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Abstract

The capacity of a wireless network has been widely stud-
ied in the literature, including the capacity for unicast and
the capacity for broadcast. In this paper, we studied the ca-
pacity of a wireless network for broadcast. Previous studies
on broadcast capacity either assume that all links in the
wireless network has the same channel capacity, or assume
that the transmission ranges of a wireless node can be ar-
bitrarily large. In this paper we derive analytical upper
bounds and lower bounds on broadcast capacity of a wire-
less network when all nodes in the network has the same
bounded transmission power P and all nodes are placed in
a square of side-length a. When the fixed data rate chan-
nel is used (each node can send W bits/second to nodes
within its transmission range if no interference happened),
we prove that the broadcast capacity is Θ(W ) under the
physical interference model.

When the Gaussian channel capacity is used, we show

that the total broadcast capacity is only Θ((a
√

log n
n )−α)

when a
√

log n
n → ∞. When a

√
log n

n → O(1), we show
that the broadcast capacity is Θ(1). We also generalize
our results to multicast capacity for physical interference
model.

1 Introduction

In wireless ad hoc networks, wireless nodes may coop-
erate in routing each others’ packets. Lack of a centralized
control of the functionality and possible node mobility give
rise to many challenging issues at the network, medium ac-
cess and physical layers of a wireless ad hoc network. At the
network layer, the main challenging problem is that of rout-
ing, which has to deal with time-varying network topology,
possible power-constraints of wireless nodes, and the char-
acteristics of the wireless channel (such as unstable, broad-
cast nature, fading and so on). The choice of medium access

control is also restricted by the fact that the network topol-
ogy is time-varying, and there is no centralized control. In
the literature, a number of results have been proposed to use
the TDMA, CDMA, and the dynamic assignment of fre-
quency bands to improve the network throughput. Notice
that for a mobile wireless network, random access appears
to the current favorite protocols due to its simplicity and
quick adaption to mobility and dynamic data rate by nodes.
For a mobile wireless network, static FDMA is inefficient in
dense networks, CDMA is very difficult to implement due
to node mobility and the need for keeping track of spread-
ing codes for nodes in the time-varying neighborhoods. No-
tice that TDMA has recently been proposed to improve the
network throughput for some networks or partial of the net-
works [1], especially for static networks. At the physical
layer an important issue is the power-control, which has
been studied extensively in the literature. A careful se-
lection of the transmission power of nodes will not only
improve the nodal life, but also improve the spatial reuse
of frequency and possibly improve the network throughput
consequently.

In some applications, e.g., wireless sensor networks, we
often need a rough estimation on the achievable throughput
when we randomly deployed n number of wireless nodes in
a given region. The main purpose of this paper is to study
the capacity of wireless networks when we choose the best
protocols for all layers. We will study the capacity of a
given wireless network where the nodes positions are given
a priori, and how the capacity of wireless networks scale
with the number of nodes in the networks (when given a
fixed deployment region), or scale with the size of the de-
ployment region (when given a fixed deployment density)
for a various number of operations such as unicast, broad-
cast. Due to spatial separation, several wireless nodes can
transmit simultaneously provided that these transmissions
will not cause destructive wireless interferences to any of
the transmissions. As in the literature, we will mainly con-
sider two types of networks, arbitrary networks and random
networks. In random networks, we assume that a set of n
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2wireless nodes are randomly distributed in a fixed region
(such as a unit square by a proper scaling). In an arbitrary
network, the node locations, destinations of the sources, and
traffic demands are all arbitrary. All n nodes are arbitrarily
located in the deployment region.

For broadcast, each node vi wishes to send traffic at an
arbitrary data rate λi ≥ 0 to all nodes in the network. As
always, we assume that the packets are sent from node to
node in a multi-hop manner until they reach their final des-
tinations. The packets could be buffered at intermediate
nodes while awaiting for transmission. In this paper, we
assume that the buffer is large enough so packets will not
get dropped by intermediate nodes. We leave it as future
work to study the scenario when the buffers of intermediate
nodes are bounded by some values. In some results, we as-
sume that every intermediate nodes have infinite buffer size.
For most of the results presented here, the delay of the rout-
ing is not considered, i.e., the delay in the worst case could
be arbitrarily large for some results.

In both arbitrary network or random networks, we as-
sume that each node will choose a uniform transmission
range or transmission power P . Two different channel mod-
els will be used in this paper.

