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Abstract—Facing a large number of personal photos and
limited resource of mobile devices, cloud plays an important role
in photo storing, sharing and searching. Meanwhile, some recent
reputation damage and stalk events caused by photo leakage
increase people’s concern about photo privacy. Though most
would agree that photo search function and privacy are both
valuable, few cloud system supports both of them simultane-
ously. The center of such an ideal system is privacy-preserving
outsourced image similarity measurement, which is extremely
challenging when the cloud is untrusted and a high extra
overhead is disliked. In this work, we introduce a framework
POP, which enables privacy-seeking mobile device users to
outsource burdensome photo sharing and searching safely to
untrusted servers. Unauthorized parties, including the server,
learn nothing about photos or search queries. This is achieved
by our carefully designed architecture and novel non-interactive
privacy-preserving protocols for image similarity computation.
Our framework is compatible with the state-of-the-art image
search techniques, and it requires few changes to existing cloud
systems. For efficiency and good user experience, our framework
allows users to define personalized private content by a simple
check-box configuration and then enjoy the sharing and searching
services as usual. All privacy protection modules are transparent
to users. The evaluation of our prototype implementation with
31,772 real-life images shows little extra communication and
computation overhead caused by our system.

I. INTRODUCTION

With the proliferation of smart personal devices (e.g., s-
martphone, tablet PC) as well as the emergence of wearable
devices (e.g., Google Glass), huge amounts of photos are
produced everyday. Facing the challenge of photo management
on resource-limited mobile devices, users often choose to
outsource the burdensome storage and search jobs to cloud
servers such as Amazon Cloud Drive, Dropbox and some
image-oriented cloud (Cloudinary). Various social networking
systems (Flickr, Facebook, Google Plus etc.) also provide
photo sharing services for personal uses.

Considering the rich sensitive information (e.g., people,
location and event) embedded in photos, privacy becomes
a critical issue when photos are outsourced to third parties.
Today’s cloud-based photo services are still in a struggle
between the search functionality and users’ privacy. For exam-
ple, the image recognition technique introduced by Facebook
was very controversial in 2011, because the objects in users’
photos such as faces and cars can be automatically recog-
nized and searched [1], [2]. Tracking and stalking become
easier with various image search engines (e.g., Google Image
Search, Yahoo! Image Search). This controversy finally made
Facebook to switch off its face recognition service in 2012.

But it has brought back the functionality recently due to
the need for image search, along with much disapproval. To
handle such privacy issues, Google has decided to forbid face
recognition on Google Glasses. To some extent, the above
privacy concerns come from the fear that our photos might
be illegally searched by a malicious hacker, especially when
the search can be automatically conducted by a machine. And
this is probably one of the primary reasons why users want
to get rid of face recognition. However, the object recognition
techniques could bring powerful ability to image search, e.g.,
finding photos with a specific friend. Using the access control
mechanism alone can not protect outsourced photos from
untrusted cloud. And simply disabling automatic recognition
or simply encrypting the sensitive content (e.g., P3 [3]) is not
the desired solution, because it also eliminates the utilities
lying in the image search functionality.

Though both the search functionality and users’ privacy
are valuable, few today’s cloud system supports both of them
simultaneously. The most challenging part is outsourcing the
content-based image search to the cloud while preventing
the cloud from learning anything about the image content
and the query. The core of the search computation is mea-
suring distances (or similarity) among image vectors, which
requires both additive and multiplicative operations. Fully
homomorphic encryption (supporting both operations) could
be an ideal solution, but existing schemes, e.g., [4], are still
impractical due to their unacceptably large computation cost.
Some secure multi-party computation (SMC) methods [5]
can support privacy-preserving vector similarity measurement.
However, they require rounds of online interactions between
the image owner and queriers, which is contrary to the goal
of outsourcing and the owner cannot guarantee to stay online.
Ideally, privacy-sensitive users should have an option to use
the secure version of photo sharing and searching system
with little extra overhead, in which image search with object
recognition is allowed for authorized users but the privacy
leakages due to untrusted server and automatic recognition
are prevented.

To achieve this vision, we introduce a novel framework
POP, does just that, enabling mobile device users to enjoy
cloud-based photo sharing and search as well as preserve their
privacy. To address the challenge raised by outsourced privacy-
preserving image similarity measurement, we propose two
efficient non-interactive vector distance computation protocols.
Via our framework, an owner can share his photos on the



cloud safely with fine-grained privacy protection policies; and
an authorized querier can send queries to the cloud to search
on others’ photos. Despite such outsourcing, POP does not
reveal the private image contents or the query contents (in-
cluding its result) to the cloud. To more aggressively enhance
the performance, we further introduce the optimized variant
POPbin where the computation overhead is reduced by a half
with only a little loss of accuracy. POP can be considered
as a step towards easily deployable frameworks for privacy-
preserving outsourced photo sharing and searching services.
Any cloud can adopt it to attract privacy-seeking mobile users
with the following advantages:
1. The framework is designed in a modularized manner and

requires few changes to existing cloud platforms. To guar-
antee the search accuracy, our framework is compatible
with the state-of-the-art image search techniques.

2. For the mobile user, the majority of heavy jobs (storage,
access control and searching) are outsourced to cloud
servers, without breaching users’ photo-related privacy.

3. For image similarity measurement, we design two privacy-
preserving vector distance computation protocols for both
real and binary vectors, which are the core of our solution.
Different from the existing multi-party computation based
methods, our protocols enable efficient vector distance
computation in a non-interactive way, which means the
photo owner does not have to interact with the cloud or
the querier.

4. To achieve good user experience, all privacy protection
modules work automatically and are transparent to users
after one simple privacy setting.

