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ABSTRACT
We propose a novel communication efficient topology con-
trol algorithm for each wireless node to select communica-
tion neighbors and adjust its transmission power, such that
all nodes together self-form a topology that is energy effi-
cient simultaneously for both unicast and broadcast com-
munications. We prove that the proposed topology is pla-
nar, which guarantees packet delivery if a certain localized
routing method is used; it is power efficient for unicast– the
energy needed to connect any pair of nodes is within a small
constant factor of the minimum under a common power at-
tenuation model; it is efficient for broadcast: the energy con-
sumption for broadcasting data on top of it is asymptotically
the best compared with structures constructed locally; it has
a constant bounded logical degree, which will potentially re-
duce interference and signal contention. We further prove
that the average physical degree of all nodes is bounded by a
small constant. To the best of our knowledge, this is the first
communication-efficient distributed algorithm to achieve all
these properties. Previously, only a centralized algorithm
was reported in [3]. Moreover, by assuming that the ID and
position of every node can be represented in O(log n) bits
for a wireless network of n nodes, our method uses at most
13n messages, where each message is of O(log n) bits. We
also show that this structure can be efficiently updated for
dynamical network environment. Our theoretical results are
corroborated in the simulations.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless
communication, Network topology; G.2.2 [Graph Theory]:
Network problems, Graph algorithms

General Terms
Algorithms, Design, Theory
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1. INTRODUCTION
A wireless ad hoc network consists of a distribution of ra-

dios in a certain geographical area. Unlike cellular wireless
networks, there is no centralized control in the network, and
wireless devices (called nodes hereafter) can communicate
via multi-hop wireless channels: a node can reach all nodes
inside its transmission range while two far-away nodes com-
municate through the relaying by intermediate nodes. An
important requirement of these networks is that they should
be self-organizing, i.e., transmission ranges and data paths
are dynamically restructured with changing topology. En-
ergy conservation and network performance are probably the
most critical issues in wireless ad hoc (and sensor) networks,
because wireless devices are usually powered by batteries
only and have limited computing capability and memory.

A wireless ad hoc or sensor network is modelled by a set V
of n wireless nodes distributed in a two-dimensional plane.
Each node has the same maximum transmission range R
meters, e.g., a typical 802.11g wireless LAN adapter has a
transmission range around 100m− 500m. By a proper scal-
ing, we assume that all nodes have the maximum transmis-
sion range equal to one unit. These wireless nodes define
a unit disk graph UDG(V ) in which there is an edge be-
tween two nodes iff the Euclidean distance between them is
at most one unit. In other words, we assume that two nodes
can always receive the signal from each other directly if the
Euclidean distance between them is no more than one unit.
Notice that, in practice, the transmission region of a node is
not necessarily a perfect disk. As done by most results in the
literature, for simplicity, we model it by disk in order to first
explore the underlying nature of ad hoc networks. Hereafter,
UDG(V ) is always assumed to be connected. We also as-
sume that all wireless nodes have distinctive identities(IDs).
Additionally we assume that each node knows the relative
position of its one-hop neighbors. The relative position of
neighbors can be estimated by the direction of signal ar-
rival and the strength of signal. The geometry location of a
wireless node can also be obtained by a localization method,
such as [35, 8, 15]. We here assume that the localization is
low cost or it is already required by some other protocols.
Notice that the higher these localization costs, the less de-
sirable the advocated approach to design any protocol based
on nodes’ geometry location.



We adopt the most common power-attenuation model from
literature: the power needed to support a link uv is assumed
to be ‖uv‖β , where ‖uv‖ is the Euclidean distance between u
and v, β is a real constant between 2 and 5 depending on the
wireless transmission environment. Throughout this paper
we only focus on the transmission power of all nodes. This
energy model only accounts for the emission power. This can
be a good approximation of what happens in case of long
range techniques although the actual energy consumption is
given by a fixed part (receiving power and the power needed
to keep the electric circuits on) plus the emission power com-
ponent. In other words, we assume that the transmission
range is large enough such that the emission power is the
major component and the receiving power is negligible. No-
tice that, as pointed out by an anonymous reviewer, even
if the energy cost of receiving a packet is high, there are a
number of ways of reducing this cost by reducing the num-
ber of packets received by but not intended for a node. It
includes, but is not limited to, the following approaches: (1)
“signals are sent with special small preambles that identify
the intended recipient”; (2) “the radios are frequency-agile
and can choose different frequency channels to communicate
with different neighbors” (3) “the radios have directional an-
tennas which limit the volume over which their signals are
received”; (4) “favoring routes that traverse sparser portions
of the network”.

The (localized) topology control technique lets each wire-
less device (locally) adjust its transmission range and select
certain neighbors for communication, while maintaining a
decent global structure to support energy efficient routing
and to improve the overall network performance. A distrib-
uted method is localized if it runs in constant number of
rounds [34]. By enabling each wireless node to shrink its
transmission power (which is usually much smaller than its
maximum transmission power) sufficiently enough to cover
its farthest selected neighbor, topology control schemes can
not only save energy and prolong network life, but also im-
prove the network throughput through mitigating the MAC-
level medium contention. Unlike traditional wired and cel-
lular networks, the movement of wireless devices during the
communication could change the network topology to some
extent. Hence, it is more challenging to design a topology
control algorithm for ad hoc wireless networks: the topology
should be locally and self-adaptively maintained using low
communication cost, without affecting the whole network’s
performance.

The main contributions of this paper are as follows. We
present the first communication efficient algorithm to con-
struct a unified energy-efficient topology for unicast and
broadcast in wireless ad hoc/sensor networks. In one single
structure, we guarantee the following network properties:

1. power efficient unicast: given any two nodes, there
is a path connecting them in the structure with total
power cost no more than 2ρ+1 times of the power cost
of any path connecting them in the original network.
Here ρ > 1 is some constant that will be specified later.

2. power efficient broadcast: the power consumption
for broadcast is within a constant factor of optimum
among all locally constructed structures. Notice that
our structure cannot guarantee that the energy con-
sumption is within a constant factor of the global opti-
mum. Essentially, we prove that the structure is low-
weighted : its total edge length is within a constant

factor of that of Euclidean Minimum Spanning Tree.
3. bounded logical node degree: each node has to

communicate with at most k − 1 logical neighbors,
where k ≥ 9 is an adjustable parameter;

4. bounded average physical node degree: the aver-
age physical node degree is bounded from above by a
small constant. Here the physical degree of a node u in
a structure H is defined as the number of nodes inside
the disk centered at u with radius maxuv∈H ‖uv‖.

5. planar: there are no edges crossing each other. This
enables several localized routing algorithms, such as [2,
18, 24, 25], to be performed on top of this structure to
guarantee the packet delivery without routing table.

6. neighbors Θ-separated: the directions between any
two logical neighbors of any node are separated by at
least an angle θ, which as we will see reduces the signal
interference. It also can be used to reduce the receiving
power cost when directional antenna is used.

In graph theoretical terminologies, given a unit disk graph
modelling the wireless ad hoc networks, we propose an com-
munication efficient distributed method to build a low-weighted
planar power-spanner with a bounded logical node degree.
Here a geometric structure is called low-weighted if its total
edge length is no more than a small constant factor of that
of the Euclidean minimum spanning tree. To the best of
our knowledge, it is the first known communication efficient
algorithm to construct such a single structure with all these
desired properties. Previously, only a centralized algorithm
was reported in [3]. Moreover, by assuming that the ID and
position of every node can be represented in O(log n) bits
for a wireless network of n nodes, we show that the struc-
ture can be initially constructed using at most 5n to 13n
messages.

In addition, we prove that the expected average node in-
terference (which is defined as the number of nodes within
its adjusted transmission range) in the structure is bounded
by a small constant. This is significant in its own due to
the following reasons: it has been taken for granted that “a
network topology with a small logical node degree will guar-
antee a small interference” and recently Burkhart et al. [5]
showed that this is not true generally. Our results show that,
although generally a small logical node degree cannot guar-
antee a small interference, the expected average interference
is indeed small if the logical communication neighbors are
chosen carefully. All our theoretical results are corroborated
in simulations.

We also show that our structure can be easily updated in
a dynamic environment when a node moves or dies after the
battery power is drained. When a node moves, the topol-
ogy can be dynamically self-maintained without affecting
the whole network, since each node adjusts its transmission
range and selects neighbors only according to its neighbor
information.

To facilitate the efficient construction of such a unified
energy-efficient topology, in the paper, we will first give an
improved method to construct degree-bounded planar span-
ner by using relative positions only. The new structure has

the same power spanning ratio ρ =
√

2
β

1−(2
√

2 sin π
k

)β as the

structure proposed in [42]. Here k ≥ 9 is a customizable pa-
rameter. In addition, the directions between any two neigh-
bors of each node are separated by at least a certain angle
θ depending on the parameter k. Simulations show that the



node interference in our new structure is indeed smaller than
the structure proposed in [42].

