only use the second bids from the termi-
nals that are on candidate LCP. We choose the path LCP(s, t,h)



using bid vector h as the final path to relay the packets. Only the
terminals on LCP(s, t,h) get a payment hi and all terminals orig-
inally on candidate path but not on final path should receive a fine
γ · |bi − b′i| for bidding too greedy. Algorithm 1 presents our LCPA
mechanism.

To show how LCPA mechanism ΨLCPA works, we give two ex-
ample scenarios shown in Figure 2. The number in the bracket
shows the actual costs of the terminals, and two numbers in <>
are the bids. In scenario (1), LCP(s, t,b) is sv1v2t. Thus, h1 =
b′1 = 5, h2 = b′2 = 4 and h3 = b3 = 9. Note that under cost
vector h, both paths sv1v2 and sv3 have the same cost 9. However,
according to the tie-breaking rule, we will choose sv1v2 because it
contains more nodes from LCP(s, t,b). Note that this tie-breaking
rule is critical to our LCPA mechanism. Thus, v1 gets 5 and v2

gets 4 in the unicast phase. In scenario (2), the LCP chosen based
on b is also sv1v2t. Similarly, h1 = b′1 = 5, h2 = b′2 = 5 and
h3 = b3 = 9. However, path sv1v2t has cost 10 in the cost vector
h, which is greater than the cost of path sv3t. Thus, v1 and v2 are
punished by fine −3γ and −2γ respectively. Terminal v3 gets a
payment 9 in the unicast phase and the actual routing path is sv3t.

Regarding the broadcast phase in Algorithm 1, we have the fol-
lowing lemma.

LEMMA 1. For each terminal vi, the utility for broadcast gi(b) =
−ρ · ci + fi(s, t,b), strictly decreases in [ci, +∞) and strictly in-
creases in (−∞, ci] on bi.

PROOF. Simplifying gi(b) obtains that gi(b) = −ρ · ci +

fi(s, t,b) = τi(b−i)
[
(bu − ci) · (n · bu − b−vi) +

c2i
2
− (ci−bi)

2

2

]
,

where b−vi =
∑

vj∈G−vi
bj . Thus gi(b) is a function on bi that

decreases in [ci, +∞) and increases in (−∞, ci].

Algorithm 1 Mechanism MLCPA = (OLCPA,PLCPA).

Input: Network G = (V, E), a source s, a service requestor t,
declared cost vector b̃ = 〈b,b′〉, and a parameter γ.
Output: MLCPA.

1: Set PLCPA
i (η=∞, b̃) = fi(s, t,b), where fi(s, t,b) =

τi(b−i) ·
[
bu · (n · bu − ∑

vj∈G−vi
bj) − b2i

2

]
, for each ter-

minal vi ∈ G. Here, bu is the maximum cost that any terminal
can declare and τi(b−i) is any function that does not depend
on bi.

2: Each terminal sends a ”dummy” packet of size ρ = τi(b−i) ·
(n · bu − ∑

vi∈G

bi).

3: Compute the path P̃ = LCP(s, t,b), which we call candidate

LCP, and for each terminal vi on P̃, set hi = b′i, set hi = bi

for other terminals.
Remark: Previous is the unicast phase and following is the uni-
cast phase.

4: Compute path LCP(s, t,h), which is the final LCP, and break
ties according to the following rule: if two paths have the same
cost, then we choose the one that contains more terminals from
candidate LCP LCP(s, t,b).

5: Set OLCPA
i (η=∞, b̃) = 1 and PLCPA

i (η=∞, b̃) =

PLCPA
i (η=∞, b̃) + hi for each terminal on LCP(s, t,h).

6: Set PLCPA
i (η=∞, b̃) = PLCPA

i (η=∞, b̃)− γ · |b′i − bi| for each
terminal on LCP(s, t,b) − LCP(s, t,h).

Recall that for naive mechanism, there may not exist some NE.
Following Theorem shows that there must exist some NE under
LCPA mechanism.

v1 v2

v3

s t(2) (3)

(9)

<2,5> <3,4>

<9,9>

v1 v2

v3

s t(2) (3)

(9)

<2,5> <3,5>

<9,9>

Scenario (1) Scenario (2)

Figure 2: Illustration of LCPA mechanism.

THEOREM 2. There exists Nash Equilibrium for LCPA Mecha-
nism MLCPA.

PROOF. We prove by explicitly constructing a bid vector that
is a NE for MLCPA. Without loss of generality, assume that P =
LCP(s, t, c) = sv1v2 . . . vkt. We initialize the cost vector c(0) =
c and iteratively process the terminals from v1 to vk as follows:
compute VCG payment PVCG

i (η=∞, c(i−1)) for vi using the cost
vector c(i−1), and obtain the new cost vector c(i) from c(i−1) by
setting c

(i)
i = PVCG

i (η=∞, c(i−1)). Let c′ = c(k) and the bidding
vector b̃ = 〈c, c′〉. We prove that the bidding vector b̃ = 〈c, c′〉
is a NE by contradiction. For the sake of contradiction, we assume
that terminal vi can increase its utility by declaring a bid pair 〈x, y〉
that is different from 〈ci, c

′
i〉. We discuss by cases.

ts

P

P’

Figure 3: The illustration of the path P and P′.