1. The first channel model assumes a fixed data rate. We
assume that each wireless node can transmit at W
bits/second over a common wireless channel. For pre-
sentation simplicity, we assume that there is only one
channel in the wireless networks. We will see that it
is immaterial to the results presented in this paper if
the channel is broken up into several sub-channels of
capacity W1, W2, · · · , WM bits/second as long as we
have

∑M
i=1 Wi = W . To describe when a transmission

is received successfully by its intended receiver(s), we
will allow two possible models for a successful one-
hop reception: protocol model and the physical model.

2. The second channel model is the Gaussian channel.
The channel capacity from node vi to node vj is

B · log(1+
Pi·d−α

i,j

B·N0+
P

k∈I Pk·d−α
k,j

). Here B is the channel

bandwidth and di,j is the Euclidean distance ‖vi−vj‖,
N0 > 0 is the background Gaussian noise, I is the set
of actively transmitting nodes when node vi is trans-
mitting, α > 2 is the pass loss exponent, and Pk is the
transmitting power used by a node vk.

Our Results: In this paper we derive analytical upper
bounds and lower bounds on broadcast capacity of a wire-
less network when all nodes in the network has the same
bounded transmission power P and all nodes are placed in a
square of side-length a. When the fixed data rate channel is
used (each node can send W bits/second to nodes within its
transmission range if no interference happened), we prove
that the broadcast capacity is Θ(W ) under the physical in-
terference model. This is the first result that studies the

broadcast capacity for arbitrary networks using physical in-
terference model.

When the Gaussian channel capacity is used, we show

that the total broadcast capacity is only Θ((a
√

log n
n )−α)

when a
√

log n
n → ∞. Our results imply the result for

broadcast in random networks in [17] when a =
√

n, the

broadcast capacity is Θ((log n)−α/2). When a
√

log n
n →

O(1), we show that the broadcast capacity is Θ(1). This
implies that the broadcast capacity is Θ(1) when all nodes’
transmission power P can only support the communication
to nodes within a constant meters, in which case, the de-
ployment region a is at most O(

√
n

log n ).

We then generalize our results to multicast when there
are ns multicast sessions and each multicast source node
will send data to k−1 nodes (randomly selected among n−1
other nodes) at data rate λi. We show that the aggregated
multicast capacity of ns random multicasts is

Λk(n) =

{
Θ(

√
n

log n · W√
k
) when k = O( n

log n ),

Θ(W ) when k = Ω( n
log n )

(1)

The rest of the paper is organized as follows. In Section
2 we discuss in detail the network model and the channel
model used in this paper. In Section 3, we first review and
study the broadcast capacity for fixed networks with con-
stant link capacity under both protocol interference model
and physical interference model. We show that the inte-
grated broadcast capacity of all sources is Θ(W ) regard-
less of the number of sources nodes. In Section 4, we then
study the asymptotic broadcast capacity for random net-
works when all nodes have the uniform transmission Power
P under the Gaussian channel. We then generalize our stud-
ies to multicast in Section 5. We review the related results
on network capacities in Section 6 and conclude the paper
in Section 7 with discussion of some future works.

2 Network Model

In this paper, we assume that there is a set V =
{v1, v2, · · · , vn} of n communication terminals deployed
in a region Ω. We mainly focus the scenario when Ω is a
square with side length a. When the fixed data-rate channel
is used, we assume that every wireless node has a transmis-
sion range r such that a node u can successfully receive the
signal sent by node v if and only if ‖u− v‖ ≤ r. The com-
plete communication graph is a directed graph G = (V, E),
where V = {v1, . . . , vn} is the set of terminals and E is the
set of directed communication links.

We assume that the transmission range (or transmission
power) of all nodes are fixed. To get large scale networks,
we increase the node density (asymptotically same as the



3node degree when the transmission range is fixed) and the
deployment area to increase the number of nodes in the net-
work. We call this model the fixed-range model. This is
different from the dense model [6] (with fixed deployment
region) and extended model (with fixed nodal density).