The rest of the paper is organized as follows. In Sec-
tion 2, we review some prior arts in topology control, and
summarize some preferred properties of network topology
for unicast and broadcast. Section 3 presents an improved
algorithm to build a degree-bounded planar spanner with
Θ-separation property. We then propose, in Section 4, the
first communication efficient algorithm to construct planar
spanner with bounded-degree and low weight. We study
the expected interference of various structures in Section 5.
In Section 6, we briefly study how to dynamically update
the structure if nodes are mobile. In Section 7, we conduct
extensive simulations to validate our theoretical results. Fi-
nally, we conclude our paper in Section 8.

2. CURRENT STATE OF KNOWLEDGE

2.1 Energy-Efficient Unicast Topology
Several structures have been proposed for topology con-

trol in wireless ad hoc networks. The relative neighborhood
graph, denoted by RNG(V ) [43], consists of all edges uv such
that the intersection of two circles centered at u and v and
with radius ‖uv‖ does not contain any vertex w from the
set V . The Gabriel graph [13] GG(V ) contains an edge uv if
and only if disk(u, v) contains no other points of V , where
disk(u, v) is the disk with edge uv as a diameter. For con-
venience, we also denote GG and RNG as the intersection
of GG(V ) and RNG(V ) with UDG(V ) respectively. Both
GG and RNG are planar, are connected, and contain the
Euclidean minimum spanning tree(EMST ) of V if UDG is
connected. RNG is not power efficient for unicast, since the
power stretch factor of RNG is n− 1 in the worst case [48]
and not bounded by a constant even for n nodes randomly
distributed (our proof is similar to the proof in [4] and omit-
ted here due to space limit). Both RNG and GG are not
degree-bounded. The Yao graph [51] with an integer para-

meter k > 6, denoted by
−−→
Y Gk, is defined as follows. At each

node u, any k equally-separated rays originated at u define k
cones. In each cone, choose the shortest edge uv ∈ UDG(V )
among all edges emanated from u, if there is any, and add
a directed link −→uv. Ties are broken arbitrarily or by ID.
The resulting directed graph is called the Yao graph. It is
well-known that the Yao structure is power efficient for uni-
cast. Several variations [31] of the Yao structure could have
bounded logical node degree also. However, all Yao related
structures are not planar.

Li et al. [29] proposed the Cone Based Topology Control
(CBTC) algorithm to first focus on several desirable prop-
erties, in particular being an energy spanner with bounded
degree. It is basically similar to the Yao structure for topol-
ogy control. Each node u finds a power pu,α such that in
every cone of degree α surrounding u, there is some node
that u can reach with power pu,α. Here, nevertheless, we
assume that there is a node reachable from u by the maxi-
mum power in that cone. Notice that the number of cones
to be considered in the traditional Yao structure is a con-
stant k. However, unlike the Yao structure, for each node u,
the number of cones needed to be considered in the method
proposed in [29] is 2∆, where each neighboring node v could
contribute two cones on both side of segment uv. Then the
graph Gα contains all edges uv such that u can communi-
cate with v using power pu,α. They proved that, if α ≤ 5π

6

and the UDG is connected, then graph Gα is a connected
graph. On the other hand, if α > 5π

6
, they showed that the

connectivity of Gα is not guaranteed by giving some counter-
example [29]. Unlike the Yao structure, the final topology
Gα is not necessarily a bounded degree graph.

Bose et al. [3] proposed a centralized method with running
time O(n log n) to build a degree-bounded planar spanner
for a two-dimensional point set. It constructs a planar t-
spanner with low-weight for a given nodes set V , for t =
(1 + π) ·Cdel ' 10.02, such that the node degree is bounded
from above by 27. Hereafter, we use Cdel < 2.6 to denote
the spanning ratio of the Delaunay triangulation [11, 20,
19]. However, a straightforward distributed implementation
of this centralized method takes O(n2) communications in
the worst case for a set V of n nodes.

Wang and Li [46] proposed the first efficient distributed al-
gorithm to build a degree-bounded planar spanner BPS for
wireless ad hoc networks. Though their method can achieve
three desirable features: planar, degree-bounded, and power
efficient, the theoretical bound on the node degree of their
structure is a large constant. For example, when α = π/6,
the theoretical bound on node degree is 25. In addition,
the communication cost of their method can be very high,
although it is O(n) theoretically, which is achieved by apply-
ing the method in [6] to collect 2-hop neighbors information.
The hidden constant is large: it is several hundreds.

Recently, Song et al. [42] proposed two methods to con-
struct degree-bounded power spanner, by applying the or-
dered Yao structures on Gabriel graph. They achieved bet-
ter performance with much lower communication cost, com-
pared with the method in [46]. One method in [42] only
costs 3n messages for the construction, and guarantees that
there are at most one neighbor node in each of the k = 9
equal-sized cones.

Notice that the structures constructed by the methods
proposed in [46, 42] are not guaranteed to be low-weighted.
Both structures are planar and degree-bounded. The struc-
ture constructed in [42] is only a power-spanner, while the
structure constructed in [46] is also a length-spanner. No-
tice that it is known that a length-spanner is always a power
spanner [31]. The main contribution of this paper is that
we propose the first method to construct a single topology
that is planar, length-spanner, bounded-degree, and low-
weighted.

In summary, for energy efficient unicast routing, the topol-
ogy is preferred to have following features:

1. Power Spanner: Formally speaking, a subgraph H
is called a power spanner of a graph G if there is a
positive real constant ρ such that for any two nodes,
the power consumption of the shortest path in H is at
most ρ times of the power consumption of the shortest
path in G. Here ρ is called the power stretch factor or
spanning ratio.

2. Degree Bounded: It is also desirable that the logi-
cal node degree in the constructed topology is bounded
from above by a small constant. A small node degree
could reduce the MAC-level contention and interfer-
ence, also may help to mitigate the well known hidden
and exposed terminal problems. In addition, a struc-
ture with a small degree will improve the overall net-
work throughout [22]. Bounded degree structures also
find applications in Bluetooth wireless networks since
a master node can have only 7 active slaves.



3. Planar: A network topology is also preferred to be
planar (no two edges crossing each other in the graph)
to enable some localized routing algorithms work cor-
rectly and efficiently, such as Greedy Face Routing (GFG)
[2], Greedy Perimeter Stateless Routing (GPSR) [18],
Adaptive Face Routing(AFR) [24], and Greedy Other
Adaptive Face Routing (GOAFR) [25]. Notice that
with planar network topology as the underlying rout-
ing structure, these localized routing protocols guar-
antee the message delivery without using a routing ta-
ble: each intermediate node can decide which logical
neighboring node to forward the packet using only lo-
cal information and the position of the source and the
destination.

2.2 Energy-Efficient Broadcast Topology
Broadcast is also a very important operation in wireless

ad hoc/sensor networks, as it provides an efficient way of
communication that does not require global information and
functions well with topology changes. For example, many
unicast routing protocols [17, 36, 39, 38, 41] for wireless
multi-hop networks use broadcast in the stage of route dis-
covery. Similarly, several information dissemination proto-
cols in wireless sensor networks use some forms of broad-
cast/multicast for solicitation or collection of sensor infor-
mation [14, 16, 52]. Since sensor networks mainly [1] use
broadcast for communication, how to deliver messages to all
the wireless devices in a scalable and power-efficient manner
has drawn more and more attention. Not until recently have
research efforts been made to devise power-efficient broad-
cast structures for wireless ad hoc networks.

Notice that, a broadcast routing protocol can be inter-
preted as flood-based broadcasting on a certain subgraph of
the original communication networks, since any broadcast
routing can be viewed as an arborescence (a directed tree)
T , rooted at the source node of the broadcasting, that spans
all nodes. The tree T contains a directed edge −→uv if node v
received the first copy of the broadcast data from node u.
Once a broadcast structure H is constructed, the broadcast
is a simple flooding on top of H: once a node v got the broad-
cast message from any of its logical neighbors, say u, for the
first time, it will simply forward it to all its logical neighbors
(maybe except the node u) either through one-to-one or one-
to-all communications. Let fH (p) denote the transmission
power of the node p required by broadcasting message on top
of a broadcast structure H. We assume that the tree H is a
directed graph rooted at the source of the broadcasting ses-
sion: link −→pq ∈ H denotes that node p forwarded message to
node q. For any leaf node p of H, clearly we have fH (p) = 0
since it does not have to forward the data to any other node.
For any internal node p of H, fH (p) = max−→pq∈H ‖pq‖β un-
der our energy model if an one-to-all communication model
is used; and fH (p) =

P
−→pq∈H ‖pq‖β under our energy model

if an one-to-one communication model is used. The total
energy required by H is

P
p∈V fH (p). In the literature, the

one-to-all communication model is typically assumed.
Minimum-energy broadcast routing in a simple ad hoc

networking environment has been addressed in [9, 21, 49].
It is known [9] that the minimum-energy broadcast routing
problem is NP-hard, i.e., it cannot be solved in polynomial
time unless P=NP. Three greedy heuristics were proposed
in [49] for the minimum-energy broadcast routing problem:
EMST (minimum spanning tree), SPT (shortest-path tree),

and BIP (broadcasting incremental power). Wan et al. [44,
45] showed that the approximation ratios of EMST and BIP
are between 6 and 12 and between 13

3
and 12 respectively; on

the other hand, the approximation ratio of SPT is at least
n
2
, where n is the number of nodes. The approximation

ratio of EMST is improved to 8 recently by Flammini et
al. [12]. Unfortunately, none of the above structures can be
formed and updated using only linear number of messages,
nor locally.