5. We implement and evaluate our framework using 31,772
real-life images on both smartphones and laptops. The
evaluation shows that very low extra overhead is incurred
by our method.

II. BACKGROUNDS AND MOTIVATION

One of our main contributions is enabling efficient photo
sharing and searching on encrypted photos. In order to achieve
high search accuracy, POP leverages the state-of-the-art image
search technologies in computer vision field. Here, we briefly
review the search techniques, and then discuss the privacy
issues emerging from them in this section.

A. Descriptors Based Image Search
Images are usually searched by their contents. Different

types of visual descriptors are proposed to model the visual
characteristics of the image, e.g., color, intensity, texture
or objects within the image. Various image contents can
be recognized and localized (e.g., people [6] and face [7])
using visual descriptors. Among these, human face detection
received extraordinary attention and is one of the most mature
object detection techniques so far [7], [8].

The feature descriptor is usually constructed as a set of
numeric vectors, denoted as feature vectors. There are some
statistical feature vectors (e.g., intensity/color histograms).
Also, many well designed visual descriptors are proposed to
achieve accurate image search, e.g., SIFT [1] and SURF [2]. In

those works, each feature vector is generated from an interest
point of the image to describe the visual characteristics around
the point. Interest points are pixels containing distinguishing
information of the image [9]. In general, all feature vectors
belonging to the same descriptor have the same dimension
(e.g., SIFT has 128 dimensions and SUFR has 64 dimensions).
The numeric type of vectors may be real number [1], [2] or
binary [10], [11], and different types of vectors are used for
different applications. Specifically, with a little accuracy loss,
binary descriptors are usually more efficient in computation
and suitable for resource-restricted mobile applications. We
design our framework capable of dealing with both real
number and binary feature vectors.

Given a query image, one needs following three steps to
search the top-k similar images from the database. Firstly, pre-
defined image descriptor is extracted from the query image.
Secondly, each feature vector in the query image is compared
with feature vectors from the database images. Thirdly, sim-
ilarity score for every database image is measured based on
the vector comparison and finally the top-k high-score images
are returned to the querier.

B. Privacy Implications
Rich content of photos raises various privacy implications.

There are many mature techniques to detect and recognize
the objects within the photos as aforementioned. These tech-
niques can possibly be used to automatically analyze the
photos to mine sensitive information with various data mining
techniques. Combining the location stamps and time stamps
embedded in a photo, more sensitive information about the
person may be derived (e.g., home location, occupation, level
of incoming). Therefore, the private part (denoted as Region
Of Privacy (ROP) hereafter) of a photo needs to be protected,
so that no human or machine runnable algorithm can learn
sensitive information in the photo.

Besides the outsourced photos, the query sent to the cloud
side incurs privacy implications as well. Even though the
uploaded photos are well protected via encryption so that the
cloud does not gain useful information of them, their contents
can be easily deduced if the queries’ contents and results are
revealed to the cloud. Since the entire search process should be
outsourced to the cloud for resource saving, protecting queries’
contents as well as the results is equally important to protecting
the uploaded photos.

III. SYSTEM OVERVIEW

POP is designed for mobile users who require both out-
sourced photo services and privacy protection. Figure 1 il-
lustrates the architecture and workflow of our framework2.
With this framework design, POP can provide the follow-
ing services: (1)privacy-preserving photo storage outsourcing;
(2)fine-grained photo sharing with privacy protection enforce-
ment; (3)light-weight photo searching for mobile devices.

2We logically divide the cloud into sharing cloud and search cloud for
explanation purpose, but revealing this structure does not breach users’ privacy
at all.
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Fig. 1: POP System Overview

A. Privacy Preserving Photo Storage

Before users upload their photos to cloud servers for shar-
ing, the photos need to be pre-processed. Firstly, the region
of privacy (ROP), which is a rectangle defined by two pixel-
level coordinates (top-left and bottom-right) on the photo, is
either automatically or manually determined. In the automatic
manner, the user can select a category of objects as private
content, e.g., faces and car plates. Then all private objects
will be automatically detected by object recognition algorithm
and set as ROPs, e.g., the face in Fig. 2. Otherwise, the owner
can also manually define the ROP by selecting a rectangle
region on the photo. Users who cannot determine the private
content can simply define the whole image as ROP to prevent
potential information leakage. Then, the feature vectors of
the ROP are extracted according to the definition of the
image descriptor (Section II-A). Note that, hereafter we use
the human faces as example ROPs of photos in this work,
but other objects such as pedestrians and cars, can also be
defined as ROPs with corresponding recognition algorithms.
Moreover, except defining ROP, all the following operations
are conducted automatically by the system and transparent to
users.

After the ROP is selected, it is separated into public part and
secret part, where the public part doesn’t contain any sensitive

information and the secret part is encrypted such that only the
authorized users with keys can access to it and recover the
original ROP. We review the following three different methods
for the separation:
1. Mask: fills public part of ROP with solid black (all intensity
values ‘0’) and takes the original ROP as secret part.
2. P3 [3]: separates ROP based on a threshold in the DCT
frequency domain; sets the higher frequency part as secret
part and the remaining as public part.
3. Blur [12]: a normalization box filter is applied to ROP to
generate the public part; subtracts the public part from ROP
in a pixel-wise way to achieve the secret part.
Then, the public part of the whole photo is produced by
replacing its ROP with the public part of ROP (as shown
in Fig. 2). Our experiment (Section VI) shows that all three
methods are resistant to automatic detection algorithms, but
the blur based method outperforms others in the storage cost,
hence we adopt the blur as the default separation method in
POP. After extracting the private part from ROP, the owner
encrypts the secret part as well as its image descriptor as a
private bag, and uploads the private bag to the search cloud.
Then, he also uploads the public part of the original photo as
a public bag to the sharing cloud (Fig. 1(a)).

