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Abstract—We study how to enable auctions in the big data
context to solve many upcoming data-based decision problems
in the near future. We consider the characteristics of the big
data including, but not limited to, velocity, volume, variety, and
veracity, and we believe any auction mechanism design in the
future should take the following factors into consideration: 1)
generality (variety); 2) efficiency and scalability (velocity and vol-
ume); 3) truthfulness and verifiability (veracity). In this paper, we
propose a privacy-preserving construction for auction mechanism
design in the big data, which prevents adversaries from learning
unnecessary information except those implied in the valid output
of the auction. More specifically, we considered one of the most
general form of the auction (to deal with the variety), and greatly
improved the the efficiency and scalability by approximating the
NP-hard problems and avoiding the design based on garbled
circuits (to deal with velocity and volume), and finally prevented
stakeholders from lying to each other for their own benefit (to
deal with the veracity). The comparison with peer work shows
that we greatly improved the asymptotic performance of peer
works’ overhead from the exponential growth to a linear growth
and from linear growth to a logarithmic growth, which greatly
contributes to the scalability of our mechanism.

I. INTRODUCTION

Increasingly many decisions are made based on the data
because of the rich information hidden behind it, and more
and more data is being collected almost everywhere nowadays,
which will soon lead us to the big data era. Among many
‘V’s characterizing the big data, we focus on the 4‘V’s in
this paper: variety, volume, velocity, and veracity. The starting
point of this research is the observation that various auction
mechanisms are adopted in different fields. Spectrum auction
[1], [2], cellular networks [3], ad hoc networks [4], cloud
computing [5], cognitive radio networks [6], web advertise-
ment [7], and smart grids [8] are good examples. However,
the large and diverse pool of the information available for
attackers in the big data has increased the privacy concerns,
and we present how to enable auctions in the big data context
with 4Vs without privacy implications.

A. Variety

Different types of information is available from different
sources for different parties in the big data, and the auctions
may involve different types of goods. Existing solutions [9]–
[12] only deal with single-good auctions and thus lack general
applicability in the big data context. To deal with such a
variety in the big data, we target at a more general form of the
auction than the simple ones which sell only one good at each
auction – Combinatorial Auction (CA hereafter). In a single-
auctioneer CA, the auctioneer sells multiple heterogeneous
goods simultaneously, and bidders bid on any combination

of the goods instead of just one. Such auctions have been
researched extensively recently [13]–[15], in part due to the
generality of it, and in part due to growing applications in
which combinatorial bidding is necessary [16], [17].

As further discussed in the following sections, the consider-
ation of the combinatorial auction will bring great challenges
to the auction design because of its inherent complexity.

B. Velocity and Volume

The velocity at which data is generated is at the different
order of magnitude in the big data from the one in the
traditional data, which pushed the volume of the processed
data beyond PB, EB, and even ZB (109 TB). The velocity
and the volume in the big data brings great challenges into
the realization of the privacy-preserving auction design in the
following two aspects.

Firstly, an early work [18] relies on the secure multi-
party computation using garbled circuits [19] and oblivious
transfers [20] to solve the CA in a privacy-preserving man-
ner. Such works protect the private information due to the
powerful secure multi-party computation, but the circuit size
grows very fast w.r.t. the CA parameters (number of bidders,
range of the bid value, maximum bid, number of goods)
which leads to non-polynomial time computation time. Also,
the oblivious transfer required for every gate in the circuit
introduces a huge communication time as well. Therefore,
the works based on garbled circuit are hardly applicable in
the big data environment due to the inherent scalability and
performance issue. Secondly, the combinatorial auction itself
is a computationally hard problem. Even with assumptions
which limit bidders’ bidding behaviors (e.g., assuming single-
minded bidders [13]), CA typically requires to solve one
or more NP-hard optimization problems, which leads to in-
feasible generic theoretical designs [21], [22]. Consequently,
several works [23], [24] avoiding garbled circuit or oblivious
transfer remains impractical because those solutions rely on
the dynamic programming to calculate the optimum solution,
which leads to a super-polynomial run time.