RNG, which can be constructed locally, has been used
for broadcasting in wireless ad hoc networks [40]. However,
an example was given in [30] to show that the total en-
ergy used by broadcasting on RNG could be about O(nβ)
times of the minimum-energy used by an optimum method.
Several practical broadcasting protocols [50, 7, 47] are pro-
posed recently, however, all of them did not provide their
theoretical performance bound on the energy consumption.
In fact, Li [30] showed that, no deterministic localized al-
gorithm can find a structure that approximates the total
energy consumption of broadcasting within a constant fac-
tor of the optimum. Furthermore, in the worst case, for
any broadcast based on a locally constructed and connected
structure, there is a network configuration of n nodes such
that its energy consumption is Θ(nβ−1) times the optimum.
On the other hand, given any low-weighted structure H, i.e.,
ω(H) ≤ O(1) · ω(EMST ), they proved the following lemma

Lemma 1. [30] ωβ(H) ≤ O(nβ−1) ·ωβ(EMST ), where H
is any low-weighted structure.

Here ω(G) is the total length of the links in G, i.e., ω(G) =P
uv∈G ‖uv‖, and ωβ(G) is the total power consumption of

links in G, i.e., ωβ(G) =
P

uv∈G ‖uv‖β . Consequently, low-
weighted structure is asymptotically optimal for broadcast-
ing among any connected structures built in a localized man-
ner. Notice that, the above analysis is based on the assump-
tion that every link is used during the broadcast (one-to-one
communication), such as using the TDMA scheme. Even
considering that the broadcast signal sent by a node can
be received by all nodes in its transmission region simulta-
neously (one-to-all communication), the above claim is also
correct. The reason is basically as follows. Let Bs(H) be
the total energy consumed by broadcasting on a structure
H with sender s using the one-to-all communication model.
Clearly, any flood-based broadcast based on a structure H
consumes energy at most

P
ei∈H eβ

i if the message received
by an intermediate node v is not forwarded to its parent,
i.e., the node that just forwarded this message to v; and the
total energy is at most 2

P
ei∈H eβ

i if an intermediate node
v may also forward the message to its parent. On the other
hand, the total energy Bs(H) used by any structure H is at

least
P

ei∈EMST eβ
i /12 [45]. Thus,

Bs(EMST ) ≥
X

ei∈EMST

eβ
i /12 = ωβ(EMST )/12.

Then, if H is a low-weighted structure, we have

Bs(H) ≤ 2
X

ei∈H

eβ
i = O(nβ−1) · ωβ(EMST )

≤ 12 ·O(nβ−1) ·Bs(EMST )

Recall that Bs(EMST ) is no more than a constant (≤ 8)
times of the optimum in an one-to-all communication model
[45, 12]. Consequently, we have the following lemma.



Lemma 2. The broadcast based on any low-weighted struc-
ture H consumes energy at most O(nβ−1) times of the opti-
mum in both one-to-one and one-to-all communication mod-
els. And the bound O(nβ−1) is tight.

In summary, to enable energy efficient broadcasting, the
constructed topology is also preferred to be low-weighted, in
addition to the three properties for unicast:

4. Low Weighted: the total link length of final topology
is within a constant factor of that of EMST .

Recently, several localized algorithms [30, 32] have been
proposed to construct low-weighted structures, which indeed
approximate the energy efficiency of EMST as the network
density increasing. However, none of them is power efficient
for unicast routing. In this paper we will present the first
efficient distributed method to construct a planar, bounded
degree spanner that is also low-weighted.

3. POWER-EFFICIENT UNICAST: SPANNER,
PLANAR AND BOUNDED-DEGREE

The ultimate goal of this paper is to construct a unified
topology that is power-efficient for both unicast and broad-
cast, in addition to be planar and have a constant bounded
logical node degree. To achieve this ultimate goal, in this
section, we first present a new method that can construct a
power-efficient topology for unicast. We will prove that the
constructed structure is a power-spanner, planar and has
bounded node degree. Furthermore, it has an extra prop-
erty: any two neighbors of each node are separated by at
least a certain angle θ. Hereafter, we call it the Θ-separation
property. As we will see later that this property further re-
duces the interference, especially when adopting directional
antennas for transmission. This property also makes the
proof much easier that the structure constructed in the next
section is also power-efficient for broadcast.

One possible way to construct a degree-bounded planar
power spanner is to apply the Yao structure on Gabriel
graph, since GG is already planar and has a power stretch
factor exactly 1. In [31], Li et al. showed that the final
structure by directly applying the Yao structure on GG is
a planar power spanner, called Y aoGG, but its in-degree
can be as large as O(n), as in the example shown in Figure
1(b). In [42], Song et. al proposed two new methods to
bound node degree by applying the ordered Yao structures
on Gabriel graph. The structure SY aoGG in [42] guaran-
tees that there is at most one neighbor node in each of the
k equal-sized cones. In this section, we will propose an im-
proved algorithm to further reduce the medium contention
by selecting less communication neighbors and separating
neighbors wider.

Before we give the algorithm, we first define a concept
called θ-Dominating Region.

Definition 1. θ-Dominating Region: For each neigh-
bor node v of a node u, the θ-dominating region of v is the
2θ-cone emanated from u, with the edge uv as its axis.

Figure 2 illustrates the θ-dominating region of a node v
in the transmission disk of node u. Using the concept of
θ-dominating region instead of absolute cone partition in
SYaoGG [42], we are able to prove that any two neighbors
of each node are guaranteed to be separated by at least

θ
u vθ

Figure 2: Node v’s θ-Dominating Region with re-
spect to node u.

an angle θ. The final topology will be called SΘGG. In-
tuitively, the communication interference in SΘGG will be
smaller than the interference in SY aoGG, which is also ver-
ified later by simulations as shown in Figure 10(c) and (d).

Algorithm 1 SΘGG: Power-Efficient Unicast Topology

1: First, each node self-constructs the Gabriel graph GG
locally. Initially, all nodes mark themselves White, i.e.,
unprocessed.

2: Once a White node u has the smallest ID among all its
White neighbors in N(u), it uses the following strategy
to select neighbors:

1. Node u first sorts all its Black neighbors (if avail-
able) in N(u) in the distance-increasing order, then
sorts all its White neighbors (if available) in N(u)
similarly. The sorted results are then restored to
N(u), by first writing the sorted list of Black
neighbors then appending the sorted list of White
neighbors.

2. Node u scans the sorted list N(u) from left to right.
In each step, it keeps the current pointed neighbor
w in the list, while deletes every conflicted node
v in the remainder of the list. Here a node v is
conflicted with w means that node v is in the θ-
dominating region of node w. Here θ = 2π/k (k ≥
9) is an adjustable parameter.

Node u then marks itself Black, i.e. processed, and
notifies each deleted neighboring node v in N(u) by a
broadcasting message UpdateN.

3: Once a node v receives the message UpdateN from a
neighbor u in N(v), it checks whether itself is in the
nodes set for deleting: if so, it deletes the sending node u
from list N(v), otherwise, marks u as BLACK in N(v).

4: When all nodes are processed, all selected links {uv|v ∈
N(u),∀v ∈ GG} form the final network topology, de-
noted by SΘGG. Each node can shrink its transmission
range as long as it sufficiently reaches its farthest neigh-
bor in the final topology.

The basic idea of our method is as follows. Since the
Gabriel graph is planar and power-spanner, we will remove
some links of GG to bound the nodal degree while not de-
stroying the power-spanner property. The basic approach of
bounding the nodal degree is to only keep some shortest link
in the θ-Dominating region for every node. We process the
nodes in a certain order. A node is marked White if it is un-
processed and is marked Black if it is processed. Originally
all nodes are marked White. Initially, a node elects itself to
start processing its neighbors if its ID1 is smaller than all its

1It is not necessary to use ID here. We can also use some other
mechanism to elect a certain node to perform the remaining pro-



(a) UDG (b) RNG, GG (c) BPS (d) OrdY aoGG (e) SY aoGG (f) SΘGG

Figure 1: Several planar power spanners for UDG shown in (a). Here k = 9 for constructing SY aoGG, SΘGG.

unprocessed logical neighbors in the Gabriel graph. Assume
that a node u is to be processed. We further assume that
there are already some processed logical neighboring nodes,
say v1, · · · , vt, among its neighbors in GG. It keeps the link
to the closest processed neighbor, say v1, in GG, and re-
moves all links to all neighbors in the θ-dominating region
of v1. In other words, the neighbor v1 dominates all other
neighbors in its θ-dominating region. It then repeats the
above procedure until no processed logical neighbors in GG
are left. Assume that node u also has some unprocessed log-
ical neighbors, i.e., marked White. The node u then keeps
the link to the closest unprocessed neighbor, say w, in GG
if there is any, and then removes the links to all neighbors
in the the θ-dominating region of w. It then repeats the
above procedure until no unprocessed neighbors in GG are
left. Node u then marks itself Black and then informs its
logical neighbors in GG about its change of status. The al-
gorithm terminates when all nodes are marked processed.
The remaining links form the final structure, called SΘGG.