Channel Models: In this paper, two different channel
models will be studied. The first channel model assumes
a fixed data rate. We assume that each wireless node can
transmit at W bits/second over a common wireless channel.
For presentation simplicity, we assume that there is only
one channel in the wireless networks. we further assume
that the transmission range r is fixed and thus normalized
to one unit. Under this assumption, the deployment region
Ω will be a function of n. To schedule two links at the same
time slot, we must ensure that the schedule will avoid the
interference. Two different types of interference have been
studied in the literature, namely, primary interference and
secondary interference. In this paper, we assume two dif-
ferent interference models for wireless networks with fixed
data-rate channel.

1. The first interference model is protocol interference
model. All nodes are assumed to have uniform inter-
ference range R. A node vj will not receive the data
correctly from a sender vi correctly if node vj lies in-
side the interference region of another actively trans-
mitting node vk, i.e., ‖vj − vk‖ ≤ R.

2. The second is the physical interference model. A
node vj can correctly receive the data from a sender
vi if and only if, for a given constant η > 0,

Pi·d−α
i,j

B·N0+
P

k∈I Pk·d−α
k,j

≥ η. Here dk,j is the Euclidean

distance ‖vk−vj‖, N0 > 0 is the background Gaussian
noise, I is the set of actively transmitting nodes when
node vi is transmitting, α > 2 is the pass loss expo-
nent, and Pk is the transmitting power used by a node
vk.

The second channel model that will be studied in this pa-
per is Gaussian channel. Let Pi denote the power used by
node i for transmission. Assume that the maximum power
for transmission by each node is Pmax. Assume that the
channel follows ambient Gaussian noise model with power
spectral density of N0/2 and the signal attenuation of d−α

where d is the distance between the source and the receiver
node. When some common information is directly broad-
cast from a node i to a set of receiversR, capacity-achieving
Gaussian channel codes are assumed to support the worst
achievable data rate of all receivers, i.e.,

ri = min
j∈R

B · log(1 +
Pi · d−α

i,j

B ·N0 +
∑

k∈I Pk · d−α
k,j

),

where I is the set of nodes that are simultaneously transmit-
ting with node i using the same channel and B is the band-
width of the channel. Notice that this model of data rate is

different from the model of data rate used to study the ca-
pacity for unicast previously, where we typically assumed a
fixed data rate W for the channel. This is also different from
the physical model used in previous sections in which we
assumed a minimum bound on SINR, while here we do not
have such constraint. As in [17], it is further assumed that
no cooperative relay strategy is used at the physical layer to
improve the throughput. Based on the rate definition sup-
ported by a node i to its set of downstream children nodes
R, every sender node needs to determine the set R of re-
ceivers it needs to reach and chooses a coding scheme and
the corresponding transmission power such that the receiver
node with the least SINR can also successfully decode the
message. For most results studied for random networks, we
will assume that all nodes in the network have the uniform
transmission power P .

Problems Studied: In this paper, we will study the as-
ymptotic broadcast capacity of both arbitrarily networks
and random networks with both fixed data rate channel
model and the Gaussian channel model. Assume that each
node vi will send data to all other nodes Ui = V −{vi}with
a data rate λi. Let λ = (λ1, λ2, · · · , λn−1, λn) be the rate
vector of the broadcast data rate of all possible n broadcast
sessions.

When given a fixed network G = (V, E), where the
node positions of all nodes V , the set of receivers Ui for
each source node vi, and the broadcast data rate λi for each
source node vi are all fixed, we first define what is a feasible
rate vector λ for the network G.

Definition 1 (Feasible Rate Vector) A broadcast rate vec-
tor λ = (λ1, λ2, · · · , λn−1, λn) bits/sec is feasible if there
is a spatial and temporal scheme for scheduling transmis-
sions such that by operating the network in a multi-hop
fashion and buffering at intermediate nodes when await-
ing transmission, every node vi can send λi bits/sec av-
erage to its chosen destination nodes. That is, there is a
T < ∞ such that in every time interval (with unit seconds)
[(i − 1) · T, i · T ], every node can send T · λi bits to its
corresponding k − 1 receivers.

The total throughput capacity of such feasible rate vec-
tor for broadcast is defined as Λ(n) =

∑n
i=1 λi. The av-

erage per node broadcast throughput capacity is defined as
λ(n) =

Pn
i=1 λi

n .

Definition 2 (Feasible Throughput Capacity) A through-
put λ(n) bits/sec for each node is feasible for broadcast if
there is a rate vector λ = (λ1, λ2, · · · , λn−1, λn) that is
feasible and

Pn
i=1 λi

n is λ(n). Similarly, we say Λ(n) =∑n
i=1 λi is a feasible broadcast throughput capacity.