Case 1: Terminal vi ∈ LCP(s, t, c). There are two subcase
here. (1) If vi ∈ LCP(s, t, c|ix), i.e., vi is in the candidate LCP,
then the utility in the broadcast phase is gi(c|ix) ≤ gi(c) from
Lemma 1. In the unicast phase, c′i is the maximum value vi can de-
clare when it is still in LCP(s, t, c′). Thus, the utility of vi does not
increase. (2) If vi �∈ LCP(s, t, c|ix), i.e., vi is not in the candidate
LCP anymore, then x > ci. Let P′ ∈ LCP(s, t, c|ix) that covers
vi and P ∈ LCP(s, t, c) as shown in Figure 3. Note that for any ter-
minal vj �∈ LCP(s, t, c), c′j = cj . Thus, for any terminal vj ∈ P′,
hi = c′i = ci. On the other hand, since path P is not of part of
the candidate LCP, hj = cj for any terminal vj ∈ P − vi. From
the assumption P′ is on the candidate LCP, ω(P′, c) ≤ ω(P, c|ix).
Thus,

ω(P′,h) =
∑

vj∈P′
hj =

∑
vj∈P′

cj = ω(P′, c) ≤ ω(P, c|ix)

=
∑

vj∈P−vi

cj + x =
∑

vj∈P−vi

hj + x = ω(P,h|ix),

which implies that vi is not selected in the unicast phase. Therefore,
its overall utility is gi(c|ix). Now we conclude that vi can not
increase it utility by declaring a bid pair 〈x, y〉 that is different from
〈ci, c

′
i〉 in this case.

Case 2: Terminal vi �∈ LCP(s, t, c). There are also two sub-
cases here. (1) If terminal vi �∈ LCP(s, t, c|ix), i.e., vi is neither
on the candidate LCP, then h = c′|ix. vi’s utility from broad-
cast phase is gi(c|ix), which is not greater than gi(c) from Lemma
1. If terminal vi is not on LCP(s, t,h), then its overall utility is
gi(c|ix), which is smaller than gi(c). If terminal vi is on LCP(s, t,h),
then x < ci, which means that vi’s utility in the unicast phase is
x − ci < 0. Thus, terminal vi does not increase its overall utility.
(2) If terminal vi ∈ LCP(s, t, c|ix), i.e., vi manage to decrease its



first bid x in order to be on candidate LCP, then x < ci. Thus,
the utility in the broadcast phase decreases. Let P ∈ LCP(s, t, c)
be a bridge that covers P′ ∈ LCP(s, t, c|ix) and vi ∈ P′. If
vi �∈ LCP(s, t,h), then it has utility −γ · |b′i − bi| in the unicast
phase. If vi ∈ LCP(s, t,h), then ω(P′,h) ≤ ω(P,h). Similarly
to the arguement of case 1, each terminal vj in P and P′ − vi has
cost cj . Thus, y must be smaller than ci. Therefore, vi’s utility in
the unicast phase is y − ci < 0. This shows that vi’s overall the
utility decreases when vi bids 〈x, y〉 instead of 〈ci, c

′
i〉 in this case.

This finishes our proof.

More generally, if b̃ is any Nash Equilibrium for LCPA mecha-
nism MLCPA, we have the following lemma (its proof is presented
in the appendix).

LEMMA 3. Assume that b̃ = 〈b,b′〉 is a Nash Equilibrium for
LCPA mechanism MLCPA, where h is the cost vector obtained in
Algorithm 1.

1. b = c, i.e., each terminal declares its true cost as the first bid.
2. LCP(s, t, c) = LCP(s, t,h), i.e., LCPA always chooses ac-

tual LCP.
3. For any vi ∈ LCP(s, t,b) = LCP(s, t, c), |LCP(s, t,h)| =

|LCP−vi(s, t,h)|.
Unlike the VCG mechanism that always has the same total pay-

ment for a fixed cost vector c, the total payments may varies un-
der different NEs for LCPA mechanism. Let b̃min and b̃max be
any two NEs of the LCPA mechanism such that the total payment
is minimized and maximized respectively. Usually, person favor
truthful mechanism over the Nash Equilibrium because the system
may have multiple Nash Equilibria and it is almost impossible to
reach some specific Nash Equilibria in a distributed setting. How-
ever, if the system performance under different Nash Equilibrium
differs not much, then we are not so worried about which Nash
Equilibrium the system converges to. Fortunately, our LCPA mech-
anism does have this nice property and following theorem shows
that the total payment at different NE differs at most 2 times.

THEOREM 4. P(η=∞, b̃max) ≤ 2 · P(η=∞, b̃min).

PROOF. Karlin et al. [15] showed that

2 ·
∑

vj∈LCP(s,t,c)

b′j
min ≥

∑
vj∈LCP(s,t,c)

b′j
max

.

From Statement 1 of Lemma 3, the total payment for the unicast
phase is a function of b = c. Thus, as long as the true cost vec-
tor c is fixed, the total payment for unicast phase is fixed, say ε.
From Statement 2 of Lemma 3, the total payment of unicast is∑

vj∈LCP(s,t,c) b′j for any Nash Equilibrium b̃. Thus, P(η=∞, b̃max) =∑
vj∈LCP(s,t,c) b′j

max
+ ε ≤ 2 · ∑

vj∈LCP(s,t,c) b′j
min

+ 2ε =

2 · P(η=∞, b̃min).

There are vast literatures discuss how to measure the overpay-
ment of a mechanism, and the notation of frugality [15] has been
shown accurate and useful. The frugality of a mechanism is defined
as the total payment over ν(c), where ν(c) =

∑
vj∈LCP(s,t,c) b′min

j .
It has been shown by Karlin et al. that VCG mechanism has fru-
gality O(n) in unicast routing where n is the number of nodes.
Contrary, our LCPA mechanism has a frugality 2 + ε for any given
positive ε, which greatly improves the VCG mechanism and is
also asymptotically optimal. Before presenting our theorem, we
give a lemma that relate the ν(c) to the cost of least bridge cover
LB(s, t, c).

LEMMA 5. [Immorlica et al. [11] and Karlin et al. [15]] For
any network, ν(c) ≤ |LB(s, t, c)| ≤ 2ν(c).

THEOREM 6. For any given ε, by properly setting τi, the fru-
gality of our LCPA mechanism is 2 + ε, which is asymptotically
optimal.