In our new algorithm, a data structure will be used: N(u)
is the set of neighbors of each node u in the final topology,
which is initialized as the set of neighbor nodes in GG. We
are now ready to present our Algorithm 1, which constructs
a bounded degree planar power spanner.

Notice that the final topology based on Yao graph, such
as SY aoGG [42], may vary as the choice of the direction of
cones varies. Here, SΘGG does not rely on the absolute cone
partition by adopting the new concept of θ-dominating re-
gion. Hence, given the point set V , SΘGG is unique. In ad-
dition, the average node degree, interference and transmis-
sion range of SΘGG is expected to be smaller than SY aoGG
too. Furthermore, it is interesting to notice that the theo-
retical bound on the spanning ratio for SΘGG, that we can
prove, is same as SY aoGG, as proved later in Theorem 4.

Lemma 3. Graph SΘGG is connected if the underlying
graph GG is connected. Furthermore, given any two nodes
u and v, there exists a path {u, t1, ..., tr, v} connecting them
such that all edges have length less than

√
2‖uv‖.

Proof. We prove the connectivity by contradiction. Sup-
pose a link uv is the shortest link in UDG whose connectivity
is broken by Algorithm 1. W.l.o.g, assume the link uv is re-
moved while processing node u, because of the existence of
another node w.

As shown in Figure 3, there are only two cases (ties are
broken by ID) that the link uv can be removed by node u:

cedures first. For example, we can use the RTS/CTS mechanism
provided in the MAC layer to achieve this: the node that first
successfully sent a RTS signal within its one-hop neighborhood
will be elected. In this paper, we use ID just for the sake of an
easy presentation.

w

u v

w

u v

(a) ‖uw‖ < ‖uv‖ (b) ‖uw‖ > ‖uv‖

Figure 3: Two cases when uv is removed while
processing u.

Case a: ‖uw‖ < ‖uv‖. Notice that ∠vuw ≤ θ < π/4,
hence ‖wv‖ < ‖uv‖. In other words, both link wv and
uw are smaller than link uv. Since there are no paths
u ! v according to the assumption, either the path
u ! w or v ! w is broken. That is to say, either the
connectivity of wv or uw is broken. Thus, uv is not
the shortest link whose connectivity is broken, it is a
contradiction.

Case b: ‖uw‖ > ‖uv‖. It happens only when node w is
processed and node v is unprocessed. Similarly, ∠vuw ≤
θ < π/4 < ∠uwv (otherwise ∠uvw > π/2 violates the
Gabriel graph property), hence ‖wv‖ < ‖uv‖. Since
node w is a processed node and node u decides to keep
link uw, the link uw will be kept in SΘGG. Accord-
ing to assumption that u and v are not connected in
SΘGG, w and v are not connected either. That is to
say, uv is not the shortest link whose connectivity is
broken. It is a contradiction.

This finishes the proof of connectivity. Notice that the
above proof implies that the shortest link uv in UDG is
kept in the final topology. Clearly, the shortest link uv is
in GG. Link uv cannot be removed in our algorithm due to
the case illustrated by Figure 3 (a). Assume, for the sake of
contradiction, that uv is removed due to the case (b) where
‖uw‖ > ‖uv‖ and w is processed when processing u. Then
‖wv‖ < ‖uv‖ is a contradiction to that uv is the shortest
link in UDG.

We then show by induction that, given any link uv in
UDG, there is a path connecting them using edges with
length at most

√
2‖uv‖. Assume uv is removed when process-

ing u and due to the existence of link uw. We build a path
connecting u and v by concatenating u ! w and w ! v, as
shown in Figure 3. It is not difficult to see that the longest
segment of the path is less than

√
2‖uv‖, which occurs in

case (b). In this case, the link uw must be kept because
both endpoints are processed, and ‖uw‖ <

√
2‖uv‖. This

finishes the proof.

The property that for any link uv, there is a path connect-
ing them such that the links on the path have length at most



√
2‖uv‖ is crucial for our later proof that our Algorithm 2

builds a low-weighted bounded degree planar spanner.

Theorem 4. The structure SΘGG has node degree at
most k − 1 and is planar power spanner with neighbors Θ-

separated. Its power stretch factor is at most ρ =
√

2
β

1−(2
√

2 sin π
k

)β ,

where k ≥ 9 is an adjustable parameter.

Proof. The proof would be similar with the proof of
SY aoGG in [42]. The only difference is that, we used the
concept of dominating cones instead of Yao graph. While
the power stretch factor remains the same theoretically, the
degree bound is reduced from k to k−1. Obviously, the links
in SΘGG are Θ-separated, in other words, the direction of
any two neighbors of a node is Θ-separated.

Figure 1 (e) and (f) show the difference of SY aoGG and
SΘGG. Compared with SY aoGG, SΘGG is more evenly
distributed and has a lower node degree.

4. UNIFIED POWER-EFFICIENT
TOPOLOGY: DEGREE-BOUNDED
PLANAR SPANNER WITH LOW WEIGHT

To the best of our knowledge, so far, no communication
efficient topology control algorithm has achieved all the de-
sirable properties summarized in Section 2: degree-bounded,
planar, power spanner, low-weighted. Those properties are
not only interesting in terms of computational geometry,
but also have important applications in wireless ad hoc net-
works, as shown in section 2: enable energy efficient unicast
and broadcast routings in same structure. Recall that, span-
ner property ensures that an energy efficient path is always
kept for any pair of nodes, hence it is a necessary condition to
support energy efficient unicast. While low-weighted struc-
ture is optimal for broadcast among any connected struc-
tures built locally. Unfortunately, all the known spanners,
including Yao [51], GG [13] and the recent developed degree-
bounded planar spanners BPS [46], SY aoGG, OrdY aoGG
[42] and SΘGG, are not low-weighted. As illustrated in Fig-
ure 1, all of them will keep at least n−1

2
links between the

two circles, while EMST (in Figure 5(b)) will keep only one
link between them. Hence the weight of any of them is at
least O(n) · w(EMST ).

It is worth to clarify that, in this section, we are interested
in finding a subgraph to enable efficient broadcast routings,
even based on the simple-flooding method. We do not aim
to substitute the known broadcasting protocols. In fact, the
methods used in those broadcasting protocols [50, 7] can
be applied on the low-weighted structures to conserve more
energy. The main contribution of low-weighted structure is
that it bounds the worst case performance for broadcasting.

Several known localized algorithms are given in [30, 32]
to generate low-weighted graphs. In their algorithms, given
a certain structure G, for any two links uv and xy of a
graph G, they remove xy if xy is the longest link among
quadrilateral uvxy. They proved that the final structures
are low-weighted if G is RNG’ [30] or LMST2 [32]. Ob-
viously, they are not spanners. In fact, their techniques
can not be applied on spanner graph to bound the weight
without losing its spanner property. Figure 4 illustrates
an example by applying their algorithms to SΘGG. The
node ID of vi is i, ∠v1v3v4 < θ and ‖v1v3‖ > ‖v3v4‖ >
max(‖v1v2‖, ‖v2v4‖). While constructing SΘGG, first node

θ−ε

v1

v2

v4

v3

Figure 4: The graph could be disconnected if ap-
plying the previous method to build low-weighted
structure on SΘGG.

v1 selects v1v2 and v1v3 as its incident logical links and
node v2 selects v2v1 and v2v4, then node v3 selects v3v1

and deletes v3v4. Hence v3v4 /∈ SΘGG. If applying the
rule described in [30, 32], the link v1v3 will also be deleted
because ‖v1v3‖ > max(‖v1v2‖, ‖v2v4‖, ‖v3v4‖). Then the
graph will be disconnected. Then we can conclude that sim-
ple extension of methods in [32] on top of SΘGG does not
even guarantee the connectivity, nor to say power-spanner
property.

Indeed, the spanner property and low-weight property are
not easy to be achieved at same time. Intuitively, the span-
ner property requires to keep more links, while the low-
weight property requires to keep less links from original
graph. In the following, we will describe a novel algorithm to
build a low-weighted structure from SΘGG, while keeping
enough links to guarantee the power efficiency. Figure 5 il-
lustrates the difference of LSΘGG from SΘGG and LMST2.

(a) SΘGG (b) LMST2 (c) LSΘGG

Figure 5: Three different structures.