Definition 3 (Capacity of Random Networks) The ag-
gregated broadcast capacity of a class of random networks



4is of order Θ(g(n)) bits/sec if there are deterministic
constants c, c′(0 < c < c′ < +∞) such that

lim
n→∞

Pr (Λ(n) = cg(n) is feasible) = 1

lim inf
n→∞

Pr (Λ(n) = c′g(n) is feasible) < 1

Obviously, for random networks, the broadcast capacity
Λ(n) and the broadcast capacity per node λ(n) satisfy the
relation: λ(n) = Λ(n)

n . Similarly, we can define multicast
capacity for random networks.

3 Broadcast Capacity for An Arbitrary Net-
work

Broadcast capacity of single-source of an arbitrary net-
work has been studied in [8, 15]. They essentially show
that the broadcast capacity of a given network is Θ(W ) for
single source broadcast. In this paper, we prove that the
achievable integrated broadcast capacity is still only Θ(W )
if each of an arbitrary subset of the n nodes will serve as
source node and different source nodes may have different
data rate.

3.1 Protocol Interference Model

We first study the aggregated broadcast capacity for an
arbitrary network when protocol interference model is used.

Theorem 1 Assume that the channel capacity is W
bits/sec. Under the protocol interference mode, the aggre-
gated broadcast capacity Λ(n) of an arbitrary wireless net-
work is Θ(W ).

Proof : If there is only one source node s for broadcast, it is
easy to show that the upper bound of broadcast is at most W
since the number of bits that come out of the source node
is at most W · T in time T seconds. Thus, the capacity is
bounded from above by W . We show that Θ(W ) is achiev-
able as follows. Given a network G, we first create a con-
nected dominating set (CDS) where the source node s is
part of the CDS. The method we used to create CDS could
be any method that guarantees that each dominatee has at
most a constant number of dominators in its one-hop neigh-
borhood. The CDS constructed using those methods has
the following nice property: for each node v in the CDS,
the number of communication neighbors of v in CDS is
bounded from above by a constant, say c. Assume that the
interference range of every node is a constant (1+∆) times
of the communication range r. Notice that in practice, ∆
typically is around 1. Let H be the interference graph con-
structed for CDS: the nodes of H are nodes from the con-
structed CDS; two nodes u and v from CDS are connected

in the interference-graph H only if there is a node w ∈ V
such that ‖u − w‖ ≤ (1 + ∆)r and ‖v − w‖ ≤ r. Then
it is easy to show that the graph H also has degree at most
c(2 + ∆)2. Consequently, we can color H using at most
1 + c(2 + ∆)2 colors. Let t(v) ∈ [1, 1 + c(2 + ∆)2] be
the color assigned to node v from the CDS. In other words,
we can schedule the transmissions of all nodes in the CDS
without causing any interference as follows: node v only
transmits at time t(v) + i · T where T = 1 + c(2 + ∆)2.
Then we can perform broadcast based on the constructed
CDS as follows: a node v in the CDS is scheduled to relay
the data from its parent node at time t(v) + i · T . Thus,
the achieved data rate using such broadcast is W

T = Θ(W ).
Consequently, the achievable broadcast capacity is Θ(W )
(where the lower bound and the upper bound matches).

When there are multiple sources in the network, it is
not straightforward that the total broadcast capacity of all
sources is bounded from above by Θ(W ). Assume that all
nodes are deployed in a square (the proof will carry over to
the case when the deployment region is any region Ω such
that |Ω∩D(v,r)|

|D(v,r)| is bounded from below by some constant
for any node v ∈ V where D(v, r) is a disk centered at v
with radius r). Let n1 be the maximum number of nodes
that can transmit simultaneously. Let A be the area of the
deployment region that are covered by disks ∪v∈V D(v, r).
Let A0 = πr2. Then obviously, n1 · A0/4 ≤ A since each
transmission of a node will occupy at least area A0/4 in-
side the square deployment region. This implies that the
total number of bits that can be transmitted in a second all
over the network is at most W · A