PROOF. In the proof of Theorem 4, we obtain that 2ν(c) =

2·∑vj∈LCP(s,t,c) b
′
j
min ≥ ∑

vj∈LCP(s,t,c) b
′
j
max, which implies

that total payment in the unicast phase is at most 2 times the ν(c).
In broadcast phase, by setting τi(b−i) = ε·|LB(s,t,b)|

2n
for each

vi ∈ LCP(s, t,b) and τi(b−i) = ε·|LCP(s,t,b)|
n

otherwise, the total

payment in the broadcast phase is at most ε · ν(c) under any NE b̃.
Thus, the total payment is at most (2+ ε) ·ν(c), which finishes our
proof.

Theorem 6 reveals an important fact: our LCPA mechanism could
largely reduce the overpayment of the VCG mechanism in the worst
case theoretically.

4. UNICAST SYSTEM UNDER VALUATION
MODEL

In this section, we focus on how to design a unicast system that
is α-perfect in the Valuation Model, and present some results on
both the negative and positive side.

4.1 α-perfect Unicast System

4.1.1 α-perfect Unicast System– An Upper Bound
Recall that for a unicast system Ψ that is α-perfect, the central

authority should pay 1−α of the total payment. Thus, ideally, one
may try to find the unicast system that is 1-perfect to balance the
budget for the central authority. Naively, one may design a uni-
cast system ΨN that is budget-balanced using VCG mechanism as
follows. First choose the shortest path LCP(s, t,d) according to
the declared vector d. If the valuation of the service requester s
is not smaller than P

VCG(η=∞,d), then (1) s get the service and
each node on the LCP relay the packet; (2) each relay node gets a
VCG payment PVCG

i (η=∞,d). Otherwise, (1) s does not get the
service and no nodes relay the packet; (2) each node gets a zero
payment. Unfortunately, following example shows a surprising re-
sult: unicast system ΨN is not strategyproof for the relay nodes.
Consider the same network in Figure 4. The valuation of s is ak,
ci = 0 for 1 ≤ i ≤ k and ck+1 = ak. If each node declares
its true cost, then the VCG payment to each node on LCP is ak
and the total payment is ak2. Since the valuation of s is ak that
is much smaller than ak2 when k > 1, no nodes relay the packet
and each node receives a zero payment. On the other hand, if node
v1 declares a cost ak, each node on LCP except v1 gets a payment
0 and v1 gets a payment ak. In this case, the total payment is ak
and s receives the service. Consequently, v1 relays the packet and
get a payment ak. v1’s utility is ak when it falsely declares its cost
as ak. This shows that unicast system ΨN is not strategyproof for
the relay nodes. As a step further, following we show a very strong
result on the negative side: we can not design α-perfect system for
any α that is greater than 1/n.

LEMMA 7. Assume Ψ = (M,S) is the unicast system. If Ψ

is α-perfect, then 1. There exists a function µ(d) such that (1)
σ(η,d) = 1 if and only if η ≥ µ(d); (2) ξ(η,d) = µ(d) if
σ(η,d) = 1 and ξ(η,d) = 0 otherwise.

2. If dj < d′
j < PVCG

j (η=∞,d), then µ(d) ≤ µ(d|jd′
j).



PROOF. Statement 1: This statement follows directly from the
previous results [14, 16, 17] and is omitted here.

Statement 2: We prove the second statement by contradiction.
For the sake of contradiction, µ(d) > µ(d|jd′

j). Consider the case
when service requestor t has valuation η such that µ(d) > η >
µ(d|jd′

j) and c = d. If vj reveals its true cost dj = cj , then
service requestor t is not selected to receive the service. Thus, vj is
not selected and has utility 0. Consider the case when vj declares
it cost to d′

j . Since η > µ(d), t is selected to receive the service.
Thus, vj is selected and from IR, Pj(η,d) ≥ d′

j . Therefore, vj’s
utility Pj(η,d)− dj is greater than 0, which implies that M is not
strategyproof. This finishes our proof.

Based on Lemma 7, the following theorem reveals a negative
result on unicast system Ψ that is α-perfect.

vk+1

v1 v2 vk−1 vk

s t

Figure 4: An example for unicast system.

THEOREM 8. Assume that Ψ = (M,S) is unicast system that
is α-perfect, then α ≤ 1

n
.

PROOF. We prove it by presenting the network in Figure 4 as an
example. Let c be the cost vector such that ci = 0 for 1 ≤ i ≤ k
and ck+1 = ak. Considering the cost vector d(1) = c|1(ak − ε).
From Lemma 7,

µ(c) ≤ µ(d(1)). (1)

Since each wireless terminal is either selected or not selected to
relay, [2, 14, 16, 17] the strategyproof mechanism M should sat-
isfy that for each terminal vi, there is a threshold value κi(η,d−i)
that does not depend on di such that (1) if di < κi(η,d−i) then
Oi(η,d) = 1, (2) if di > κi(η,d−i) then Oi(η,d) = 0, and
(3)Pi(η,d) = κi(η,d−i) if Oi(η,d) = 1 and zero otherwise.
Since Ψ satisfies CS, there must exist a value η ≥ µ(d(1)) such
that σ(η,d(1)) = 1. Following we proves by contradiction that
κi(η,d

(1)
−i ) ≤ PVCG

i (η=∞,d(1)). For the sake of contradiction,

κi(η,d
(1)
−i ) > PVCG

i (η=∞,d(1)). Thus, there exists a small posi-

tive value δ such that when di = PVCG
i (η=∞,d(1)) + δ, vi is still

on the shortest path LCP(s, t,d(1)). This contradicts Fact 1. Thus,
κi(η,d(1)) ≤ ε for 2 ≤ i ≤ k and κ1(η,d(1)) ≤ ak. Therefore,
P(η,d(1)) =

∑
vi
Pi(η,d(1)) ≤ ak + (k − 1) · ε. Since Ψ is

α-budget-balance,

µ(d(1)) ≤ P(η,d(1)) ≤ ak + (k − 1) · ε.
Combine Inequality (1) and above Inequality, we have

µ(c) ≤ µ(d(1)) ≤ ak + (k − 1) · ε.
Let cost vector d(i) be d|i(ak − ε) for 1 ≤ i ≤ k and χ be a
large positive number such that χ ≥ max1≤i≤k ξ(d(i)). From the
way we choose the valuation χ, the service requestor t receives the
service under d(i). Thus, vi is selected and from IR, κi(χ, c−i) =

κi(χ,d
(i)
−i) = Pi(χ,d(i)) ≥ ak − ε. Consider the cost vector

c and service requestor valuation χ. For any terminal vi such that
1 ≤ i ≤ k, Pi(χ, c) = κi(χ, c−i) ≥ ak−ε. Therefore, P(χ, c) =

∑
vi
Pi(χ, c) ≥ k · (ak − ε). Now we obtain

α ≤ µ(c)

P(χ, c)
≤ ak + (k − 1) · ε

k · (ak − ε)
.