Algorithm 2 presents our new method that constructs
a bounded degree planar power-spanner that is also low-
weighted. Although our algorithm produces only power-
spanner here, it can be extended to produce also the length-
spanner if it is needed. To get a length-spanner, we con-
struct the structure LDel2 (defined in [27]) instead of the
Gabriel graph used in our algorithm. It was proved in [27]
that LDel2 is a planar, length-spanner, and can be con-
structed using only O(n) messages. The basic idea of our
new method is as follows. Since the graph SΘGG is already
planar, power-spanner, and has bounded-degree, we will re-
move some of its edges to guarantee that the resulting topol-
ogy is low-weighted while not destroying the power-spanner
property. Notice that removing edges will not break the
planar property and the bounded-degree property. In all
previous methods presented in the literature, a node x de-
cides to remove or keep links that are incident on x, i.e., it
only cares about the incident edges. While, in the method
presented here, a node x will decide whether to keep or re-
move links for not only incident links, but also the links that
are incident on one of its neighbors. To guarantee a low-
weight property the methods presented in [30, 32] remove
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Figure 6: A sequence of links are recursively removed. Here solid and dashed links represent the links
from the original graph and the dashed links represent the links that are removed by a topology control
algorithm, while solid links represent the final structure constructed by a certain method. Here we assume
that ‖uivi‖ = R and the ID of link uivi is less than the ID of link ui+1vi+1.

some links from a certain structure such that the remaining
links satisfy the isolation property : for each remaining link
xy, the disk centered at the midpoint of xy using a radius
proportional to ‖xy‖ does not intersect with any other re-
maining links. They achieved this property by removing a
link xy if there is another link uv such that xy is the longest
link in the quadrilateral uvyx. However, this simple heuris-
tic cannot guarantee the spanner property. Consider a link
xy in some shortest path from s to t. See Figure 7 for an
illustration. Link xy will be removed due to the existence of
link uv. Link uv could also later be removed due to the exis-
tence of another link u1v1, which could also be removed due
to the existence of another link u2v2, and so on. See Figure
6 (b) for an illustration of the situation where a sequence
of links will be removed: all links uivi, for i ≥ 2 will be
removed. Consequently, the shortest path connecting nodes
un and vn could be arbitrarily long in the resulting graph.

Thus, instead of blindly removing all such links xy when-
ever it is the longest link in a quadrilateral uvyx, we will keep
such a link when some links in its certain neighborhood have
been removed. To do so, among all links from a graph, such
as SΘGG, that is planar, bounded-degree, power-spanner,
we implicitly define an independent set of links. A link is in
this independent set, which will be kept at last, if it has the
smallest ID among unselected links from its neighborhood.
Specifically, we implicitly define a virtual graph G′ over all
links in SΘGG: the vertex set of G′ is the set of all links in
SΘGG and two links xy and uv of SΘGG are connected in
G′ if one end-point of uv is in the transmission range of one
end-point of link xy (they will interfere with each other if
transmit simultaneously). For example, the links u1v1 and
u3v3 are not independent in network topology illustrated by
Figure 6 (a); while the links u1v1 and unvn are indepen-
dent. Notice that links u1v1 and u1u2 are independent since
they do not form a four vertices convex hull. Notice that
in our method presented later, we did not explicitly define
such graph G′, nor compute the maximal independent set of
such graph G′ explicitly. We will prove that the selected in-
dependent set of links in SΘGG indeed is low-weighted and
still preserves the power-spanner property, although with
a larger power spanning ratio. Our method will keep link
u1v1 since it has the smallest ID among all links that are
not independent. When link u1v1 is kept, all links that are
not independent (here are u2v2 and u3v3) will be removed.
Then link u4v4 will be kept. The above procedure will be
repeated until all links are processed. The final structure
resulted from our method is illustrated by Figure 6 (c).

Obviously, the construction is consistent for two endpoints
of each edge: if an edge uv is kept by node u, then it is also
kept by node v. The ID of a link uv is defined as following:
ID(uv) = {‖uv‖, min(ID(u), ID(v)), max(ID(u), ID(v))}.
As we will see later that the number 3 in criterion of Algo-
rithm 2

‖xy‖ > max(‖uv‖, 3‖ux‖, 3‖vy‖)
is carefully selected.

Algorithm 2 Construct LSΘGG: Planar Spanner with
Bounded Degree and Low Weight

1: All nodes together construct the graph SΘGG in a lo-
calized manner, as described in Algorithm 1. Then, each
node marks its incident edges in SΘGG unprocessed.

2: Each node u locally broadcasts its incident edges in
SΘGG to its one-hop neighbors and listens to its neigh-
bors. Then, each node x can learn the existence of the
set of 2-hop links E2(x), which is defined as follows:
E2(x) = {uv ∈ SΘGG | u or v ∈ NUDG(x)}. In other
words, E2(x) represents the set of edges in SΘGG with
at least one endpoint in the transmission range of node
x.

3: Once a node x learns that its unprocessed incident edge
xy has the smallest ID among all unprocessed links in
E2(x), it will delete edge xy if there exists an edge uv ∈
E2(x) (here both u and v are different from x and y),
such that ‖xy‖ > max(‖uv‖, 3‖ux‖, 3‖vy‖); otherwise
it simply marks edge xy processed. Here assume that
uvyx is the convex hull of u, v, x and y. Then the link
status is broadcasted to all neighbors through a message
UpdateStatus(xy).

4: Once a node u receives a message UpdateStatus(xy),
it records the status of link xy at E2(u).

5: Each node repeats the above two steps until all edges
have been processed. Let LSΘGG be the final structure
formed by all remaining edges in SΘGG.

Theorem 5. The structure LSΘGG is a degree-bounded
planar spanner. It has a power spanning ratio 2ρ+1, where
ρ is the power spanning ratio of SΘGG. The node degree is
bounded by k − 1 where k ≥ 9 is a customizable parameter
in SΘGG.

Proof. The degree-bounded and planar properties are
obviously derived from the SΘGG graph, since we do not
add any links in Algorithm 2. To prove the spanner property,



we only need to show that the two endpoints of any deleted
link xy ∈ SΘGG are still connected in LSΘGG with a con-
stant spanning ratio path. We will prove it by induction on
the length of deleted links from SΘGG.

y

u v

x

Figure 7: The path between x and y is at most (2ρ+
1)‖xy‖ in LSΘGG if xy ∈ SΘGG.

Assume xy is the shortest link of SΘGG which is deleted
by Algorithm 2 because of the existence of link uv with
smaller length. Obviously, path x ! y can be constructed
through the concatenation of path x ! u, link uv and path
v ! y, as shown in Figure 7. Since ‖xy‖ > max(‖ux‖, ‖vy‖)
and link xy is the shortest among deleted links in Algorithm
2, we have p(x ! u) < ρ‖ux‖β and p(v ! y) < ρ‖vy‖β .

Hence, p(x ! y) < ‖uv‖β + ρ‖ux‖β + ρ‖vy‖β < (2ρ +

1)‖xy‖β .
Suppose all the i-th (i ≤ t − 1) deleted shortest links of

SΘGG have a path connecting their endpoints with span-
ning ratio 2ρ + 1. For the t-th deleted shortest link xy ∈
SΘGG, according to Algorithm 2, it must have been deleted
because of the existence of a link uv: such that ‖xy‖ >
max(‖uv‖, 3‖ux‖, 3‖vy‖) in a convex hull uvyx. Now, we

have p(x ! u) < (2ρ + 1)‖ux‖β and p(v ! y) < (2ρ +

1)‖vy‖β . Thus,

p(x ! y) = ‖uv‖β + p(u ! x) + p(v ! y)

< ‖uv‖β + (2ρ + 1)‖ux‖β + (2ρ + 1)‖vy‖β

< ‖xy‖β + (2ρ + 1)(‖xy‖/3)β + (2ρ + 1)(‖xy‖/3)β

≤ (2ρ + 1)‖xy‖β

Thus, LSΘGG has a power spanning ratio ≤ 2ρ + 1.

We then show that graph LSΘGG is low-weighted. To
study the total weight of this structure, inspired by the
method proposed in [30], we will show that the edges in
LSΘGG satisfy the isolation property [10].

Theorem 6. The structure LSΘGG is low-weighted.

See the appendix for the proof. We continue to analyze
the communication cost of Algorithm 1 and 2. First, clearly,
building GG in Algorithm 1 can be done using only n mes-
sages: each message contains the ID and geometry position
of a node. Second, to build SΘGG, initially, the number
of edges, say p, in Gabriel Graph is p ∈ [n, 3n − 6] since
it is a planar graph. Remember that we will remove some
edges from GG to bound the logical node degree. Clearly,
there are at most 2n such removed edges since we keep at
least n−1 edges from the connectivity of the final structure.
Thus the total number of messages, say q, used to inform
the deleted edges from GG is at most q ∈ [0, 2n]. Notice
that p − q is the edges left in the final structure, which is
at least n − 1 and at most 3n − 6. Thirdly, in the marking
process described in Algorithm 2, the communication cost
of broadcasting its incident edges (or its neighbors) and up-
dating link status are both 2(p − q). Therefore the total

communication cost is n + 4p − 3q ∈ [5n, 13n]. Then the
following theorem directly follows.