A0/4 .
On the other hand, each bit from any source node needs

to be relayed by some connected dominating set. Notice
that here bit from different source node may use different
connected dominating set. Let us consider the area covered
by any fixed instance of CDS, i.e., ∪v∈CDSD(v, r). Notice
that here CDS denotes a fixed connected dominating set.
Notice that every node u ∈ V is either in CDS or is adjacent
to a node in CDS. We can cluster nodes into |CDS| clusters:
each cluster Ci contain one node vi from the CDS and the
nodes dominated by this node. Then

| ∪v∈Ci D(v, r)| ≤ π(2r)2 = 4A0 = 4|D(v, r)|

Since all nodes in Ci are in disk D(v, r). Here |X | denote
the area of a region X . Thus, the area, ∪v∈CDSD(v, r),
covered by all nodes in any CDS is at least A/4. In other
words, each bit from any source node will be relayed by at
least A/4

A0
nodes since each relay node covers an area at most

A0.
Combining the above analysis, we know that the aggre-

gated broadcast capacity that can be supported is at most

(W · A

A0/4
)/(

A/4
A0

) = 16W = Θ(W )



5On the other hand, we can perform broadcast as before us-
ing CDS. The only modification is that we need one more
time slot in a scheduling period for letting some source
nodes that are not in the CDS to upload its data to its dom-
inator in the CDS. Then the data will be broadcast to the
network using the same CDS for all source nodes.

3.2 Physical Interference Model

We then prove that the aggregated broadcast capacity for
an arbitrary network is still Θ(W ) when the physical inter-
ference is used, all nodes use the same transmission power
P , and the path-loss exponent α > 2. When a node vi

transmits, the signal strength at a node vj is assumed to be
P · ‖vi − vj‖−α for a constant α > 2. The background
noise is assumed to be a fixed constant N0 > 0 for every
receiving node. Thus, a node vj can successfully receive
data from a node vi only if the SINR is at least a threshold
value η > 0, i.e.,

P · ‖vi − vj‖−α

B ·N0 +
∑

k 6=i,k∈A(t) P · ‖vk − vj‖−α
≥ η.

Here A(t) is the set of nodes that are actively transmitting
at time t when node vi is transmitting. Notice that, the re-
ceived signal has strength at most P . Thus, we need

η <
P

B ·N0
. (2)

In the rest of sections, to give an upperbound on the
broadcast capacity, we will essentially show that we can set
an artificial transmission range r0 and an artificial interfer-
ence range R0 such that the receiving nodes of a node is
within distance r0 and a transmitting node vk will cause in-
terference at a node vj within distance R0 if vj is not its in-
tended receiver. To give a lowerbound on the broadcast ca-
pacity, we will essentially show that we can set an artificial
transmission range r1 and an artificial interference range
R1 such that, when all simultaneously transmitting nodes
are separated by a distance R1, and the receiving nodes
of a transmitting node is within distance r1, the SINR of
every receiving nodes is at least η. Combining with results
in Theorem 1, it is obvious that the same asymptotic bounds
for broadcast capacity with protocol interference model still
hold for the networks with physical interference model.

First of all, given P , N0 and η, the maximum distance r0

that a node vi can communicate with satisfies that P ·r−α
0 ≥

η ·BN0. Thus, r0 is at most

r0 ≤
(

P

B ·N0 · η
)1/α

. (3)

We then show that if a receiving node vj is within a distance

R0 satisfying

R0 <

(
η · P

P − η ·B ·N0

)1/α

(4)

of a transmitting node vk, then vj will be interfered by vk if
vj is not the intended receiver of vk. Notice the definition of
R0 is valid since P −η ·B ·N0 > 0. Let vi be the legitimate
sender for node vj . Notice that the maximum strength of the
signal from vj received at node vj is at most P . Thus, we
have the SINR at node vj is at most

P

B ·N0 + P · ‖vk − vj‖−α
≤ P

B ·N0 + P ·R−α
0

< η

The last inequality comes from the fact that R0 <(
η·P

P−η·B·N0

)1/α

. Consequently, the node vj cannot receive
the data from vi correctly.

Secondly, we show that we can set transmission range
r1 and an interference range R1 such that the transmissions
will always be successful if the receiver vj is within r1 of
the sender vi and the receiver is not within distance R1 of
any other sender vk for k 6= i. It is easy to show that every
pair of active transmitting nodes are separated by at least
R2 = R1−r1. Then the interference at node vj by all other
active transmitting nodes (other than vi), denoted by E, is
at most
∞∑

i=1

2π · i ·R2

R2
· P

(i ·R2)α
=

2π · P
Rα

2

∞∑

i=1

1
iα−1

=
2π · P
Rα

2

1
α− 2

.