Let ε → 0, a → ∞ and k = n, then α ≤ 1
n

. This proves the
theorem.

Theorem 8 reveals an upper bound for the budget balance factor
α on any unicast system Ψ that is α-perfect. Following, we present
a unicast system that is 1

2n
-perfect, which is asymptotically opti-

mal.

4.1.2 1
2n

-perfect Unicast System
In [8], Eidenbenz proposed a unicast system that charge the ser-

vice request an amount that equals to the weight of the second
shortest path, where the second shortest path is the shortest path in
graph G − LCP(s, t,d). However, the second shortest path could
be arbitrary large than the total VCG payment. Thus, the unicast
system presented in [8] is not α-perfect for any α because it violates
the competitiveness. In order to remedy this, we proposed a unicast
system that is based on the least bridge cover that is 1/2n-perfect,
which is asymptotically optimal. Our mechanisms are based on our
prelimary results presented in [23].

Before presenting our unicast system, we first introduce some
notations. A bridge set B is a bridge cover for LCP(s, t,d), if
for every terminal vi ∈ LCP(s, t,d), there exists a bridge B ∈ B
that covers vi. The weight of a bridge cover B(s, t,d) is defined
as |B(s, t,d)| =

∑
B∈B(s,t,d) |B(d)|. A bridge cover B is a

minimal bridge cover (MBC), if for each bridge B ∈ B, B −
B is not a bridge cover. A bridge cover is a least bridge cover
(LBC), denoted by LB(s, t,d), if it has the smallest weight among
all bridge covers that cover LCP(s, t,d). It is easy to show that
LB(s, t,d) could be computed in O(n log n) + m, due to space
limit, we ignore the algorithm here. The unicast system we present
is ΨLBC = (MLBC,SLBC), where LBC implies that our algorithm
is based on LBC: the service requester s is charged an amount that
is half of the weight of LBC. Following Lemma shows that the
relation between the weight of LBC and the VCG payment, and
the proof is presented in the appendix.

LEMMA 9. Assume d is the declared cost vector of the network,
then (1) |LB(s, t,d)| ≥ PVCG

i (η=∞,d) for any terminal vi ∈
LCP(s, t,d); (2)|LB(s, t,d)| ≤ 2 · P

VCG(η=∞,d).

In Algorithm 2, the charge to the service requestor is half of
|LB(s, t,d)| if s is granted the service. From Lemma 9, following
theorem shows the performance guarantee of unicast system ΨLBC.

THEOREM 10. The Unicast System ΨLBC is 1
2n

-perfect.

PROOF. First, we prove that mechanism MLBC = (OLBC,PLBC)
is strategyproof. IR is straightforward, and we focus on IC. For
each terminal vi, we discuss it by cases.

Case 1: If terminal vi is selected when reports di = ci. In
this case, it should satisfy that (1) vi is on LCP(s, t,d), (2) η ≥
φ. From the IR property we knows that vi gets a non-negative
utility and its payment PLBC

i (η,d) = PVCG
i (η=∞,d) which does

not depends on its declared cost. Thus, terminal vi can not increase
its utility by falsely reporting its cost.

Case 2: If terminal vi is not selected when reports cost di = ci.
In this case, if vi is not on LCP(s, t,d), then the payment ensures
that vi has no incentive to lie. Thus, we only consider the case
when vi ∈ LCP(s, t,d) and φ > η, i.e., the terminal vi is not
selected due to the reason that service requestor t has a valuation



Algorithm 2 Least Bridge Cover-based Unicast System ΨLBC =
(MLBC,SLBC).

Input: A network G = (V, E), a cost vector d = (d1, d2, . . . , dn)
where di is the declared cost of terminal vi, source s, service re-
questor t, and t’s valuation η
Output: ΨLBC.
1: Compute the shortest path LCP(s, t,d) and LB(s, t,d). Set

φ = |LB(s,t,d)|
2

.
2: if η ≥ φ then
3: Each terminal vk ∈ LCP(s, t,d) is selected and receives a

payment PVCG
k (η=∞, c); all other terminals are not selected

and get a payment 0.
4: t is granted the service and charged φ.
5: else
6: All terminals are not selected and each terminal receives a

payment 0.
7: t is not granted the service and is charged 0.

smaller than φ. Recall that φ does not depend on di when vi ∈
LCP(s, t,d). Thus vi can not affect φ while it is on LCP(s, t,d).
Therefore, terminal vi can not increase its utility by falsely report
its cost.

This proves that M is strategyproof. Recall that the sharing
ξLBC(η,d) = φ does not depend on η, thus SLBC is strategyproof.
Notice that NPT and CS are straightforward, thus we only prove
that the ΨLBC is 1

2n
-budget-balance. To prove that ΨLBC is 1

2n
-

budget-balance, we need to show that

P
LBC(η,d)

2n
≤ ξLBC(η,d) ≤ P

LBC(η,d). (2)

If σLBC(η,d) = 0, then ξLBC(η,d) = 0 and P
LBC(η,d) = 0. The

Inequality (2) trivially holds. Thus, we assume that σLBC(η,d) =
1. Consequently, P

LBC(η,d) = P
VCG(η,d) and ξLBC(η,d) = φ.

Recall that PVCG
k (η=∞, c) ≤ |LB(s, t,d)| for any vk ∈ LCP(s, t,d).