Theorem 7. Assuming that both the ID and the geom-
etry position can be represented by log n bits each, the to-
tal number of messages during constructing the structure
LSΘGG is in the range of [5n, 13n], where each message
has at most O(log n) bits.

Compared with previous known low-weighted structures
[30, 32], LSΘGG not only achieves more desirable proper-
ties, but also costs much less messages during construction.
To construct LSΘGG, we only need to collect the informa-
tion E2(x) which costs at most 6n messages. Our algorithm
can be generally applied to any known degree-bounded pla-
nar spanner to make it low-weighted while keeping all its pre-
vious properties, except increasing the spanning ratio from
ρ to 2ρ + 1 theoretically.

5. EXPECTED INTERFERENCE IN
RANDOM NETWORKS

This section is devoted to study the average physical node
degree of our structure when the wireless nodes are dis-
tributed according to a certain distribution. For average
performance analysis, we consider a set of wireless nodes
distributed in a two-dimensional unit square region. The
nodes are distributed according to either the uniform ran-
dom point process or homogeneous Poisson process. A point
set process is said to be a uniform random point process, de-
noted by Xn, in a region Ω if it consists of n independent
points each of which is uniformly and randomly distributed
over Ω. The standard probabilistic model of homogeneous
Poisson process is characterized by the property that the
number of nodes in a region is a random variable depending
only on the area (or volume in higher dimensions) of the
region. In other words,

• The probability that there are exactly k nodes appear-

ing in any region Ψ of area A is (λA)k

k!
· e−λA.

• For any region Ψ, the conditional distribution of nodes
in Ψ given that exactly k nodes in the region is joint
uniform.

Definition 2. Given a structure H, the adjusted trans-
mission range rH(u) is defined as maxuv∈H ‖uv‖, i.e., the
longest edge of H incident on u. The physical node degree
of u in H is defined as the number of nodes inside the disk
disk(u, rH(u)). The node interference, denoted by IH(u), of
a node u in a structure H is simply the physical node degree
of u. The maximum node interference of a structure H is
defined as maxu IH(u). The average node interference of a
structure H is defined as

P
u IH(u)/n.

Theorem 8. For a set of nodes produced by a Poisson
point process with density n, the expected maximum node
interference of any connected structure, e.g., EMST, GG,
RNG, Yao and LSΘGG, is at least Θ(log n).

Proof. Let dn(H) be the longest edge of a structure H
of n points placed independently in 2-dimensions according
to standard poisson distribution with density n. Obviously,
dn(EMST ) is the smallest among all connected structures
H. For simplicity, let dn = dn(EMST ). In [37], they showed
that

lim
n→∞

Pr(nπd2
n − log n ≤ α) = e−e−α

.



Notice that the probability Pr(nπd2
n − log n ≤ log n) will

be sufficiently close to 1 when n goes to infinity, while the
probability Pr(nπd2

n−log n ≤ − log log n) will be sufficiently
close to 0 when n goes to infinity. That is to say, with high
probability, nπd2

n is in the range of [log n− log log n, 2 log n].
Given a region with area A, let m(A) denote the number

of nodes inside this region by a Poisson point process with
density δ. According to the definition of Poisson distribu-

tion, Pr(m(A) = k) = e−δA(δA)k

k!
. Thus, the expected num-

ber of nodes lying inside a region with area A is E(m(A)) =
δA. For a Poisson process with density n, let uv be the
longest edge of the Euclidean minimum spanning tree, and
dn = ‖uv‖. Then, the expectation of the number of nodes
that fall inside disk(u, dn) is E(m(πd2

n)) = nπd2
n, which is

larger than log n almost surely when n goes to infinity. That
is to say, the expected maximum interference of Euclidean
MST is Θ(log n) for a set of nodes produced according to a
Poisson point process.

Since dn ≤ dn(H) for any connected structure H, the ex-
pected maximum node interference of any connected struc-
ture H, e.g., GG, RNG, Yao, and LSΘGG, is at least Ω(log n).
Thus, all commonly used structures for topology control in
wireless ad hoc networks have a large maximum node inter-
ference even for randomly deployed nodes.

It is not difficult to show that the above theorem is also
true when the nodes are distributed according to a uniform
random distribution. Our following analysis will show that
the average interference of all nodes of these structures is
small for a randomly deployed network.

Theorem 9. For a set of nodes produced by a Poisson
point process with density n, the expected average node in-
terferences of EMST and RNG are bounded from above by
some constants.

Proof. Consider a set V of wireless nodes produced by
Poisson point process. Given a structure G, the interference
IG(ui) is the number of nodes inside the transmission region
of node ui. Here the transmission region of node ui is a disk
centered at ui with radius ri = maxuiv∈G ‖uiv‖. Hence, the
expected average node interference is

E(

Pn
i=1 IG(ui)

n
) =

1

n
E(

nX
i=1

IG(ui)) =
1

n

nX
i=1

E(IG(ui))

=
1

n

nX
i=1

E(m(πr2
i )) =

1

n

nX
i=1

(nπr2
i ) ≤ 2

X
ei∈G

(πe2
i ).

The last inequality follows from the fact that ri is the length
of some edge in G and each edge in G can be used by at most
two nodes to define its radius ri.

Let ei, 1 ≤ i ≤ n − 1 be the length of all edges of the
EMST of n points inside a unit disk. It was shown in [45]
that

P
ei∈EMST e2

i ≤ 12. Thus, the expected average node
interference of the structure EMST is

E(

Pn
i=1 IEMST (ui)

n
) ≤ 2

X
ei∈EMST

(πe2
i ) ≤ 24π.

For RNG graph, we define a diamond for each segment.
The open diamond subtended by a line segment uv, denoted
by D(uv, γ), is the rhombus with sides of length ‖uv‖/(2 cos γ),
where 0 ≤ γ ≤ π/3 is a parameter. Similar to the proof of

[45], we can show that the diamonds D(uv, π/6) do not over-
lap and

P
ei∈RNG e2

i ≤ 8π/
√

3. This implies that

E(

Pn
i=1 IRNG(ui)

n
) ≤ 2

X
ei∈RNG

(πe2
i ) ≤ 16π2/

√
3.

This finishes our proof.

Theorem 10. The expected average node interference of
LSΘGG is bounded from above by a constant.

Proof. We prove it by showing that in LSΘGG, all the
diamonds D(uv, γ) subtended from each link segment uv ∈
LSΘGG do not overlap with each other, where sin 2γ = 1

3
.

Figure 8 illustrates the basic idea of the proof. For any

o

u

v

x y

Figure 8: All diamonds do not overlap.

two segments uv and xy, we can show that either the an-
gle between them is at least 2γ (implies that two diamonds
D(uv, γ) and D(xy, γ) do not overlap), or the distance be-
tween them is far enough to separate these two diamonds.
The detail of the proof is omitted here, since it is not difficult
to verify, although it is tedious.

It is easy show that the total area of these diamonds is
tan γ

2

P
ei∈LSΘGG e2

i ' 0.084
P

ei∈LSΘGG e2
i . Then we can

show that
P

ei∈LSΘGG e2
i ≤ 12π. Thus, the expected aver-

age node interference is at most 2
P

ei∈LSΘGG e2
i ≤ 24π.

6. DYNAMIC UPDATE
The methods presented so far have assumed that the wire-

less nodes are static. This is true for some certain wireless
networks such as the wireless sensor networks. Obviously,
dynamic maintenance of the topology is an important is-
sue for a dynamic wireless ad hoc network, after the con-
struction of the unified energy-efficient topology. Two ma-
jor events may cause the topology “obsoleted”: 1) topology
changes due to node moving, node joining or leaving, node
failure; and 2) distance changes when nodes are moving.
Notice that the distance clearly change frequently. It will
be very expensive if we respond quickly to all possible dis-
tance changes. Therefore, a dynamic update method for
the network topology will respond to the topology change
spontaneously: topology should be updated carefully when
a certain used link in the topology is no longer a physical
link in the network. On the other hand, it will respond
to the distance change only when the change is over some
threshold. Assume that there is a timer set for topology
maintenance: when the timer expires, each node will check
whether it needs to update the topology. We propose to set
two control parameters α2 > 1 > α1 > 0. Assume that the
nodes are moving and let eu be the new position of a node u
after the timer for topology-maintenance expires. Let u be
the position of node u when the last topology-maintenance



is performed and LSΘGG be the corresponding updated
topology. In our topology control implementation, a node
u will not perform the topology update if for every logical
neighbor v, we have

α1 · ‖uv‖ ≤ ‖euev‖ ≤ α2 · ‖uv‖.
Notice that if this condition is hold for all nodes, then

the “old” topology LSΘGG we currently have is still a low-
weighted, bounded degree, planar spanner for the current
node configuration. The planar property and the bounded
degree property clearly hold. We only need to show that that
structure LSΘGG is still low-weighted and a power-spanner
for the new node positions. We first prove that it is still a
power-spanner, although not the same structure if we apply
our method using the current positions of all nodes. For the

presentation convenience, let ŨDG be the network formed
by all nodes u at their current position eu; Let UDG be the
network formed by all nodes u at their previous position u
when the last topology updating is performed.