Thus, the SINR at node vj is

P · ‖vi − vj‖−α

B ·N0 + E
≥ P

(B ·N0 + E) · rα
1

≥ P

(B ·N0 + 2π·P
Rα

2 (α−2) ) · rα
1

≥ η

The last inequality will be true if we require that

r1 ≤
(

P

(B ·N0 + 2π·P
Rα

2 (α−2) ) · η

)1/α

.

The interference range R1 is then set as R1 ← R2 + r1.
Notice that, in the above analysis, we need the bound for r1

to be larger than 1. Otherwise, the received power P · r−α
1

will be larger than P . Recall that we require P > B ·N0 ·η,
which implies that we can choose sufficiently large constant
R2 such that P

(B·N0+
2π·P

Rα
2 (α−2) )·η

> 1.

Since we found constants r1, R1 and R0, we can con-
struct a connected dominating set of the following com-
munication graph: two nodes are connected if their dis-
tance is no more than r1. Several methods can guarantee



6that for each node on the constructed CDS, it has only a
constant number, say ∆, of neighbors in CDS. Then con-
sider the interference graph H defined on nodes in CDS:
two nodes conflict with each other if their distance is at
most R1. Then it is obvious that any node in CDS has at
most Θ(R2

1
r2
1
∆) neighbors in the conflict graph. Then we can

schedule nodes in CDS to transmit in a constant time-slots
(depending on R1, r1, and ∆) such that nodes in any time-
slots will not interfere with each other’s transmission, under
the physical interference model. Thus, the total broadcast
capacity is at least W/Θ(R2

1
r2
1
∆), where R2

1/r2
1 ' ( 4πη

α−2 )2/α.
Consequently, we have,

Theorem 2 Assume that the channel capacity is W
bits/sec. Under the physical interference mode, the aggre-
gated broadcast capacity Λ(n) of an arbitrary wireless net-
work is Θ(W ).

4 Broadcast Capacity using Gaussian chan-
nel

Obviously, when fixed data rate channel is used, the
study in previous section shows that the broadcast capacity
for an arbitrary networks is still Θ(W ), when either proto-
col interference model or the physical interference model is
used. In this section, we will study the broadcast capacity
for random networks with Gaussian channel model.

4.1 Upper Bound of Broadcast Capacity
Uing Gaussian Channel

In broadcasting data from a source node to all nodes in
the network, messages will be forwarded in a spanning tree
(or a collection of spanning trees sometimes). Notice that
the broadcast tree can change overtime and a node may use
different transmission power and thus have different set of
downstream children nodes. A node v will never be able to
receive messages at a rate faster than the capacity of its best
incident link. Recall that, under the link rate assumption,
the maximum data rate that can be received by node v is
always from the link uv with the shortest Euclidean length.

Define the nearest neighbor graph NNG(n) as follows:
it contains all nodes in the network and each node v is con-
nected to its nearest neighbor u (with the smallest Euclidean
distance). Let Mn be the longest edge of NNG with n nodes
produced by a random point process on a 2-D unit square.
It was proved in [13] that

Pr
(
nπM2

n − log n ≤ γ
)

= e−e−γ

In other words, with high probability, the longest edge in

such an NNG(n) is at least Θ(
√

log n
n ) with high proba-

bility. When we scale the unit square area to a square of

length a, then the longest edge Mn in NNG will also be
scaled up by a factor a. It is thus natural to conclude that
the longest edge of NNG of nodes produced by randomly
and uniformly placing n points over a square of side length
a is Θ(a log n) with high probability.

Theorem 3 Let Mn be the longest edge of the nearest
neighbor graph constructed from randomly and uniformly
placing n nodes over a square with side length a. If
limn→∞ f(n) = +∞, then

lim
n→∞

Pr

(
πn ·

(
Mn

a

)2

− log n + f(n) ≥ 0

)
= 1

lim
n→∞

Pr

(
πn ·

(
Mn

a

)2

− log n− f(n) ≤ 0

)
= 1

For example, we can set f(n) = log n/2. Then it is

easy to show that limn→∞ Pr
(

Mn ≥ a
√

log n
2πn

)
= 1,

limn→∞ Pr
(

Mn ≤ a
√

3 log n
2πn

)
= 1. Assume that uv is

the longest edge in NNG, i.e., ‖uv‖ = Mn. To improve the
data rate received by a node v, we clearly need to reduce the
interference, i.e., only one node is sending and one node v is
receiving. The data rate that node v can receive is bounded
from above by

B · log(1 +
Pmax/M

α
n

B ·N0
).