To address the scalability and performance issue to deal with
the volume and velocity of the big data, we exclude the garbled
circuits and oblivious transfers in our design, and further
replace the exact optimization with the approximated one. This
raises another challenge: traditional mechanism designs in CA
guarantees truthful bidding to potentially maximize the social
welfare based on the assumption that the goods are allocated
optimally. Then, those mechanisms do not provide the same
guarantee in our setting because we seek for the approximated
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result. Therefore, we cannot simply implement an existing
approximation algorithm in a privacy-preserving manner, and
we also need to improve existing mechanisms to preserve the
truthfulness (defined later) of the auction.

C. Veracity

Data source in the big data is almost everywhere in the world
due to the proliferation of the data collection, and most of the
data sources are not under strict quality control. Consequently,
not all data in the big data era will be credible because of
many reasons (e.g., machine factors: errors/inaccuracy/noises;
human factors: moral hazard, mistake, misbehavior). In the
CA, the veracity issue has an especially great impact because
1) the lying bidder may negatively affect the social welfare or
auctioneer’s total revenue; 2) and the winners’ payments are
calculated by the auctioneer, who is well motivated to report
a higher fake price. Obliviously (i.e., without knowing the bid
values or winners list) achieving a two-way verifiability against
both untrusted bidders and auctioneers is another challenge in
the privacy-preserving CA construction.

D. Contributions

The contribution of this work is prominent. This is the first
paper to envision the privacy-preserving auction mechanism
in the upcoming big data age, which is designed based on
the four main characteristics (variety, volume, velocity, and
veracity) of the big data, and the contributions can also be
summarized based on the 4V’s: considering the variety of
the big data, we explore privacy-preserving constructions for
one of the most general auctions, CA; we have designed a
scalable and efficient privacy-preserving algorithm to deal with
the volume and velocity; and our design also provides two-
way verifiability against malicious bidders and auctioneer to
be robust to the veracity issue in the big data.

Note that our research does not explicitly work for the
anonymity of the bidder or the auctioneer, but in fact our
work is the last step of the anonymization. Our work com-
plements the simple anonymization which replaces users’
personally identifiable information (PII) with pseudo-random
PIIs in the following sense. Such anonymization is vulnerable
to various de-anonymization attacks [25], [26] because pub-
lished attributes can be fingerprinted or co-related with other
datasets. By applying our on top of the sanitization, such de-
anonymization becomes much more challenging because the
attributes of any tuple is protected as well.

II. PRELIMINARIES & RELATED WORK

A. Backgrounds of Combinatorial Auction

Among various types of combinatorial auctions [27] [28],
we shall consider the most common type in this work, one-
stage, sealed-bid and single-sided CA. In such auctions, each
bidder places several bids, the auction terminates and the re-
sults are announced (one-stage); no information about other’s
bids is released prior to the auction termination (sealed-bid);
and one auctioneer is selling several goods to multiple bidders
(single-sided).

Given such a CA, its mechanism design is composed of
two parts. Firstly, winners of the auction are chosen based
on their submitted bundles and bids winner determination,
then each winner’s payment is determined by some mechanism
payment determination. Note that a winner’s payment may
not be equal to hid bid.
Winner Determination and Objective Function

The standard goal of the design is to maximize the social
welfare [13], [29], [30], which is the sum of winners’ re-
ported bids on their allocated goods. An alternative goal is
to maximize the auctioneer’s revenue, which is the sum of
winners’ payments. Maximizing the revenue is closely related
to the social welfare maximization, therefore we focus on how
to maximize the social welfare. As aforementioned finding
an allocation maximizing the social welfare is NP-hard [31],
and it has been shown that the optimal allocation can be
approximated within a factor of O(m

1
2 ) but not to a factor

of O(m
1
2−ε) for any ε > 0 [13], [15], where m is the number

of total goods.
Payment Determination and the Truthfulness

Each bidder’s bid may not truly reflect his valuation of the
bundle. The payment is determined by all bidders’ bids, and
therefore bidders may try to report a fake valuation to decrease
their payment or win a chance to win the auction.