Theorem 11. Structure LSΘGG is a power-spanner for

the new network modelled by ŨDG.

Proof. Consider any link uv. In the current network

ŨDG, there is a shortest path connecting them with the
minimum power consumption. For each link xy on this
shortest path, we have ‖xy‖ ≤ ‖exey‖/α1. Notice that it is
possible that link xy is not in the topology LSΘGG. Since
LSΘGG is a power-spanner for UDG, there must exist a
path Π in LSΘGG connecting x and y using total power at
most (2ρ + 1) · ‖xy‖β , which is at most 2ρ+1

α
β
1
· ‖exey‖β . Notice

that the length of each edge of Π may be different now in

current network ŨDG and the old network UDG. Obvi-
ously, ‖eaeb‖/α2 ≤ ‖ab‖ for each edge ab of the logical path
Π. Consequently, the total power for the topological path Π

in network ŨDG will be at most

αβ
2 ·

2ρ + 1

αβ
1

· ‖exey‖β .

Thus, the topological structure LSΘGG still has a power-
spanning ratio at most αβ

2 · 2ρ+1

α
β
1

for the current network

modelled by ŨDG. This finishes the proof.

We then show that the structure LSΘGG is still low-
weighted, i.e., the total edge length of the topological struc-
ture LSΘGG under the new positions of nodes is still within
a constant factor of the total edge length of the Euclidean
minimum spanning tree of the new network modelled by

ŨDG.

Theorem 12. Structure LSΘGG is still low-weighted for

the new network modelled by ŨDG.

Proof. For simplicity, we use EMST to denote the Euclid-
ean minimum spanning EMST (UDG) of the network UDG.

We define ẼMST similarly. Since LSΘGG is originally low-
weighted for network modelled by UDG, there is a constant
c such thatX

xy∈LSΘGG

‖xy‖ = ω(LSΘGG) ≤ c ·
X

uv∈EMST

‖uv‖.

Clearly,
P

xy∈LSΘGG ‖exey‖ ≤ α2 ·
P

xy∈LSΘGG ‖xy‖. Let’s

consider the tree ẼMST . Obviously, we haveP
st∈ẼMST

‖eset‖ ≥P
st∈ẼMST

α1 · ‖st‖
= α1 ·

P
st∈ẼMST

‖st‖ ≥ α1 ·
P

uv∈EMST ‖uv‖
The last inequality is due to tree EMST is the minimum
spanning tree when each node u has a position u. Thus, the
total edge length of LSΘGG with new nodes’ positions isX

xy∈LSΘGG

‖exey‖ ≤ α2 ·
X

xy∈LSΘGG

‖xy‖

≤ α2 · c ·
X

uv∈EMST

‖uv‖ ≤ α2 · c · 1

α1

X
st∈ẼMST

‖eset‖
=

α2

α1
· c · ω(ẼMST )

This finishes our proof.

Usually, there are two kinds of update methods: on-demand
update or periodical update. Most of the existing dynamic
updating algorithms are invoked periodically, while some al-
gorithms perform the updating only when it is required (i.e.,
on-demand). Our algorithm can adapt and combine both of
these two update methods. If no major topology changes
or no remarkable distance changes, no update will be per-
formed until some pre-set timer expires. In other words, we
perform our algorithm periodically with a pre-set time. The
time could be set quite long depending on the mobility pat-
tern of the wireless network. This kind of global update also
insures the load balance throughout the network. But for
some major topology change (such as a broken physical link
used in the topology) or tremendous change of distance, an
on-demand update will be performed.

7. PERFORMANCE ON RANDOM
NETWORKS

In this section we evaluate the performance of our new
energy efficient unicast and broadcast topology SΘGG by
conducting simulations. In our simulations, we randomly
generate a set V of n wireless nodes and UDG(V ), then
test the connectivity of UDG(V ). If it is connected, we con-
struct different topologies on UDG(V ), including our new
topology SΘGG and some other well-known planar topolo-
gies including GG [13], RNG [43], and SY aoGG [42]. Then
we measure the sparseness, the power efficiency and the in-
terference of these topologies.

In the simulation results presented here, we generate n
random wireless nodes in a 16 × 16 unit squares; the para-
meter k is set to 9 when we construct SY aoGG and SΘGG;
the transmission range of each node is set to 4 unit. Typ-
ically, a unit represents about 50 meters here. We test the
power efficiency, and node degree of these planar structures
by varying the node number n from 30 to 360. For each
number n = 30i, 1 ≤ i ≤ 12, 500 vertex sets are gener-
ated. Given a sampled network, we will first compute the
quality measure for this graph, e.g., we compute the average
(and the maximum) spanning ratio of the spanning ratios of
all pairs of nodes; we compute the average (and the maxi-
mum) (physical and logical) node degree of all nodes. We
then compute the average of these performances (e.g., av-
erage spanning ratio, average node degree, maximum node
degree) over all these 500 randomly sampled networks.
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Figure 9: Average power spanning ratio of different
topologies.

The most important design metric of wireless network
topology is perhaps the power efficiency, as it directly af-
fects both the node and the network lifetime. We first
study power stretch factors of all structures, which are sum-
marized in Figure 9. In our simulations we set power at-
tenuation constant β = 2. It shows that all power span-
ners (GG, SY aoGG, SΘGG, LSΘGG) indeed have a small
power spanning ratio in practice: less than 1.021, while
RNG, LMST2, EMST are less power efficient as proved.

Notice that RNG has a length spanning ratio Ω(
q

log n
log log n

)

even for n randomly distributed nodes [4], which implies that
the length spanning ratios of LMST2, EMST are also at

least Ω(
q

log n
log log n

) since RNG contains them as subgraphs.

Similar proofs can show that these structures also have arbi-

trarily large power spanning ratios (in the order of Ω(
q

log n
log log n

))

for n nodes randomly distributed in a square region. The
proof details are omitted here due to space limit. The curves
in Figure 9 do show such a trend of increasing power span-
ning ratios for structures EMST and LMST2. Hence, for
unicast application, we only need to compare the perfor-
mances among power spanners. The average power stretch
factors of LSΘGG are at the same level of those of GG
though LSΘGG is sparser and low-weighted.

7.2 Number of Communication Neighbors
In unicast routings, each node is preferred to have a bounded

number of communication neighbors. Otherwise a node with
a large logical degree may have to communicate with many
nodes directly. This increases the interference and the over-
head at this node. The overhead could be caused by main-
taining the status of these logical neighbors locally. The
average and maximum logical node degrees of each topol-
ogy are shown in Figure 10 (a) and (b). It shows that
SΘGG and LSΘGG have less number of edges (average log-
ical degrees) than SY aoGG and GG. Our new structure
is sparser than previous structures with bounded power-
spanning ratios, but denser than other structures (RNG,
EMST, LMST2). The increasing/decreasing values as n in-
creases in Figures 10 (b), (d) and (f) are caused by the

small number of simulations. Notice that, to get the same
confidence level, measuring the maximum value needs more
simulations than measuring the average value.

7.3 Interference
Beside the logical node degrees, we are also interested in

the physical node degree (or called node interference) that
is defined as follows. For each node u, let uv = LH(u) be
the longest link incident in u in a structure H. The node
interference of u is defined as the number of nodes w with
‖uw‖ ≤ ‖uv‖. This is the total number of nodes that could
cause direct interference with u. The average and maximum
node interference of each topology are shown in Figure 10
(c) and (d). They are higher than the logical node degrees
as expected, however they follow the same pattern of curves.
The average node interference increases first when the num-
ber of nodes increases, then it becomes stable. The average
node interferences of LSΘGG, SΘGG, SY aoGG are indeed
bounded, which are around 6, 6, 6.5 in our simulations; the
average node interferences of RNG, EMST, and LMST2 are
smaller but they are not efficient structures. The maximum
node interference increases slightly while the number of wire-
less nodes grows: it follows the curve of O(ln n) as we proved.
As predicted in section 3, both average and maximum node
interference of SΘGG are lower than SY aoGG.

7.4 Performance for Broadcasting
After forming a sparse structure, say H, each node can

shrink its transmission energy as long as it is enough to cover
the longest adjacent neighbor in the structure. By this way,
we define the node transmission power for each node u in
a structure as the minimum power needed to support its
longest link LH(u) = uv in H. Here we assume that the
node transmission energy of u is set as ‖uv‖β . Recall the
discussion in section 2.2, once a structure H is constructed,
the broadcast is a simple flooding on top of H: every node
will forward the received broadcast message (from one of its
logical neighbors) once to all its other logical neighbors in
the structure. Hence minimum-energy broadcast is to decide
the logical neighbors (thus the transmission range) of each
node, so that the total energy consumed during broadcasting
is minimized.