There are three different cases here. The first case is
that limn→∞Mn = ∞, i.e., limn→∞ a

√
log n

n = ∞. In
this case, the broadcast capacity, with high probability, is at
most

B · log(1 +
Pmax/(a2 log n

2πn )α/2

B ·N0
) ' B · Pmax · aα( log n

2πn )−
α
2

B ·N0

=
Pmax

N0 · (a ·
√

log n
2πn )α

This first approximation comes from the fact that log(1 +

x) ' x when x → 0 and limn→∞ a
√

log n
n = ∞. This

concludes that the maximum broadcast data rate that can
be supported by a random extended network is at most

Pmax

N0·(a·
√

log n
2πn )α

with high probability. This implies that for a

network of n nodes deployed in a square region with side-
length a, the larger the region, the smaller the broadcast
capacity upperbound that can be achieved.

Theorem 4 When limn→∞ a
√

log n
2πn = ∞, the broadcast

capacity is at most Pmax

N0·(a·
√

log n
2πn )α

with high probability.



7The second case is that limn→∞Mn = Θ(1), and the
third case is that limn→∞Mn = 0. In these two cases, the
power attenuation model P/dα may not applicable when
d < 1: the received power is larger than the sending
power! To address this issue, we assume that the power
received at a distance d from receiver is P/(1 + dα). Un-
der this new power attenuation model, it is easy to show
that when limn→∞Mn is at most some constant c, then
the link capacity over longest edge in NNG is at most
B log(1 + Pmax

B·N0·(1+cα) ) ≤ B log(1 + Pmax
B·N0

), which is a
constant.

Theorem 5 When limn→∞ a
√

log n
2πn = c = O(1), the

broadcast capacity is at most B log(1 + Pmax
B·N0·(1+cα) ) with

high probability.

Notice that for a random network, the transmission
power should be the minimum to guarantee that the net-
work is connected with high probability. In our previous
studies, we assume that the Gaussian channel capacity is
B log(1 + SINR) no matter how small SINR could be. In
practice, all wireless devices have certain lower bound on
the minimum SINR η. If this is the case, then we know that
the maximum distance a node can receive signal correctly

is at most r0 ≤
(

Pmax
B·N0·η

)1/α

. Thus, the longest edge in the
Euclidean minimum spanning tree (which has the same as-
ymptotic value as that of the NNG) should be no more than
r0 with high probability. Observe that when r0 is bounded
from above by a constant, we know that the largest value for
side-length a satisfying

a ≤ r0 ·
√

2πn

log n + f(n)
,

for a certain function f(n) → ∞. When a = r0 ·√
2πn

log n+f(n) , the network will be connected with probabil-

ity e−e−f(n)
when n → ∞. This consequently implies that

the broadcast capacity is at least a constant B log(1+η) and
at most a constant B log(1 + Pmax

B·N0
).

4.2 Lower Bound of Broadcast Capacity
Uing Gaussian Channel

We then use a constructive method to show that such
broadcast capacity can be achieved with high probability
for a random network. The basic idea of this constructive
method again relies on constructing a good connected dom-
inating set: each node in the CDS only has a constant num-
ber of interfering nodes in the CDS. Thus, we can find a
schedule with a constant period, say T , such that each node
in the CDS will have at least one time-slot to send its data in

T . Another important observation is that the smallest trans-
mission radius needed to have a connected network is also
asymptotically Mn ' a ·

√
log n
2πn . This implies that the con-

tinuous data rate that can be supported by each node in the
CDS is also in the order of B log(1+ Pmax

B·N0·Mα
n

). Combining
the fact that each node in CDS can use at least one time slot
to send data every constant T slots, the achieved broadcast
capacity is still in the order of B log(1 + Pmax

B·N0·Mα
n

)/T .
In [17], the author did not specifically use the CDS struc-

ture. It partitions the deployment region into cells and will
select one node from each cell as relay node for broadcast,
i.e., these representative nodes will be in CDS. The side-
length ` of the cell should be carefully selected. Recall
that the channel model is assumed to be Gaussian chan-
nel. Thus, under a schedule of transmissions, we need to
show that the actual data rate supported by a node is indeed
Θ(B log(1 + Pmax

B·N0·Mα
n

)/T ).