B. Fine-grained Photo Sharing

POP allows fine-grained photo sharing among users. The
photo owner uses an access control scheme (e.g., [13], [14])
to encrypt the search keys so that only the authorized users
with certain attributes can obtain search keys. As the Step 5
in Fig. 1(a), the owner encrypts the search keys under the
access rule that he defines, and the encrypted search keys are
uploaded to the sharing cloud and made published. Obtaining
the search key, the authorized user can generate valid photo
queries and decrypt the private part of ROP. The completed
original images can be recovered simply by merging the public
parts of images and the private parts of ROPs. Here, all these
operations are also automatic and transparent to users, and the
authorized user can browse the shared images as usual.

C. Light-weight Photo Searching

When a querier wants to search a photo among someone
else’s photos, he pre-processes the querying photo to achieve
the corresponding image descriptor. Then, only if satisfying
the owner’s access rule, he can retrieve the search keys
to search on the owner’s photos, but it is the cloud who
conducts the searching job and returns the result to the querier
obliviously, i.e. without knowing contents of the owner’s
ROPs or the contents of the query photo. After fetching the
query result, as mentioned above, system generate the original
image for the querier transparently. For the querier, the whole
system appears like common image search systems. Fig. 1(b)
illustrates the search procedure.

D. System Design Goals

Our system is designed to achieve efficiency, privacy pro-
tection and accuracy goals.
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• Efficiency: To overcome the resource limitation of mobile
client, operations at the user side should be light-weight, and
most of the expensive computations should be outsourced to
the cloud side.
• Privacy Preservation: Users outsource not only the

storage of photos but also the searching to the cloud side in
POP. Therefore, the framework is expected to protect users’
privacy in various aspects:

1. ROP Privacy: Unauthorized party should not learn secret
part of ROP including cloud servers,

2. Query Privacy: Cloud servers should not learn query
photos,

3. Result Privacy: Cloud servers should not learn search
results, which are all non-trivial challenges since cloud servers
are the party who conducts the searching jobs on the photos
stored at his side.
• Accuracy: Introducing the privacy protection mechanism

should not bring much accuracy loss. That is, the search result
from POP should be comparable with traditional image search
technologies conducted on plain texts of photos.

E. Threat Model

W.l.o.g., we assume curious-but-honest cloud servers and
malicious users in this work. Cloud servers will follow the
protocol specification in general, but they will try their best
to harvest any information about user’s photos. This is a
justifiable assumption because deviating from the protocol and
not returning a correct search result will lead to bad user
experience as well as potential revenue loss of the service
provider. However, they might conduct extra work to illegally
harvest useful information from the protocol communications
in order to infer the secret part of ROP or the contents of
queries, which is sensitive information to be protected. On the
other hand, queriers may misbehave throughout the protocol
to infer the search keys to forge a valid photo query, where
the search keys are supposed to be kept secret as well.

IV. SYSTEM DESIGN

In this section, we first present the building blocks of our
system, and then give the detail of our non-interactive private
image search protocol, which is the core of the system and
one of our main contributions.

A. Building Blocks of Our System
POP is a modularized and well integrated image sharing

and searching system, which consists of several building
blocks.

1) Image Search: Image search is composed of three steps:
image descriptor extraction, finding matching vector and sim-
ilarity score calculation.
Extracting Image Descriptor. As described in Section II, the
visual descriptor is extracted from the interest points of each
photo, where the interest points are automatically detected
(e.g., [9]). Then, the descriptor X = {x1,x2, · · · } of an image
Ix is extracted, where xi is a feature vector.
Matching Feature Vector. Given a feature vector x ∈ X
and another descriptor Y, let d (x,y) be Euclidean distance
between two feature vectors x ∈ X and y ∈ Y. Then given
the x’s nearest neighbor ynn ∈ Y, x and Y are a matching
pair iff:

δ (x,Y) =
d (x,ynn)

miny∈Y−{ynn} (d (x,y))
< α

That is, iff the ratio between nearest distance and the second
nearest distance is less than a threshold α, x and Y are a
matching pair. For most object recognition algorithms, α is
set as 0.5.
Similarity Score. Given a querying descriptor X and a queried
descriptor Y, the similarity score between X and Y are
defined as the number of matching pair X has, i.e.,

S(X,Y) =
∑

xi∈X,δ(xi,Y)<α

1 (1)

Given a querying image, matching images with high simi-
larity score can be searched in a database.

2) Cryptographic Tools: Our system also takes advantage
of rich cryptographic algorithms for privacy protection in
cloud-based image search. It includes: homomorphic encryp-
tion, attribute based encryption and oblivious transfer.
Homomorphic Encryption. We employ Paillier’s cryptosys-
tem [15] as a building block which has the following ho-
momorphism3: HE.E(m1)HE.E(m2) = HE.E(m1 + m2) and
HE.E(m1)

m2 = HE.E(m1m2), where HE.E(m) denotes the
ciphertext of m. Paillier’s cryptosystem is proven to be seman-
tically secure against chosen plaintext attack (SS-CPA), which
implies that any ciphertext of any message is indistinguishable
to a randomly chosen element among the ciphertext space.