Definition 1. An auction is truthful if reporting a true valua-
tion is a weakly dominant strategy for every bidder, and utility
of any honest bidder is non-negative.

That is, no bidder can increase his benefit by lying no matter
other bidders lie or not. Naturally, the payment mechanism
determines whether the auction is truthful, and the one in the
famous Generalized Vickrey Auction (GVA, [21]) guarantees
the truthful auction, but determining one bidder’s payment
requires finding an optimum allocation without him, which
is already shown to be NP-hard. Therefore, it is infeasible to
implement the GVA in reality, and we study the truthfulness
in conjunction with the aforementioned approximation.

A truthful mechanism for the approximated allocation is
introduced in [13]. Let L be the sorted list of bundles in the
greedy allocation (sorted by bidders’ norm b√

|S|
). For any

bundle i, denote the first bundle j in L which would have
been allocated if i were denied at first as candidate of i.
Then, i’s payment is b′√

|S′|

√
|S| where b′ is the bid of the

candidate bundle, S′ is the candidate bundle, and S is the
allocated bundle i. This payment guarantees the truthfulness
of the auction as proved in [13].

B. Privacy-preserving Combinatorial Auctions

Various approaches are proposed to achieve a private sealed-
bid auction [9]–[12], [32], but much less attention is paid
to the combinatorial auction. In general, recently proposed
approaches for the secure multi-agent combinatorial auction
can be divided into two classes: first class based on Secure
Multi-party Computation (SMC) and the other class based on
Homomorphic Encryption (HE).
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To the best of our knowledge, [18], [23], [24], [33] are
the only works solving CA in a privacy-preserving manner.
[18] solves it by leveraging SMC, but as shown in Palmer’s
implementation, the solution based on SMC does not scale
well because the circuit needs to implement all if-else branches
in it in order to accept arbitrary input. Besides, [23], [24]
designed a secure multi-agent dynamic programming based
on HE, which is in turn used to design the privacy-preserving
winner determination in CA. Pan et al. [33] also designed a
combinatorial auction based on HE. However, these all target
at solving the optimum solution for the winner determination
problem, and their protocols cannot be run in polynomial time
due to the inherent hardness of the problem.

Besides, our work has one more advantage: our auction
scheme is the only one which presents a privacy-preserving
payment determination mechanism to guarantee the truthful-
ness of the auction, while all aforementioned works only
solve the winner determination problem in the combinatorial
auction.

III. SECURE COMBINATORIAL AUCTION MODEL

A. Auction Model

A set of m goods G = {g1, · · · , gm} are auctioned to n
bidders {B1, · · · ,Bn} in the CA, and Bi proposes his bid bi
(i.e., maximum willingness to pay) on the bundle Si, and the
bid might be different from his true valuation vi if he wishes
to lie. A set W of winners are chosen by selecting a group
of conflict-free bidders whose social welfare is maximized.
After the winners are chosen, each winner Bi’s payment pi
is determined by the auction mechanism based on all bidders
bids. Then, we assume a quasilinear utility for Bi: ui = vi−pi
if Bi is a winner, and 0 otherwise.

B. Adversarial Model

Two adversaries should be considered: adversarial auction-
eer and adversarial bidders. The auctioneer is assumed to be
curious, malicious and ignorant. He is interested in bidders’
bids and bundles to improve his business (called “curious”).
For example, he may try to infer bidders’ preferences and
rivalry relationship based on the bids and the bundles. The
auctioneer may also report a fake payment to the winners to
illegally increase his revenue (called “malicious”), but he is
not aware of bidders’ side information such as distribution
of bid values or bidders’ preferences on goods (called “igno-
rant”). Bidders are assumed to be selfish, curious and non-
cooperative. Their objective is to maximize their own utilities,
and bidders will report fake valuations if the utility is increased
by doing so (called “selfish”). On the other hand, bidders are
interested in others’ bids and bundles to improve the decision
making (called “curious”). However, they will not collude with
other bidders or the auctioneer (called “non-cooperative”).