Thus, P
LBC(η,d) = P

VCG(η=∞,d) ≤ n · |LB(s, t,d)| = 2n · φ.

Reorganize it we have ξLBC(η,d) = φ ≥ P
LBC(η,d)

2n
. On the other

hand, from Lemma 9, ξLBC(η,d) = φ = |LB(s,t,d)|
2

≤ P
LBC(η,d).

This finishes our proof.

4.2 1
2
-NE-perfect Unicast System

Although the unicast system ΨLBC is 1
2n

-perfect, which is asymp-
totically optimal, it may not be acceptable in certain circumstances.
Thus, again, we try to relax the dominant strategy requirement for
the terminals. In this section, we design a unicast system that
is 1

2
-NE-perfect. With the help of LCPA mechanism and Least

Bridge Cover, we have the following unicast system ΨAU, where
AU stands for LCP Auction based Unicast system. The Unicast
System ΨAU works as follows: it first executes the broadcast phase
in LCPA. After obtaining the vector h, it punishes the terminals in
LCP(s, t,b) − LCP(s, t,h) for bidding too high for the second
round. The punishment for bidding too high can be adjusted by
parameters γ for different practical implementation needs. It sends
the packet if and only if service requestor t’s valuation is greater
than half cost of the least bridge cover. All the relay terminals on
LCP(s, t,h) receives hi if t receives the service and 0 otherwise.
All relay terminals that are not on LCP(s, t,h) receives 0 payment.
Algorithm 3 describe the unicast System ΨAU in details.

Regarding the unicast system ΨAU, we have the following lemma.

LEMMA 11. There exist some Nash Equilibria for terminals in
unicast system ΨAU = (MAU,SAU).

Algorithm 3 Least Cost Path Auction-based Unicast System
ΨAU = (MAU,SAU).

Input: A network G = (V, E), source s, requestor t, t’s declared
valuation η, b̃ = 〈b,b′〉, a parameter γ.
Output: ΨAU.
1: Execute the broadcast phase in Algorithm 1 (Line 1 to 5). No-

tice the h is the vector obtained on Line 5.
2: for each terminal vi ∈ LCP(s, t,b) − LCP(s, t,h) do
3: Set PAU

i (η, b̃) = PLCPA
i (η=∞, b̃) − γ · |b′i − bi|

4: Set φ = |LB(s,t,b)|
2

.
5: if φ ≤ η then
6: Set σAU(η, b̃) = 1, and ξAU(η, b̃) = φ.
7: for each terminal vi ∈ LCP(s, t,h) do
8: Set OAU

i (η, b̃) = 1, PAU
i (η, b̃) = PAU

i (η=∞, b̃) + hi.
9: Set ΨAU = (MAU,SAU), and output ΨAU.

PROOF. If η < LCP(s, t, c), then bid 〈c, c〉 is a NE. If η ≥
LCP(s, t, c), then similar the proof to Theorem 2, 〈c, c〉 is a also
NE. The proof is omitted here due to space limit.

LEMMA 12. If b̃ is a NE for unicast system ΨAU, then (1) b =
c; (2) LCP(s, t,b) = LCP(s, t,h).

PROOF. The key observation is that φ = |LB(s,t,b)|
2

does not
depend on any terminal vi on LCP(s, t,b). The detailed proof is
similar to Lemma 3 and is omitted here.

THEOREM 13. ΨLCPA is 1/2-NE-perfect with ε additive for any
fixed positive ε.

PROOF. We discuss by cases. If η < φ, then P
AU(η, b̃) = ε and

ξAU(η, b̃) = 0. If η ≥ φ, then ξAU(η, b̃) = φ = |LB(s,t,b)|
2

. From

Theorem 4 and Lemma 5, |LB(s, t,b)| ≥ ν(c) = P(η=∞, b̃min)−
ε ≥ P(η=∞,b̃max)

2
− ε ≥ P

AU(η,b̃)
2

− ε. This proves that ΨAU is
1
2

-budget-balanced with ε additive. For a given fix b̃, the sharing
ξAU(·) does not depend on η, thus SAU is strategyproof. The NPT
and NE-CS property are straightforward, thus ΨAU is NE-perfect
with ε additive.

5. UNICAST SYSTEM IMPLEMENTATION
In Section 4.2, we discuss how to design the unicast system that

is NE-perfect. There are quite a few issues should be addressed
before the unicast mechanism can be implemented as a protocol in
practice.

5.1 Multiple Service Requestors and Broad-
cast Phase Implementation

In Section 4.2, we only consider the routing between a fixed ser-
vice requestor and the source. However, there are probably more
than one service requestors. The very naive way is to request ev-
ery terminal to bid a cost bi for every possible service requestor in
the broadcast phase. In the worst case, every terminal need to bid
O(n) bids and the source need to collect O(n2) bids, where n is
the number of the terminals. This is not practical and if possible
at least not efficient. From Lemma 12, we conclude that b = c
for any service requestor. Thus, each terminal only needs to send
the first bid to the source exactly once as long as its cost does not
change.

Another key issue in the broadcast phase is how to broadcast the
packet after the the bids are elicited from the terminals. One naive



way is that we broadcast the dummy packet for every service re-
quest from any service requestor, as done in the ΨAU. However, no-
tice that the reason for the broadcast is that we need every terminal
to send a ”dummy” packet of certain size, which can contain any
content. Thus, instead of broadcasting the the packet with certain
size for each service requestor, we could implement the broadcast-
ing phase in a tricky way: we request each terminal to send out a
packet of certain size and pay them certain amount of money peri-
odically regardless of the service request in the network. A possible
implementation of the broadcast is presented in Algorithm 4.

Algorithm 4 Broadcasting Phase of ΨAU = (MAU,SAU).

1: The source s collects a bid bi for each terminal vi.
2: Periodically, say every δ minutes, the source

pays each terminal fi(s, t,b) = τi(b−i) ·[
bu · (n · bu − ∑

vj∈G−vi
bj) − b2i

2

]
.