Note that the numeric type of feature vectors may be real
number, but the Paillier’s cryptosystem is based on large
integers, therefore we need to use integers to represent real
numbers first. POP uses the fixed point representation to
represent real numbers rather than floating-point representation
due to its efficiency.
Ciphertext-Policy Attribute Based Encryption We also
adopt ciphertext-policy attributed based encryption (CP-ABE)
[13] for access control due to its generality and security. Other

3Computation is conducted in a finite cyclic group, and modular operations
are followed. We omit the modular operations for the sake of simplicity and
defer the detailed description on the finite group selection to Section VI



Protocol 1 Secret & Search bag generation
1: The owner of Ix randomly picks a symmetric key Ke and uses symmetric

encryption (AES in this paper) to encrypt the private part of the ROP as
AES.EKe (S(R(Ix))). Ke is encrypted via CP-ABE under his privacy
policy as ABE.E (Ke).

2: For every dimension x(k) in every vector x ∈ X, he computes the
following homomorphic ciphertexts using his PK and r:

HE.E
(
(x (k))2

)
, HE.E (−r(k) · x (k))

attribute based encryption methods can also be adopted, e.g.,
[14]. In the CP-ABE, a trusted authority (not the image service
provider) takes response of generating public parameters.
Given the public parameters, a data owner can encrypt a
message such that only the users satisfying a certain access
rule can decrypt it. Secret keys of users contain attribute values
for the key holders, and the access rule is expressed with
boolean operators (AND, OR etc.) and attribute values. CP-
ABE is proven to be IND-CCA1 secure, which implies the
semantic security against chosen plaintext attack.

Oblivious Transfer The k-n oblivious transfer (OT) [16] let a
receiver obtain any subset of k items from the sender’s n items,
while the sender remains oblivious of the receiver’s selection,
and the receiver remains oblivious of other items as well.

B. System Join

Whenever a new user joins the system, he generates a pair of
Paillier Keys PK,SK and picks a random vector r, which has
the same dimension of the feature vector. Then, he uses CP-
ABE to encrypt PK,SK, r under the access rule he wishes
to enforce (i.e. who can search on his images). He uploads the
following to the sharing cloud, which are the search keys to
be used in the photo searching later.

ABE.E ({PK,SK, r mod n)}

C. Public & Private Bag Generation

When an owner wants to upload his photo Ix, the ROP R(Ix)
is selected either automatically or manually, and the image
descriptor X of ROP is extracted. X is a set of fixed-dimension
feature vectors X = {x1,x2,x3, · · · }. A photo may have
several ROPs (several persons in the same photo), but w.l.o.g
we consider only one ROP per image since multiple ROP is a
simple extension. Then, the owner separates the ROP as public
ROP P (R (Ix)) and secret ROP S (R (Ix)) as in Section III-A,
and the following public bag is uploaded to the sharing cloud:

Ix,pub = {Ix − S (R (Ix))} (pixel-wise)

After the public bag is uploaded, the owner encrypts the
private part of ROP as the private bag using symmetric
encryption such as AES-256. Also, for the cloud-based search,
he homomorphically encrypts the feature descriptor, which are
stored in the search bag (Protocol 1).

Protocol 2 Privacy-preserving Distance Calculation
1: The cloud conducts the following homomorphic operations for all k:

HE.E (−r(k) · xi (k))
2C1(yj(k)) = HE.E (−2xi (k)yj (k)) ,

HE.E
(
(xi (k))

2
)
· HE.E (−2xi (k)yj (k)) ·C2 (yj (k))

=HE.E
(
(xi(k)− yj(k))

2
)

2: Then, he computes:∏
k

HE.E
(
(xi(k) − yj(k))

2
)

== HE.E
(
d2 (xi,yj)

)

Then, the private bag and the search bag of Ix are:

Ix,pri =

{
AES.EKe (S (R (Ix)))

ABE.E (Ke)

}
Ix,sch =

{
HE.E

(
X2

)
HE.E (−r ◦X)

}
where X2 and −r ◦X represent the sets

{
(xi (k))

2
}
∀i,k

and

{−r(k) · xi (k)}∀i,k (Hadamard product between −r and each
xi) respectively. The private/search bag are uploaded to the
sharing/search cloud respectively.

D. Cloud-based Image Search

When a querier wants to search an image Iy among a
specific owner’s images, he extracts corresponding image
descriptor Y and obtains the owner’s search keys ABE.E(PK,
SK, r) from the server. If he is authorized to search on the
owner’s images, he will successfully decrypt the search keys
and further proceed. Next, he encodes every single dimension
of the feature vectors in the querying image as follows:

C1 (yj (k)) = r(k)−1 · yj(k)

C2 (yj (k)) = HE.E
(
(yj (k))

2
)

Consequently, the querier achieves two sets of encoded
feature descriptors C1 (Y) ,C2 (Y) corresponding to Iy . He
then sends these two sets to the cloud server to outsource
the image search. After receiving the encoded descriptors, the
cloud conducts several homomorphic operations to achieve the
encrypted pairwise distances between xi and yj for all i, j
with Ix,sch in the search cloud (Protocol 2). Then, he sends
all the ciphertexts of results back to the querier.

Upon receiving the ciphertexts of pair-wise distances, the
querier uses SK to decrypt every d2 (xi,yj). Then, he finds
the top-2 nearest distances to compute the similarity scores
between feature descriptor X and every Y according to Eq. 1.

E. Image Retrieval

Based on the similarity scores, the querier requests the
public bags as well as the private bags of the top-k similar
images from the sharing cloud (e.g., by requesting the URLs).
However, explicit request reveals the search result to the server.
Even if every secret part of ROP is encrypted and the query
contents are well protected, cloud may infer side information
by gathering the statistics of the image retrieval (e.g., popular
images and frequently visited images). Thus, we need to hide
the retrieval pattern as well.