C. Privacy Definitions

Definition 2. Given all the communication strings C during
the auction and the output of the auction Output, an adver-
sary’s advantage over the loser Bi’s bid bi is defined as

advbi = Pr[bi|C,Output← Aour(1κ)]− Pr[bi|Output← Ablack]

where Pr[bi] is the probability that bi is correctly inferred,
Aour is our algorithms, κ is the security parameter of Aour,
and Ablack is a perfectly secure black-box algorithm.

We focus on the confidentiality of auction losers’ bids in
this paper because winners’ bids can be learned from the valid
outputs of the auctions anyway (e.g., claimed bundle and the
payments).

Definition 3. Given all the communication strings C during
the auction and the output of the auction Output, an adver-
sary’s advantage over any bidder Bi’s bundle Si is defined
as
advSi

= Pr[Si|C,Output← Aour(1κ)]− Pr[Si|Output← Ablack]

where Pr[Si] is the probability that any information about Si
is inferred, and other notations are same as in Definition 2.

Informally, these advantages measure how much side in-
formation an adversary gains during our privacy-preserving
auction by measuring the increased probabilities. In other
words, they reflect how much side information is disclosed
other than what is derivable from the valid auction output.

IV. BUILDING BLOCKS

A. Homomorphic Encryption

Homomorphic encryption allows specific computations to
be directly carried on ciphertexts while preserving their de-
cryptability. We employ the Paillier cryptosystem to implement
a one-way privacy-preserving scalar product for efficient our
winner determination. In short, Paillier cryptosystem has the
following homomorphic property:

E(m1) · E(m2) = E(m1 +m2)− Addition

E(m1)
m2 = E(m1 ·m2)− Multiplication

B. Blind Signature

In our work, we employ a signer who is involved only to
generate a signature of each bidder’s value. In order to preserve
user privacy, we employ the blinded Nyberg-Rueppel scheme
in [34], where a signer can generate a signature of a value
m without ‘seeing’ it. At a later time, the signature can be
provided to recover the m, whose authenticity is guaranteed. In
our work, we use the blind signature scheme to verify whether
the payment is calculated correctly. Since the authenticity of
the bids are guaranteed by the truthful mechanism, we do not
need the signer to verify the authenticity of them, and the
Blinded Nyberg-Rueppel scheme suffices. For the simplicity,
we denote the signature of m as Sig(m) hereafter.

V. DESIGNING AUCTION MECHANISM FOR BIG DATA

Before the auction proceeds, all bidders are asked to blindly
sign their ψi and Si via a third-party signer T . Since the
signature is blindly signed, T learns nothing. These signatures
will be used to verify the authenticity of the bids later. Also,
note that the entire protocol is performed in an anonymized
network to enhance user privacy.
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A. Privacy-preserving Winner Determination

Algorithm 1 Greedy Winner Determination

1: A := ∅,W := ∅. For each Bi, computes ψi = bi√
|Si|

.

2: Sort the instances in the non-increasing order of norm ψi.
Denote the sorted list as L.

3: For each Bi ∈ L (in the sorted order), check whether
A ∩ Si = ∅. If true, A := A ∪ Si,W :=W ∪ Bi.

4: A∗ := A. Announce W as the winners. Finally allocated
goods are A∗.

The above approximation algorithm for the winner determi-
nation guarantees an approximation ratio of at least O(

√
m)

[13], where m is the number of total goods, and this has
been proved to be the best approximation ratio that can be
achieved [13], [15]. To guarantee each bidder’s privacy, we
cannot explicitly perform the sorting (Step 2.) because the
order of all bidders’ norms reveals excessive side information
about the losers’ bi or Si even if the norm ψi does not directly
reveal either one. Therefore, we unravel Step 2. and Step 3.
as follows. Firstly, among the encrypted bundles that can be
allocated (i.e., no overlap with already-allocated goods), find
out the one whose corresponding norm ψi is the maximum
(without revealing ψi’s value). Then, find out the winner
who owns the bundle (up to previous step, every one was
anonymous). Finally, update A correspondingly and keeps
looking for the next feasible bundle with maximum ψi. Note
that the IDs are already anonymized either via sanitization
or anonymized network such as Tor [35], therefore only the
winners’ identities are revealed to the auctioneer.