3: Every δ minutes, every terminal sends a ”dummy” packet of
size ρ = τi(b−i) · (n · bu − ∑

vi∈G

bi) to all its neighbors. Notice

that the terminal sends the packet using a broadcast manner,
thus the cost spent for each terminal only depends on the size
instead of the number of the neighbors.

4: Each terminal vi keeps a variable aij for each of its neighbors
vj to indicate how many times vj has broadcasted since last
reset.

5: Each terminal vi resets aij = 0 in a certain period of time
which is known publicly.

Note that the broadcast phase in Algorithm 4 is totally separated
from any specific unicast phase, it has several advantages over the
broadcast phase in Algorithm 3: (1) each terminal vi only needs to
bid bi once as long as there is no cost update. (2) The broadcast
phase in Algorithm 4 is not specific to any service requestor, and it
can change the function τi(b−i) and time parameter δ for different
application. (3) The terminals does not need to synchronize exactly
in order to broadcast the packet at the same time. The only thing
every terminal should guarantee that it broadcasts a packet every δ
minutes. (4) The terminal’s broadcast activity is monitored by all
its neighbors. Thus, it is very easy to ensure the truthful implemen-
tation of the broadcast activity at each terminal.

5.2 Unicast Phase Implementation and Fast
Convergence

In the unicast phase, the implementation is flexible. Algorithm
5 outlines one possible unicast phase implementation and it is pos-
sible that unicast could use some existing routing protocols like
DSR [13].

The Algorithm 5 has one drawback: it may take several rounds
before certain NE is reached, which depends on whether the ter-
minal are more aggressive or conservative and on the parameter
γ. What makes the case worse is that the topology and cost could
change overtime. Thus, instead of sending a FAIL or ACK mes-
sage right away to the service requestor, the sender could send
the BID-REQ several times until LCP(s, t,h) = LCP(s, t,b)
and |LCP(s, t,h)| = |LCP−vi(s, t,h)| for every terminal vi on
LCP(s, t,b) i.e., it gives a chance to the terminals on the shortest
path to reach some NE. In the meanwhile, the penalty γ · |b′i − bi|
should be deducted from the vi’s payment in every BID-REQ at-
tempt in order to converge fast. Recall that, although there may
have multiple BID-REQs for the terminals on the LCP, the packet
does not get sent before some NE is reached.

5.3 Other Implementation Issues

Algorithm 5 Unicast Phase of ΨAU = (MAU,SAU).

1: When a service requestor t wants to send or receive some pack-
ets from the source, it first sends a routing request packet REQ
with its valuation η.

2: Upon receiving the REQ packet, we compute the LCP based
on b. It then prepares a BID-REQ packets containing the ter-
minals on the LCP, and sends this BID-REQ back to t along
the LCP.

3: Whenever a terminal receives a BID-REQ that contains itself,
it prepares a NEW-BID packet that contains its second bid and
sends back to s.

4: Whenever the access point s has received all the NEW-BID
packets from the terminals on the LCP(s, t,b), it executes Al-
gorithm 3. It charges terminals accordingly.

5: if φ ≤ η then
6: It prepares an ACK packet containing the LCP(s, t,h) and

sends back to the service requestor t along LCP(s, t,h).
7: It charges the service requestor t φ.
8: else
9: It prepares a FAIL packet and sends back to the service re-

questor t.
10: Upon receiving an ACK packet, the node t sends the packet

along the path LCP(s, t,h).

Packet Forwarding: In this paper, we mainly focus on how to
select the routing path, how to pay the relay terminals and how to
charge the service requestor. It is worth to point out that we have
not addressed the issues on how to gather the information in the
routing discovery phase and how to forward the packet after the
computation of the path and payment. In [25], Zhong et al. studied
the problem of designing strategyproof routing and forwarding pro-
tocols in wireless ad hoc networks, and proposed a game-theoretic
and cryptographic techniques integrated approach. This integrated
approach should be a critical part of a unicast routing system which
can deployed in practice. Thus, for the implementation of our uni-
cast system, we will save our effort and borrow the approach pro-
posed by Zhong et al. to deal with the forwarding phase. For more
details, refer to [25].

Multiple Access Points: Previous, we only study the scenario
in which there only exists single access point. It is possible that
there exist multiple access points and a service requestor can com-
municate with any one of these access points. However, no much
literatures considered this scenario even in the most basic Axiom
Model. Fortunately, the multiple access points problem can be re-
duced to the single access point problem as follows. Assume there
exist multiple access points si. First, we add a virtual access node
s to the network as the only access node. Then, we add terminal u
as s’s neighbor if and only if u is some access point si’s neighbor.
Finally, we remove all actual access points si and its incident edges
from the network.

Budget Imbalance Coverage: Note that no matter for perfect
system or NE-perfect system, we are not able to achieve budget bal-
ance. In other words, the central authority may lose money from
time to time due to any service request. The budget imbalance
could be covered by the monthly fee or some form of tax. How-
ever, the root of cause of the budget imbalance rises from the nota-
tion of budget balance: the competitiveness requires that the central
authority can never retrieve more than the total payment to relay
terminals from the service requestor. If the competitiveness does
not satisfied, then it is possible that other central authorities could



comes compete to lower the price for service requestor. Obviously,
the requirement of the competitiveness could be relax reasonable
to allow central authority to earn some money in certain cases and
lose some money in other cases, while keep the expected budget
balanced. As evident from our simulation below, the BBF of our
unicast system ΨAU is alwasy very close to 0.5 while ΨLBC could
varies from 0.1 to 0.5. By simply modifying φ = |LB(s, t,b)|,
the unicast system Ψauni is budget balanced almost under any cir-
cumstance in random wireless network and practice. However, for
Ψduni, even for the same wireless network with terminal mobility,
we are not able to modify the system to make the expected budget
balanced. This showes that our unicast system ΨAU not only has a
much better theoretical guarantee than ΨLBC, but also works much
better in real world wireless networks.