To achieve this requirement, we employ the k-n OT (Sec-
tion IV). Since it is extremely expensive to construct a k-n
OT with a large n, we do not directly run a k-n OT across
the whole database to obliviously retrieve k images. Instead,
we try to find a trade-off between privacy and performance as
follows. The querier determines a random subset σ′ ⊆ DB
which contains the set of images σ that he wants to retrieve.
The sizes of σ and σ′ are k and n respectively. Then, the
querier and the sharing cloud engage in a k-n OT to let the
querier obliviously select the k images.

V. SECURITY ANALYSIS AND REFINEMENT

A. Security Analysis
Firstly, the secret part of ROP is well protected by the

symmetric encryption, whose key is encrypted with CP-ABE
proven to be semantically secure. Besides, the search keys are
also protected by the CP-ABE. Therefore, clouds cannot infer
sensitive information from its storage in POP.

Next, we prove by the following game that POP reveals
no useful information to the cloud servers during the photo
search procedure.

Initialize: System is initialized, and relevant cryptosystems
(Paillier’s cryptosystem, CP-ABE, OT etc.) are initialized by
the challenger C. C publishes relevant public keys to the
adversary A.
Setup: C generates and encrypts the search keys, and pre-
processes a set of photos I by the specification of POP such
that A cannot search on I. Then, he publishes the encrypted
search keys as well as public/secret/search bags to A.
Phase 1: A achieves polynomial number of encoded de-
scriptors (encoded with C’s search keys) without knowing
corresponding original descriptors.
Challenge: A submits two photos I0, I1 to C. C selects a bit
y ∈ {0, 1} uniformly at random, and generates two sets of
encoded feature descriptor C1 (Y) ,C2 (Y) corresponding to
Iy (Section IV-D), which are given to A.
Guess: A gives a guess y′ on y.

The advantage of A in this game is defined as adv =
Pr [y′ = y]− 1

2 . It is not hard to see this is an adversarial cloud
server’s advantage in inferring , since the game is designed to
‘mimic’ a cloud server’s transaction.

Theorem 1: Any probabilistic polynomial time adversary
(PPTA) has at most negligible advantage in above game.
We will present only the key idea for the proof of the theorem
because of the space limit. We define two PPTAs A1 and
A2 with limited views, where PPTA Ai is only given the
encoded feature descriptor Ci (Y) and Ai’s advantage is
advi = Pr[y′i = y]. Each PPTA will give his guess y′i on
y in the above game with his view. Then, if A1 and A2 agree
on the same guess, A with both views will also give the same
guess, otherwise A’s advantage does not change. Then, we can
achieve the following equation after doing a series of algebraic
manipulation to the total probability Pr[y′ = y] containing four
conditional probabilities:

adv =

(
1
2 + adv1

) (
1
2 + adv2

)
1
2 − 2adv1adv2

− 1

2

Both Paillier’s cryptosystem and CP-ABE are proved to be
semantically secure against chosen plaintext attack4 [13], [15].
Hence, A does not have a significant chance to get SK, r−1

in ABE.E
(
PK,SK, r−1

)
or Y in C2 (Y), which means adv2

is negligible. Besides, the function family x → µx mod n is
ϵ-pairwise independent for negligible ϵ, and µ−1x mod n is
close to uniform in Zn. Therefore, he does not have a signifi-
cant chance to get yj (k) in C1 (yj (k)) either, which implies
a negligible adv1. Since both adv1, adv2 are negligible, adv is
negligible too. Therefore, adversarial clouds cannot do much
better than random guess in the above game, which means
the clouds do not learn about sensitive information during the
photo search transactions.

Besides the adversarial cloud servers, we have also assumed
malicious queriers in our adversarial model. However, unau-
thorized malicious users are not as threatening as cloud servers
since they never get involved in any transaction with valid
users. All they can do except compromising the server is
to try man-in-the-middle attacks to sniff the search results,
but this can be trivially prevented by introducing secure
communication channel. Even if they compromised a server,
CP-ABE guarantees the indistinguishability of the ciphertexts.
In conclusion, malicious users do not learn about sensitive
information either.

B. Refinements for Binary Descriptor
Some image retrieval systems use binary image feature de-

scriptors because they are more compact and computationally
manageable than real number ones, with a little accuracy loss
in content recognition [17]. It is more suitable for resource-
limited applications. However, directly applying POP in mo-
bile platforms with binary descriptors does not fully exploit
the advantage of it. The exponentiation operations contribute
to majority of the computation overhead in our cryptographic
building blocks, but both image owners and queriers need
Θ(α) exponentiations throughout the protocol where α is the
number of interest points in a image.

To relax this bottleneck, we further design our framework
for the special case where binary descriptors are used (refer
to the system as POPbin), Note that for any two vectors x,y,
we have:

d2 (x,y) =
∑
k

(x (k)− y (k))
2
=

∑
k

x (k)⊕ y (k)

where x(k) is the k-th bit of x and ⊕ is the bitwise XOR oper-
ator. Therefore, we consider using a succinct garbled circuit in
combination with homomorphic encryption to achieve a light-
weight and non-interactive framework dedicated to binary
descriptor based search, which is one of our contributions.

1) Yao’s Garbled Circuit: To enhance the understanding,
we briefly review Yao’s garbled circuit (GC), and we direct
the readers to relevant literal works [5] for technical details.
Yao’s Garbled Circuit is designed for two-party computation,
where Px and Py wish to jointly compute a function F over

4CP-ABE is proved to achieve IND-CPA, which implies SS-CPA.



Protocol 3 Secret & Search Bag Generation
1: The owner randomly picks a key Ke and uses symmetric encryp-

tion (AES in this paper) to encrypt the private part of the ROP as
AES.EKe (S(R(Ix))). Ke is encrypted via CP-ABE under his privacy
policy as ABE.E (Ke).