To further describe the privacy-preserving unraveled greedy
algorithm more easily, we first elaborate a sub-procedure in
it: feasibility evaluation.

Feasibility Evaluation
Given a bundle Si, whether it is feasible (i.e., does not

overlap with already-allocated goods) must be evaluated in a
privacy-preserving manner in order to keep the confidentiality
of bids or bundles. Firstly, we use an m-dimension binary
vector A represent the allocation status of all goods (i.e., the
goods in A), where the k-th bit ak = 1 if the k-th good gk is
allocated already and 0 otherwise. Similarly, we use another
vector Si to represent Bi’s bundle Si, where Si’s k-th bit si,k =
1 if gk ∈ Si and 0 otherwise. Then, A ∩ Si = ∅ if and only
if A · Si =

∑m
k=1 aksi,k = 0. If the scalar product is θ, that

means Bi’s bundle Si includes θ already-allocated goods. In
order to keep θ and {si,k} secret to the auctioneer, and to keep
θ and {ak} secret to Bi, we propose the following protocol
(Algorithm V-A) to let the auctioneer learn whether the above
sum is equal to 0.

In the protocol, if δi · A · Si = 0, Auc learns Si is
feasible, and if Si is not feasible, the outcome is δiθ which
is indistinguishable to a random number in Zn from the
auctioneer’s perspective.

With this feasibility evaluation, we are ready to present
our privacy-preserving winner determination algorithm which

Algorithm 2 Privacy-preserving Scalar Product
1: Auc picks a pair of Paillier cryptosystem key: PK ′Auc =

(n, g), SK ′Auc = λ (Section IV).
2: Auc encrypts every bit ak homomorphically and sends

its ciphertext EAuc(ak) to the bidder Bi whose bundle is
being checked.

3: Upon receiving m ciphertexts, Bi first picks a random
number δi ∈ Zn and performs following operations:

∀k : ck = EAuc(ak)
δisi,k = EAuc(δiaksi,k)

Then, he computes the following and sends to the auc-
tioneer:

c =

m∏
k=1

ck = EAuc(δi

m∑
k=1

aksi,k)

4: The auctioneer decrypts the received ciphertext using his
secret key, which is the scalar product δi · A · Si.

works as a black-box algorithm outputting the winning bun-
dles and the winners only (Algorithm V-A). Essentially, the
outcome of 3-b is 0 if and only if Bi’s ψi is equal to the
Auc’s guess, and c at 3-c is equal to 0 if and only if Bi’s Si
is feasible at the current allocation A. Then, the final outcome
at 3-e is equal to 0 if and only if Bi’s norm ψi is the maximum
among all the remaining bidders and his bundle is also feasible.

The algorithm deserves further clarifications at the places
terms or phrases are marked bold. Firstly, the way Auc guesses
the maximum norm at step 3 is critical for the performance.
Given the range of the possible values for the norms, Auc
performs a binary search until finding a value ψ∗ such that
the final outcome at 3-e yields 0 at ψ∗ but not at ψ∗ + 1.
If such values are discovered, the next binary search can be
started from ψ∗. Secondly, given the outcome yielding 0 at 3-
e, Auc must find out the winner first because every bidder is
anonymous yet up to this point. This can be done by declaring
the anonymous ID of the winner and asking him to reveal his
ψi, Si,Sig(ψi), and Sig(Si) to auctioneer for the confirmation.
Since everything was encrypted under Auc’s keys, no bidders
gain any information about the ψ∗. On the other hand, because
the entire protocol is conducted in an anonymized network,
declaring the anonymous ID does not breach winner privacy
(anonymous ID is often a one time identity). If psii = ψ∗,
Auc learns the bidder is the winner, and marks his goods as
allocated in A (the authenticity of ψi and Si can be verified
with the signatures). Finally, Auc learns no more update is
possible when he finds out the binary search is terminated but
no one yielded 0 at 3-e.