Positions of wireless devices Topology of the network

Figure 6: A snapshot 7 : 10AM of the wireless mobile devices
and the wireless network .

6. SIMULATION STUDY
In Section 3, we prove that the total payment of LCPA mecha-

nism is not greater than the total payment of the VCG mechanism,
and in certain cases the total payment of LCPA is only O( 1

n
) of the

total payment of VCG mechanism. However, there is a huge gap
between the theoretical bounds. Thus, we are interested in compar-
ing the total payment of LCPA mechanism and VCG mechanism in
certain wireless networks. Recall that for the unicast systemΨLBC,
we proved that it is 1

2n
-perfect. We also study the budget balance

factor in certain wireless networks.

6.1 Random Wireless Networks
Network Settings: In this simulation, we randomly generate n

terminals uniformly in a 2000ft × 2000ft region. The transmis-
sion range is computed using the modified CTR topology control
protocol [19]: all terminals has the same transmission range, which
is set to the critical value for bi-connectivity, i.e., to the minimum
value r such that the communication graph generated when every
terminal with range r is bi-connected. For every terminal vi, its
cost for relaying unit size data is randomly drawn from 1 to 10.
The access point is placed in the center of the region in this simu-
lation. Since the additive ε could be arbitrary small by tuning the
parameter, we disregard it in our simulation.

Comparison of the Total Payment: We first compare the total
payment of LCPA mechanism with that of the VCG mechanism.
Notice that the total payment of LCPA mechanism varies if the NE
are different, and there are could be infinitely many different total
payments. In our simulations, we only choose the NE b̃max that
maximizes the total payment, which is the worst case. We generate
500 different random networks with 200 terminals and choose 40
different routes per random wireless network. The distribution of
total VCG payment and LCPA payment is shown in Figure 5 (a).

Notice in Figure 5 (a), the last column gives the number of VCG
payment and the maximum LCPA payment that is greater than 10
instead of equaling 10. One can verify that given a fixed value x,
the probability that LCPA payment is less than x is always smaller
than the probability that VCG payments is less than x.

We also vary the number of terminals from 100 to 500. For each
fixed number of terminals, we generate 500 different scenarios and
randomly choose 50 different routes in each scenery. The average
actual cost, the average weight of the LBC, the average VCG pay-
ment and LCPA payment are shown in Figure 5 (b). One striking
observation is that the average weight of LBC is almost not dis-
tinguishable from the average NE payment, and the average VCG
payment is only a little bit larger than the average NE payment.

Budget Balance Factor Study: Here, we use the same network
setting and study the budget balance factor of unicast system ΨLBC.
Note that for the unicast system ΨAU and ΨLBC, φ = |LB(s,t,b)|

2
is

exactly the same. This is important since for any service requestor
t, it always has the same charge in system ΨLBC and system ΨAU,
which makes the comparison very fair. On the other hand, we use
the b̃max as the NE to compute the total payment for ΨAU, which is
the worst case budget balance factor. Figure 5 (c) shows the com-
parison of the BBFs of the unicast system ΨLBC and ΨAU. Notice
that the BBF of system ΨAU is 1

2
under any case. The average BBF

in unicast system ΨLBC is around 0.45 which is a little smaller than
the BBF in unicast system ΨAU. However, in the worst case, the
minimum BBF in unicast system ΨAU is almost the same as the
average BBF while the minimum BBF in unicast system ΨLBC is
smaller than 0.2. Thus, the unicast system ΨAU can guarantee a
much larger BBF in the worst case than unicast system ΨLBC.

6.2 Wireless Networks in Portland
Network Setup: In this section, we make use of the real snap

shots of potential wireless mobile devices in the downtown Port-
land. These snap shots are based on the movement of a synthetic
population created by the Transims software that is statistically in-
distinguishable from US census data. The three snap shots give
the positions of the wireless mobile devices at time 7 : 00AM ,
7 : 10AM and 7 : 13AM and Figure 6 shows the road map and
the position of the mobile devices at 7 : 10AM . In this simulation
we fix the transmission of the wireless devices to 200, which re-
sults in an almost bi-connected wireless communication graph. It
is not very difficult to observe that there are several devices that are
separated from the others. We will remove these isolated devices
and consider the main bi-connected component. In the snapshots,
we place the access point at one of five fix positions.

Budget Balance Factor Study: In these snapshots, the cost of
the wireless devices is randomly drawn from 1 to 10. We choose
every wireless device that is not directly connected to the access
point as a potential service requestor an compare the budget bal-
ance factors in unicast system ΨLBC and ΨAU. Figure 7 shows the
distribution of the BBFs in three different snapshots.

It is not difficult to observe that the average BBF of ΨAU are near
0.5 in all snapshots, while the average BBF of ΨLBC could vary
from 0.33 to 0.39. Furthermore, the minimum BBF of ΨAU are
close to 0.5 for both snapshots while the minimum BBF of ΨLBC

is close to 0.2. Both the random wireless networks and real world
snap shot show that the average BBF of ΨLBC is not very bad, which
is between 0.3 to 0.45. However, the minimum BBF of ΨLBC could
be as small as 0.2, while the minimum BBF of ΨAU is around 0.5
almost for sure.

7. CONCLUSION
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Figure 7: Budget Balance Factor of ΨLBC and ΨAU in three real world snapshot.

In this paper, we study wireless multi-hop networks consisting of
selfish, non-cooperative wireless terminals and service requestor.
We propose a set of optimal unicast routing systems (OURS) with
proved performance guarantee. We first consider the unicast system
in the Axiom Model. Since the the budget balance factor of VCG
mechanism could be as small as 1

n
(albeit it is strategyproof and

social efficient), we propose the LCPA mechanism that provably
reduces the inevitable overpayment by achieving Nash equilibria
for the relay terminals. We then consider the unicast system in the
Valuation Model in which both the relay terminals and the service
requestor could be selfish. For strategyproof and social efficient
system in this setting, we prove that no system can guarantee that
the access point can retrieve more than 1

n
of the total payment to

the relay terminals; and we present a strategyproof and social ef-
ficient unicast system ΨLBC that collects a fraction 1

2n
of the total

payment which is thus asymptotically optimum. We also propose a
social efficient unicast system based on NE solution that achieves a
constant budget balance factor.