2: For every bit x(k) in every vector x ∈ X, he generates and shuffles the
following table:

if x(k) = 0

γ0 = Hk(s) ·K0 AES.Eγ0 (HE.E (0))
γ1 = Hk(s) ·K1 AES.Eγ1 (HE.E (1))

if x(k) = 1

γ0 = Hk(s) ·K0 AES.Eγ0 (HE.E (1))
γ1 = Hk(s) ·K1 AES.Eγ1 (HE.E (0))

which represents x(k)’s garbled gate G (x (k)).

their private input x and y using a garbled boolean circuit.
Here we use an XOR gate as an example.

Fig. 3: Gate

k0a k0b AES.Ek0
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(k0z))

k0a k1b AES.Ek0
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k1a k0b AES.Ek1
a
(AES.Ek0

b
(k1z))

k1a k1b AES.Ek1
a
(AES.Ek1

b
(k0z))

TABLE I: Garbled Gate G(wa ⊕ wb)

Two random values k0i ,k1i are chosen to represent the bit
values 0 and 1 for each wire wi. Then, the shuffled Table I
represents the garbled XOR gate (shuffled so that inputs are
not inferred from the row number). Given two garbled inputs,
the evaluator can obliviously evaluate the boolean gate by
looking up the shuffled table and decrypting the output to get
a garbled output.

2) System Join: The new joiner generates a pair of Paillier
keys PK,SK and picks two symmetric encryption keys
K0,K1 as well as a random seed s. Then, he defines a privacy
policy to specify which group of people are authorized to
search on his images. PK,SK,K0,K1 and s are encrypted
using CP-ABE as ABE.E

({
PK,SK,K0,K1, s

})
, which are

uploaded to the sharing cloud as his search keys. Finally, he
uses PK to encrypt 0,1 homomorphically for later use, i.e.,
HE.E(0), HE.E(1).

3) Public & Private Bag Generation: To upload a photo
Ix, the owner extracts the ROP R (Ix) as well as the binary
image descriptor X, and generates the public bag as in the
original framework POP. After uploading the public bag to
the sharing cloud, he symmetrically encrypts the private part
of ROP, and keeps it as well as the key in the private bag.
Then, he uses a collision-resistant hash function H(·) and the
search keys to garble each bit as a garbled gate (Protocol 3),
where Hk(·) denotes applying the hash function for k times.

From the protocol, the feature vector x is encrypted to
a series of garbled gates (Fig. 4), and the following are

Fig. 4: Garbled gates G(x) from Protocol 3

Protocol 4 Privacy-preserving Distance Calculation
1: For every garbled gate G (xi (k)) ∈ G (xi), the cloud server looks up and

symmetrically decrypts HE.E (xi (k)⊕ yj (k)) from the shuffled table.
2: Then, he computes:∏

k

HE.E (xi (k)⊕ yj (k)) = HE.E

(∑
k

xi (k)⊕ yj (k)

)
= HE.E

(
d2 (xi,yj)

)

corresponding private bag and search bag of Ix:

Ix,pri =

{
AES.EKe (S (R (Ix)))

ABE.E (Ke)

}
Ix,sch = {G (X)}

4) Cloud-based Image Search: To search a photo Iy from
other’s ones, the querier extracts corresponding descriptor
Y and obtains the owner’s ABE.E

({
PK,SK,K0,K1, s

})
.

If he successfully decrypts it, he further uses Hk(s)K0 or
Hk(s)K0 to encode each k-th bit y(k) as the garbled input
GI (y (k)) to finally achieve the set of garbled inputs GI (Y),
which is uploaded to the cloud. The cloud server conducts
homomorphic operations to achieve HE.E

(
d2 (xi,yj)

)
for all

i, j without interacting with the requester or the image owner
(Protocol 4). Then, he sends the ciphertexts back to the querier,
who proceeds as POP.

VI. IMPLEMENTATION AND EVALUATION

A. Development Environment

We implemented both client side and cloud side of POP.
The client side program is developed for Android smartphones
and the commodity laptops for performance comparisons, and
the cloud side program is developed only for the laptops. We
used HTC G17 (1228Hz CPU, 1G RAM) and ThinkPad X1
(i7, 2.7GHz CPU, 4G RAM).

The CP-ABE is implemented based on the PBC library, and
other building blocks (SectionIV) are implemented in Java,
including the AES (128-bit), Paillier’s cryptosystem (512-
bit primes p, q), k-n oblivious transfer and the fixed point
operations. Based on these building blocks, we implemented
the core protocols in both variants POP and POPbin. The
automatic ROP detection is implemented with cascade object
detection (e.g., face detection) [7]. We employed widely used
64-dimensional SURF descriptor [2] and 128-dimensional
SIFT descriptor [1] for the variant of real number descrip-
tors (POP ), and 64 bit binary SURF and 128 bit binary
SIFT for POPbin. Although our evaluation is conducted with
these descriptors, our system is compatible with other vector-
based descriptors too. Both the object detection and descriptor
extraction are implemented using the image process library
OpenCVfor Window and Android. ROP separation (Mask, P3
[3], and Blur) is also implemented with it.

B. Real-life Datasets

To measure the privacy protection and the cost of POP, we
used the well-known Labelled Faces in the Wild (LFW) dataset
[18], which consists of 30,281 real-life images collected from
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Fig. 5: Run time of ROP separation

news photographs. We detect all human faces automatically
and set those faces as ROPs of images, and 9 feature vectors
are extracted as their image descriptor [19]. On average, ROP
occupies less than 20% of each image for 80% images. We also
used the INRIA Holidays dataset [20], which contains 1,491
high-resolution personal photos taken during their holidays
(majority with resolution 2560px×1920px). We set the entire
image of the INRIA as the ROP.