B. Privacy-preserving Verifiable Payment Determination

In aforementioned truthful auction mechanism (Section II),
the auctioneer determines a winner Bi’s payment as follows.
Among the bidders whose bundle would have been allocated
if Bi were not the winner (i.e., the candidate of Bi), the
auctioneer finds out the one with the maximum ψ (say ψj
of bidder Bj). Then, Bi’s payment is pi =

bj√
|Sj |

√
|Si|. Three
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Algorithm 3 Privacy-preserving Winner Determination
1: A := ∅,W := ∅, B = {Bi}i. Every Bi computes ψi =

bi√
|Si|

individually.

2: Auc picks a pair of Paillier cryptosystem key: PK =
(n, g), SK = λ (Section IV), and publishes PK.

3: Auc guesses the maximum ψ value ψ∗, and checks
whether there exists a bundle with ψi = ψ∗ that can
be allocated by performing the following procedure with
every bidder Bi ∈ B.
3-a: Auc sends EAuc(ψ∗) (ciphertext of ψ∗) to Bi.
3-b: Bi picks a random number δ′i ∈ Zn, then calculates:(

EAuc(ψ
∗) · EAuc(−ψi)

)δ′i
= EAuc

(
δ′i(ψ

∗ − ψi)
)

3-c: Auc sends out encrypted {ak}’s to Bi, and Bi cal-
culates c = EAuc(δi

∑
aksi,k) as in the aforementioned

scalar product calculation (Algorithm V-A).
3-d: Bi sends the following to Auc:

EAuc

(
δ′i(ψ

∗ − ψi)
)
· EAuc

(
δi
∑

aksi,k

)
= EAuc

(
δ′i(ψ

∗ − ψi) + δi

m∑
k=1

aksi,k

)

3-e: Auc decrypts it to see whether it is equal to 0.
4: Step 3 is repeated with different ψ∗ to find out the

maximum ψ∗ yielding 0 in 3-e. If an anonymous bidder’s
outcome is discovered to yield 0 in 3-e, Auc finds out the
winner, mark the corresponding goods as allocated in A,
and add Bi to W . Then, repeat 3. again with updated sets.
This is repeated until no more update is possible.

5: Set A∗ = A. Then, Auc learns W is the set of winners,
and A∗ is the finalized allocation. Then, he proceeds to
payment determination.

parties are engaged here: auctioneer Auc, winner Bi and Bi’s
candidate Bj . The auctioneer Auc needs to know pi without
knowing Bj’s bundle or bid; the winner Bi needs to know
pi without knowing Bj’s bundle or bid, and he should not
even know who is the Bj ; and finally, the bidder Bj does not
need to know anything from this whole process. Furthermore,
both the auctioneer and the winner should be able to verify
the payment. We present the privacy-preserving verifiable
payment determination (Algorithm V-B) which fulfills above
requirements as in Algorithm V-B.

Since Auc uses aforementioned privacy-preserving feasi-
bility evaluation, he does not learn about Bj’s bundle, and
therefore he does not learn bj from ψj =

bj√
|Sj |

. The winner

Bi does not learn about bj due to the same reason, and he also
does not know who is Bj since he does not even communicate
with Bj . On the other hand, owing to the signature Sig(ψj)
generated by T , Auc is convinced that Bj did not report a fake
lower n̂j to harm Auc’s business, and the winner Bi believes
Auc did not tell a higher pi to increase Auc’s revenue.