For broadcast we will not study the total energy consump-
tion of all nodes since this depends on the number of nodes:
more nodes will consume more energy, which makes it dif-
ficult to study the overall performance of a structure when
the number of nodes varies. Instead, we will concentrate on
the power consumed by individual nodes. The average and
the maximum node transmission energy of each topology are
shown in Figure 10 (e) and (f), which decreases as the net-
work density increases as expected. The power assignment
based on LSΘGG is only slightly larger than RNG, which
has been widely used for broadcasting previously; the reason
is that LSΘGG need more links to guarantee small power
spanning ratio theoretically. The structure LSΘGG pro-
duces the smallest average node power for broadcast among
all structures with theoretical guaranteed performance for
unicast and broadcast. Our theoretical results are corrob-
orated in the simulations: low-weighted structure is indeed
close to optimal for broadcast among all locally constructed
structures. Moreover, simulation results in all charts also
show that the performances of our new topologies LSΘGG
are stable when the number of nodes changes.
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Figure 10: The average and maximum performances of various structures.

8. CONCLUSION
Energy conservation is critical to the network performance

in wireless ad hoc networks. Topology control has drawn
significant research interests from different approaches for
energy conservation in wireless ad hoc networks. In this pa-
per, we proposed an efficient algorithm in which all wireless
nodes maintain a network topology, called LSΘGG, which
is the first known single structure to support both energy ef-
ficient unicast and broadcast. We gave distributed method
to construct it with 5n to 13n messages. We proved that, for
unicast, it has following attractive properties: power span-
ner, bounded node degree, planar, and low average interfer-
ence. Furthermore, the total energy of broadcast based on
this structure is also within a constant factor of the power
consumption of broadcast based on any locally constructed
topology, although it is not within a constant factor of the
global optimum. Previous known communication efficient
topology control algorithms can only achieve part of those
nice properties, especially, none of them can support both
efficient unicast and broadcast simultaneously.

There are still lots of challenging questions we did not ad-
dress in this paper. First of all, throughout this paper, we
assumed that the emission power is the major component
of the power consumption. In some devices, the emission
power is at the same level of the power needed for being idle
or to receive packets. It is then necessary to design a struc-
ture with theoretically proven worst case performance under
this new energy model when the receiving power is not neg-
ligible. Secondly, an implicit assumption of the our power
model is that each node can adjust its power to any specific
value. In practice, the transmitter has to choose among
a set of given discrete power values. It is already known

that under this discrete power model, the minimum energy
broadcast problem is still NP-hard [33] and a method with
approximation ratio O(nε) was proposed in [33] (the ratio is
O(log3 n) if identical nodes are used). Then a problem re-
maining is to close the gap between this huge ratio and the
constant approximation ratio [45] when the power is con-
tinuously adjustable. Thirdly, although the algorithms pro-
posed in this paper use O(n) messages, each with O(log n)
bits, they are not localized algorithms. Recall that, a dis-
tributed algorithm is localized if it runs in constant time
independent of the size of the network [34, 23]. It would be
interesting to study what kind of properties can be achieved
locally (as in [34]), and what kind of properties cannot be
achieved locally (as in [23]). If a certain combined property
cannot be achieved locally, what will be the best achievable
trade-off between time and approximation ratio. Currently,
the locally achievable geometry properties include: planar
spanner [27], bounded degree spanner [31], bounded degree
and low weight [32], k-fault tolerant [28, 26].
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APPENDIX
Das et al. [10] proved that if a set of line segments E satisfies the
isolation property, then ω(E) = O(1) ·ω(SMT ). Here SMT is the
Steiner minimum tree over the end points of E, and total edge
weight of SMT is no more than that of the minimum spanning
tree. The isolation property is defined as follows. Let c > 0 be
a constant and E be a set of edges in d-dimensional space, and
let e ∈ E be an edge of length l. If it is possible to place a
protecting disk B of radius c · l with center on e and B does not
intersect with any other edge, then edge e is said to be isolated
[10]. If all the edges in E are isolated, then E is said to satisfy
the isolation property. We define the protecting disk of a segment

uv as disk(o,
√

35
36
‖uv‖), where o is the midpoint of segment uv.

Obviously, we need all such disks do not intersect any edge except
the one that defines it.

Theorem 6: The structure LSΘGG is low-weighted.

Proof. We will prove this by showing that all edges E in
LSΘGG satisfy the isolation property. For the sake of contra-
diction, assume that E does not satisfy the isolation property.
Assume there is one edge uv that is not isolated. Thus, there is

vo

y
x

u

Figure 11: The hypothetical cases that an edge uv
is not isolated. Here assume edge xy intersects its

protecting disk(o,
√

35
36
‖uv‖).

an edge, say xy, that intersects the protecting disk of uv. Fig-
ure 11 illustrates the hypothetical situation: a link xy intersects

the protecting disk of link uv, i.e., disk(o,
√

35
36
‖uv‖). First notice

that, both x and y can not locate inside disk(o, 1
2
‖uv‖), otherwise

the property of Gabriel graph is violated.
We further divide the hypothetical situation into two cases:
Case 1: ‖xy‖ < ‖uv‖.

We will show that the link uv itself must have been removed
by our algorithm, by proving that both ‖ux‖ and ‖vy‖ are no

more than 1
3
‖uv‖ in the hypothetical situation. To prove this by

inducing contradiction, w.l.o.g., we assume that ‖vy‖ > 1
3
‖uv‖.

Figure 12 (a) illustrates our proof that follows. The link xy

intersects the disk(o, 1
2
‖uv‖) with two points x′ and w, and in-

tersects the right half of disk(v, 1
3
‖uv‖) with the point y′. Let

t be a point on the top half of disk(v, 1
3
‖uv‖) such that ‖ut‖ =

‖uv‖. The segment ut intersects the disk(o, 1
2
‖uv‖) with point

t′. It is easy to verify that ut is the tangent line of protecting

disk(o,
√

35
36
‖uv‖).

From the assumption ‖vy‖ > 1
3
‖uv‖, node y is out of the

disk(v, 1
3
‖uv‖). Hence, ‖xy‖ > ‖x′y′‖. We continue to induce

contradiction that ‖xy‖ > ‖uv‖ by showing ‖x′y′‖ > ‖ut‖ =
‖uv‖.

1. Obviously, ‖x′w‖ > ‖ut′‖, because the chord x′w of disk(o, 1
2
‖uv‖)

is closer the center o than the chord ut′ (because x′w inter-
sects the protecting disk while ut is the tangent line).

2. Similarly, ‖wy′‖ > ‖tt′‖, because ‖ww′‖ > 2‖tt′‖ (this is

due to, in disk(v, 1
3
‖uv‖), the chord ww′ is closer to center

v than line tt′, and segment tt′ is half of the chord overlap-
ping tt′ since vt′ is perpendicular to ut′ in disk(o, 1

2
‖uv‖).)

and ‖wy′‖ > 1
2
‖ww′‖ (due to in disk(v, 1

3
‖uv‖), ∠x′wv >

∠uwv = π
2
, hence ‖wy′‖ is more than half of the chord

ww′.).

Consequently, ‖xy‖ > ‖x′y′‖ = ‖x′w‖ + ‖wy′‖ > ‖ut′‖ +
‖tt′‖ = ‖ut‖ = ‖uv‖, hence we get the contradiction. In other
words, uv should have been deleted if ‖uv‖ > ‖xy‖ and xy inter-
sects the protecting disk of uv. The hypothetical case is fake.
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(a) ‖xy‖ < ‖uv‖ (b) ‖xy‖ > ‖uv‖

Figure 12: Both cases are impossible.

Case 2: ‖xy‖ > ‖uv‖.
We will show that xy will be deleted by Algorithm 2 by show-

ing max(‖ux‖, ‖vy‖) < 1
3
‖xy‖ if xy intersects the protecting

disk(o,
√

35
36
‖uv‖) of link uv. We prove it by inducing contra-

diction. W.l.o.g., assume that ‖vy‖ > 1
3
‖xy‖.

Figure 12 (b) illustrates our proof that follows. Here ut is
a tangent line of the protecting disk, the link xy intersects the
disk(o, 1

2
‖uv‖) with two points x′ and w. The segment y′v is

perpendicular to xv. Here point y′ is on line xy.
Obviously, ∠vxy < ∠vx′y. And ∠vx′y < ∠vut because the arccvw is smaller than the arc bvt. We have, ‖vy′‖ = ‖xy′‖ sin(∠vxy) <

‖xy′‖ sin(∠vut) =
√

35
18
‖xy′‖ < 1

3
‖xy‖. On the other hand,

‖vw‖ < ‖vt‖ < 1
3
‖uv‖ < 1

3
‖xy‖. Hence, node y can not be

on the left side of y′, instead only possible on the right side since
‖vy‖ > 1

3
‖xy‖. Then, we have ∠xvy > π

2
, i.e., link xy cannot be

in GG. Contradiction is induced.
Consequently, xy should have been deleted if ‖uv‖ < ‖xy‖ and

xy intersects the protecting disk of uv. The hypothetical case is
also fake.

In summary, each link uv ∈ LSΘGG satisfies the isolation
property, that is to say, LSΘGG is low-weighted. This finishes
the proof.