C. Image Recognition on Public Part

ROPs are separated in three different methods (Mask, P3
and Blur) respectively. To evaluate the safety against the object
detection algorithms, we ran face detection [7] and feature
points detection [21] algorithms on the public part of ROPs.
On average, there are 1.1 faces in each original image in
LFW, but only 0.017, 0.029 and 0.028 faces are detected in
the public part of the ROPs generated by Mask, P3 and Blur
respectively, and our manual examination shows that majority
of the detections were false positives (e.g., some textures being
detected as faces). Therefore, we conclude that almost no faces
are detected in the public parts of images by algorithm. Also,
no matched feature points are detected in the public parts
of ROPs for both LFW and Holiday datasets as well. As a
conclusion, all three methods provide good privacy protection
against face/feature detection algorithms.

We also compare the computation cost and storage cost of
three methods. Figure 5 illustrates the CDF of run time for
processing each image with three methods. On average, Mask
has the minimum computation cost with 0.0002s per image
in LFW Dataset, and 0.02s per image in Holiday Dataset;
Blur needs 0.037s for LFW Dataset and 0.68s for Holiday
Dataset; P3 needs 0.35s for LFW Dataset and 24.9s for
Holiday Dataset. This result also confirms that protecting the
entire image is much more expensive than protecting the sub-
regions of the image. Figure 6 and 7 present the normalized
storage cost of three methods for LFW and Holiday. The sizes
of Blur-processed images are only 73% of the original ones

TABLE II: Microbenchmarks
(a) Image pre-process (LFW/Holiday)

Laptop (sec)
Mean Min Max

Detect feature 0.28 / 8.7 0.17/1.56 1.21/12.03
Separate ROP 0.037/0.68 0.009/0.07 0.266/1.26
Encrypt S (R(I)) 0.001/0.038 0.001/0.018 0.008/0.054

Smartphone (sec)
Detect feature 0.46/15.6 0.21/4.32 1.85/22.7
Separate ROP 0.08/1.53 0.024/0.19 0.37/2.73
Encrypt S (R(I)) 0.005/0.057 0.001/0.028 0.015/0.13

(b) Image search (average run time)
Laptop (sec)

POP 64 dimension 128 dimension
Encrypt Vector (owner) 1.02 2.01
Encode Vector (querier) 0.55 1.12
Decrypt Distance 0.016 0.016

POPbin 64 dimension 128 dimension
Encrypt Vector (owner) 0.51 1.03
Encode Vector (querier) < 0.001 < 0.001
Decrypt Distance 0.016 0.016

Smartphone (sec)
POP 64 dimension 128 dimension

Encrypt Vector (owner) 1.85 3.91
Encode Vector (querier) 0.64 1.37
Decrypt Distance 0.024 0.024

POPbin 64 dimension 128 dimension
Encrypt Vector (owner) 0.56 1.33
Encode Vector (querier) < 0.001 < 0.001
Decrypt Distance 0.024 0.024

in Holiday dataset on average. In conclusion, Mask and Blur
outperforms P3 in computation performance while Blur has
the best storage performance, therefore POP uses Blur as the
default method.

D. Search Accuracy

In POP, the search procedure follows exactly the same
vector-based similarity comparison as typical image search
technologies (e.g., [11]). Also, the accuracy loss introduced by
the fixed point representation is almost negligible (less than

1
basescale in each value where base is often 10 and scale is
greater than 5), therefore POP provides a comparable accuracy
as existing image search techniques.

E. Client Side Performance

1) Computation Overhead: For the photo owner, the com-
putation overhead mainly comes from the following opera-
tions: (1) object detection and descriptor extraction; (2) ROP
separation by Blur; (3) symmetric encryption of secret part;
(3) descriptor encryption, which are all in the public & private
bag generation. For the querier, the expensive operations
include: (1) descriptor extraction; (2) descriptor encoding; (3)
distance results decryption; (4) similarity calculation, which
are all in the cloud-based photo searching. The time cost for
other operations, e.g., fix point presentation conversion, are
negligible. The cost for search key encryption and decryption
by CP-ABE can also be ignored, since this is a one-time
operation for each user which are sub-second.

As microbenchmark tests for each procedure (Table II),
Table II(a) shows that protecting subregions (e.g., faces) of
a image only takes the owner 0.31s to extract the descriptor
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Fig. 6: Storage cost of three methods for the LFW dataset. (ROP is defined as faces). The cost is normalized by the original
image file size.

Mask P3 Blur
0

0.5

1

1.5

Fi
le

si
ze

 (N
or

m
al

iz
ed

)

(a) Public Image

Mask P3 Blur
0

0.5

1

1.5

Fi
le

si
ze

 (N
or

m
al

iz
ed

)

(b) Secret Image

Mask P3 Blur
0

0.5

1

1.5

Fi
le

si
ze

 (N
or

m
al

iz
ed

)

(c) Public+Secret
Fig. 7: Storage cost of three methods for the Holiday dataset. (ROP is defined as the whole image. The cost is normalized by
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and separate the ROP, while protecting the whole image takes
9.38s. Table II(b) presents the computation overhead of main
procedures in POP and POPbin.
Public & Private Bag Generation Binary feature vector
reduces the owner’s computation overhead by half to 0.51s
per feature vector. In a typical scenario in LFW dataset,
there are only 9 feature vectors for each face. if we use 64
dimensional SURF descriptor, it takes 9.5s on laptops and 17s
on smartphones to generate the public bag, private bag and
search bag. When we use binary descriptor [11], the cost is
reduced to 4.9s on laptops and 5.6s on smartphones, which is
a significant reduction.
Cloud-based Photo Searching It takes a querier roughly
1s to encode the querying descriptor in POP. The run time
becomes negligible in POPbin, and this is especially desirable
for mobile devices. After the querier obtains the search result,
it takes 0.016s on laptops and 0.024s on smartphones to
decrypt each encrypted distance in both variants. In the LFW
dataset, if a querier searches a photo among 1,000 photos, it
takes 14s to process the search result on laptops and 22s on
the smartphones on average. It is slightly beyond acceptable
if owners have hundreds of photos on average. However, this
non-negligible extra overhead comes from the linear search
in all photos of an owner with a linear complexity, and it
is promising and not trivial to reduce the complexity with
existing optimized search mechanisms such as k-d tree [22].
Thus, the scalability can be achieved using those search
algorithms.