Algorithm 4 Bi’s Verifiable Payment Determination
1: The auctioneer Auc excludes Bi from B, and finds out the

winner with (A∗ − Si) by following the same procedure
as the winner determination, where A∗ is the finally sold
goods. If Bj is the winner, then he is the candidate of Bi.
Different from the original winner determination, Bj only
reveals ψj =

bj√
|Sj |

and Sig(ψj) to the auctioneer for the

confirmation.
2: If a candidate is found, Auc calculates pi = ψj

√
|Si| and

sends pi as well as the Sig(ψj) to Bi. Otherwise, Auc sets
pi as the reserve price (e.g., pre-defined minimum price)
and informs Bi that his payment is the reserve price.

3: If the payment is not the reserve price, Bi recovers ψj
from Sig(ψj), and verifies whether pi = ψj

√
|Si|. If they

are not equal to each other, he learns that the payment is
incorrect.

VI. PERFORMANCE EVALUATION

A. Communication Overhead

The communication overhead in terms of the data transmis-
sion is depicted in the following table, where n is the total
number of bidders, κ is the security parameter, |W | is the
number of winners, and |ψ| is the size (bit-length) of the fixed-
point representation of the norm values.

TABLE I
COMMUNICATION COMPLEXITY

Winner Determination
Receive Send

Auctioneer O(n · |W | ·m · κ · |ψ|) O(n · |W | ·m · κ · |ψ|)
Signer O(n · κ) O(n · κ)

Per bidder O(|W | ·m · κ · |ψ|) O(|W | ·m · κ · |ψ|)
Payment Determination

Receive Send
Auctioneer O(n · |W | ·m · κ · |ψ|) O(n · |W | ·m · κ · |ψ|)
Per Winner O(κ) 0

Per Loser O(|W | ·m · κ · |ψ|) O(|W | ·m · κ · |ψ|)

B. Comparison with peer works

Due to the space limit, we do not plot the computation
overhead in this paper. Instead, we compare the complexities
of the algorithms used in peer works and ours, and present it
in Table VI-B.

TABLE II
GROWTH OF COMPUTATION OVERHEAD

Variable Ours [18] [23], [24], [33]
Maximum Bid Logarithmic Logarithmic Linear

Bidder # Linear Linear Linear
Goods # Linear Exponential Exponential

Further, by comparing the actual run time of our imple-
mentation and the one in [18] (results are not presented in this
paper due to the space limit), one can notice that our overhead
grows with much smaller constant factors as well because our
protocols do not involve oblivious transfer or garbled circuits.
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Considering that our overhead can be dramatically reduced by
replacing the old Paillier’s cryptosystem with more advanced
and faster additive homomorphic encryption (e.g., [36]), the
performance advantages over peer works is very prominent.

Note that our improvement in the asymptotic performance
is a necessary step before privacy-preserving auction mech-
anisms’ application in the big data context due to the large
volume and velocity. A recent research [37] indicates that the
polynomial time complexity, which used to be accepted as
tractable one, is not tractable any more in the big data context,
and therefore achieving the linear complexity is one of the
necessary (yet not sufficient) conditions of the applications in
the big data era.

VII. CONCLUSION & FUTURE DIRECTION

In this paper, we presented a privacy-preserving auction
design for the big data context where volume, velocity, variety,
and veracity may be challenging for the auction designers.
We focused on the combinatorial auction for the variety;
we achieved a much better asymptotic performance than
peer works by approximating the NP-hard problem in the
combinatorial auction for the volume and velocity; and for
the veracity issue resulted from untrusted auctioneer and
bidders, we designed an auction scheme that can guarantee
the truthfulness bidding and price verifiability. We presented
a construction where any adversary’s view is same as the one
in a black-box algorithm, and our analysis also shows that it
greatly improved the asymptotic performance when compared
to the peer works. Considering the exascale computing in the
big data, our work is not yet perfectly suitable for the big
data context where more than exabytes of data is involved.
However, we firmly believe this work is a big step towards
the auction design in the big data era, and we are more than
convinced that successive research on our research will finally
lead to the practical auction mechanisms for the big data
applications.
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