There are a number of interesting problems left. We mainly stud-
ied social efficient mechanisms, and considered the trade-offs be-
tween budget balance factor and strategyproofness. It is interesting
to design mechanisms that are budget balanced and strategyproof
with the best possible social efficiency; or design social efficient
and budget balanced mechanisms using Nash Equilibria solution
concept.
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APPENDIX
Lemma 3 Assume that b̃ = 〈b,b′〉 is a Nash Equilibrium for
LCPA mechanism MLCPA, where h is the cost vector obtained in
Algorithm 1.

1. b = c.
2. LCP(s, t, c) = LCP(s, t,h).
3. For any vi ∈ LCP(s, t,b) = LCP(s, t, c), |LCP(s, t,h)| =

|LCP−vi(s, t,h)|.
PROOF. Statement 1: For simplicity for our notation, let P1 =

LCP(s, t,b) and P2 = LCP(s, t,h). We first prove that P1 = P2.
We prove this by studying edges in different groups.

1. vi �∈ P1 ∪P2. In this case, vi’s overall utility is gi(b), which
is maximized when bi = ci. Since we directly set hi = bi for
link vi �∈ P1, hi = bi = ci.

2. vi ∈ P1 and vi �∈ P2. In this case, vi’s overall utility is
gi(b)− γ · |b′i − bi|, which is maximized when bi = b′i = ci.

Thus, hi = b′i = bi = ci.
3. vi ∈ P2 and vi �∈ P1. In this case, we have hi = bi.
Then we can conclude that for any node vj that is not in P2,

hj = cj = bj . Thus,

ω(P2,h) − ω(P1,h) =
∑

vj∈P2−P1

hj −
∑

vj∈P1−P2

hj

≥
∑

vj∈P2−P1

bj −
∑

vj∈P1−P2

cj =
∑

vj∈P2−P1

bj −
∑

vj∈P1−P2

bj

=
∑

vi∈P2

bj −
∑

vj∈P1

bj = ω(P2,b) − ω(P1,b) ≥ 0.

This implies that ω(P1,b) = ω(P2,b) and ω(P1,h) = ω(P2,h).
Thus, P1 = P2.

Then we consider all remaining edges, i.e., vi ∈ P2

⋂
P1. Note

that P2

⋂
P1 = P1 since P1 = P2. If bi ≥ ci, then by declaring

ci, vi’s utility in the broadcast phase increases. In the meanwhile,
vi is still on P1, impling that its utility in the unicast phase does
not change. Thus, bi ≤ ci for each terminal on P1. If vi is on P1

and bi < ci, then it can increase its utility from broadcast phase by
bidding bi = ci. In the meanwhile, bi ≤ ci for each terminal vi on
P1 and bi = ci for other terminals. Thus, vi can guarantee that it is
still on the LCP when it declared ci. Therefore, vi can increase its
overall utility by bidding bi = ci, which contradicts the definition
of the Nash Equilibrium. This finishes the proof of first statement.

Statement 2: The second statement is straightforward from the
definition and the proof is omitted here.

Statement 3: Assume that terminal vi ∈ LCP(s, t,b) = P1, if
|LCP(s, t,h)| < |LCP−vi(s, t,h)|, then by bidding b′ + δ for a
sufficient small δ such that |LCP(s, t,h′|ib′i+δ)| < |LCP−vi(s, t,h

′)|,
its utility increases by δ. Thus, |LCP(s, t,h)| ≥ |LCP−vi(s, t,h)|.
On the other hand, from the definition of the LCP, |LCP(s, t,h)| ≤
|LCP−vi(s, t,h)|. Thus, |LCP(s, t,h)| = |LCP−vi(s, t,h)| for
every vi ∈ P1.

Lemma 9 Assume d is the declared cost vector of the network,
then (1) |LB(s, t,d)| ≥ PVCG

i (η=∞,d) for any terminal vi ∈
LCP(s, t,d); (2)|LB(s, t,d)| ≤ 2 · P

VCG(η=∞,d).

PROOF. Statement 1: From the definition of the bridge cover,
for each terminal vi ∈ LCP(s, t,d), there must exist a bridge
B ∈ LB(s, t,d) such B covers vi. Since the path composed of
LCP(s, s(B),d), B and LCP(t(B), t,d) is a path that does not
contain vi,

|LCP(s, s(B),d)|+|B(d)|+|LCP(t(B), t,d)| ≥ |LCP−vi(s, t,d)|.
Thus, PVCG

i (η=∞,d) = |LCP−vi(s, t,d)|−|LCP(s, t,d)|+di ≤
|LCP(s, s(B))| + |B(d)| + |LCP(t(B), t,d)| − |LCP(s, t,d)| +
di = |B(d)|−|LCP(s(B), t(B),d)|+di ≤ |B(d)| ≤ |LB(s, t,d)|.

Statement 2: In order to prove the second part, we introduce the
min k-flow node disjoint paths Fk(d) for a network when the de-
clared cost vector is d. Note that F1(d) = LCP(s, t,d). In [11],
Immorlica et al. proves that |F2(d)| − |F1(d)| ≤ P

VCG(η=∞,d).
Notice that F2(d)−F1(d) is also a bridge cover for LCP(s, t,d).
Thus |F2(d) − F1(d)| ≥ |LB(s, t,d)|. Combining this with the
fact that |F2(d)| ≥ 2|F1(d)|, we obtain that |LB(s, t,d)| ≤
|F2(d) − F1(d)| ≤ |F2(d)| ≤ 2 · (|F2(d)| − |F1(d)|) ≤ 2 ·
P

VCG(η=∞,d). This finishes our proof.