2) Communication Overhead: The communication over-
head for the image owner mainly comes from uploading public
bag and private bag to the cloud. When using Blur to separate
ROPs, as presented in Figure 6 and 7, the size of the public
part is 90% of the original image in LFW Dataset and only
9.8% in Holiday Dataset. The size of the secret part is 16% in
LFW Dataset and 63% in Holiday Dataset. The average size
of encrypted descriptor is 72KB per image for both variants,
and this can be further reduced to 690B per image when using
a common lossless compression, e.g., ZIP. As a summary, for
the LFW Dataset, the extra communication cost brought by
POP or POPbin is roughly 6% of that for system without

privacy consideration. But for the Holiday Dataset, our method
actually save the communication cost by 27%.

The communication overhead for uploading the encoded
feature descriptors (query) is approximately 36 KB in POP
and 9 KB in POPbin, which are reduced to 350B and 90B
respectively after compression. The communication overhead
for downloading the similarity result is 128B for each com-
pared image in the database, and the one for downloading each
image is similar to the uploading overhead of the image owner.
Note that, to achieve k-n oblivious transfer, the querier needs
to download (n − k) extra images from the search server to
hide the search pattern, where n can be specified according to
the trade-off between privacy and performance.

F. Cloud Side Performance
On the clouds, similarly, the image storage and commu-

nication is 6% more for LFW Dataset and 27% less for
Holiday Dataset. The main computation overhead is from the
distance computation. We evaluated the search performance on

TABLE III: Vector distance computation cost (64/128-
dimension)

Mean Min Max
Real number 0.18/0.36 0.16/0.35 0.19/0.37
Binary 0.018/0.035 0.003/0.013 0.046/0.078

laptops, (Table III), so the actual performance when deployed
in more powerful cloud servers will be significantly improved.
Our privacy-preserving distance protocols take nearly 0.18s to
calculate the distance between two real number feature vectors
(POP) and only 0.018s for binary feature vectors (POPbin).
For well studied objects like faces (9 feature vectors in a
descriptor), and for each owner, there are usually hundreds
of images on the cloud. The computation time for a laptop
to process one request is less than one minute. When there
are large-scale complicated images whose ROPs may contain
random objects other than faces, the optional optimization
methods introduced may be introduced to reduce the query
response time.

VII. RELATED WORK

Image Privacy Protection A set of solutions are proposed
to mask sensitive contents of images, e.g., human faces, to



prevent any potential breach of owners’ privacy, e.g., [23] and
[24]. P3 [3] proposes to separate an image into a private part
and a public part and simply encrypted the private part. But the
produced public parts of those works are of limited utility and
disable search on them. There are some literal works providing
privacy-preserving face recognition in a face photos database
[25], [26]. Those methods provide privacy protection to the
requested images as well as the outcome, but the result is
not secure against photo service provider and those works do
not consider personal photo storage and sharing. Supporting
privacy-preserving image search with untrusted server is still
an open problem.
Privacy Preserving Cloud Services Many research efforts
have been devoted to provide secure cloud-based storage, shar-
ing and searching services to users. Those privacy preserving
outsourced storage and sharing systems, e.g., [27] and [28],
provide well access control to private data, but cannot support
search on encrypted data. Searchable encryption is proposed to
enable secure search over encrypted data via keywords. Reza
et al. [29] proposed a thorough discussion on the framework of
SSE. But the existing approaches, e.g., [30], [31], are focus on
keywords search by examining the occurrences of the searched
terms (or words). They are not suitable for content-based
image search since they cannot measure the distance between
encrypted feature vectors.
Privacy-preserving Euclidean Distance Euclidean distance
can be computed privately among parties using secure multi-
party computation (SMC) methods [5]. However, it requires
online interaction between the image owner and queriers, and
is unsuitable for the cloud based image service, where the
owners are not guaranteed to stay online. Even using asyn-
chronous SMC, the computation and communication overhead
are exponentially large. This is because SMC needs to encode
every possibilities in the garbled circuits to prevent evaluator
from inferring the computation result from the computation
overhead itself. Therefore, the size of the circuit is super-
exponential to the number of elements to be sorted. [32]
proposes an approach using Fourier-related transforms to
hide accurate sensitive data and to approximately preserve
Euclidean distances among them. It works well for some data
mining purposes on common datasets, but for feature vectors
the distances still reveal information of the objects in images.

VIII. CONCLUSION

We present a framework POP, which enables cloud servers
to provide privacy-preserving photo sharing and searching
service to mobile device users who intend to outsource photo
management while protecting their privacy in photos. Our
framework not only protects the outsourced photos so that
no unauthorized users can access them, but also enables users
to encode their image search so that the search can also be
outsourced to an untrusted cloud server obliviously without
leakage on the query contents or results. Our analysis shows
the security of the framework, and the implementation shows a
small storage overhead and communication overhead for both
mobile clients and cloud servers.
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