Theorem 6 Assume that α > 2. For any given r > 0,
under the Gaussian channel and the general physical inter-
ference model, there exists a TDMA scheduling, where one
node per square of edge length ` can transmit to nodes lo-
cated within a radius r, with fixed rate R(r, `) given as

R(r, `) ≥ B log(1 +
Pmax

rα · (BN0 + Pmax ·K/`α)
)

where K ≤ 2π
α−2 is a constant.

Notice that here K = 2π
∑∞

i=1
1

iα−1 , which converges to
a constant 2π

α−2 when α > 2. When α = 2, K is not a
constant anymore: it is O(log n) instead. The theorem di-
rectly follows from the fact that the overall interference E
from all transmitting nodes that are not in the same cell is
at most K · Pmax/`α and the channel capacity is at least
B log(1+ Pmax·r−α

BN0+E ). Based on this theorem, we know that

the broadcast capacity is at least R(r, `)/T , where T ≤ `2

r2

is the time-slots needed to schedule all nodes. When we
select r = Mn ' a

√
log n
2πn , and ` = C · r for a constant

C > 1, we have the following theorem

Theorem 7 When α > 2, limn→∞Mn = ∞, i.e.,

limn→∞ a
√

log n
2πn = ∞, and select r = Mn and ` = C · r,

the broadcast capacity achieved by our scheme is at least

Pmax

C ·N0 · (a
√

log n
2πn )α

The theorem directly follows from Theorem 7 and
log(1 + x) ≥ x/2 for x → 0. For example, when a =

√
n,

then ` = Θ(r(n)) = Θ(
√

log n). Theorem 7 implies
that, the achievable data rate by nodes in the CDS (repre-
sentative nodes selected from all cells) is in the order of



8Θ(Pmax
`α ) = Θ( Pmax

(log n)
α
2

). When the node deployment a sat-

isfies that a
√

log n
n = O(1), the broadcast capacity is actu-

ally Θ(1) for α > 2. Thus, we have the following theorem.

Theorem 8 Assume that capacity-achieving Gaussian
channel codes are used and α > 2. When
limn→∞ a

√
log n
2πn ≤ b for a constant b, and select r = Mn

and ` = C · r for a constant C > 1, the broadcast
capacity achieved by our scheme is at least B · log(1 +

Pmax
B·N0bα+K·C−αPmax

)/C2 = Θ(1).

Observe that all the above analysis will carry over to the
dense model. However, for the dense model, the power at-
tenuation model P

‖u−v‖α will result in a non-valid scenario
where the receiving power is larger than the sending power.
To remedy this, we use the following power attenuation
model P

(1+‖u−v‖)α .

5 Multicast Capacity

In previous sections, we studied the broadcast capacity
of various networks under various interference models. In
this section, we study the multicast capacity of a random
networks under the physical interference model. Assume
that n wireless nodes are randomly deployed in a square re-
gion with side-length a. We further assume that each wire-
less node can transmit/receive at W bits/second over a com-
mon wireless channel. For each node vi, we randomly pick
k − 1 nodes from the other n − 1 nodes as the receivers
of the multicast session rooted at node vi. The aggregated
multicast capacity is defined as the total data rate of all mul-
ticast sessions in the network. Li et al. [12] studied multi-
cast capacity for large scale wireless ad hoc networks under
the Protocol Interference model: all nodes have the uniform
transmission range r and uniform interference range R > r.

Recall that in Section 3.2, we showed that, under the
physical interference model, we can define transmission
range r0, and interference range R0 such that

1. the maximum distance that a node vi can communicate
with is at most r0

2. if a receiving node vj is within a distance R0 of a trans-
mitting node vk, then vj will be interfered by vk if vj

is not the intended receiver of vk.
We also can define another range r1 and interference range
R1 such that

1. the transmissions will be successful if the receiver vj

is within r1 of the sender vi, and, the receiver is not
within distance R1 of any other sender vk for k 6= i.

When we multicast from one source node vi to all its
k − 1 receivers Ui, it is more likely that other nodes will
also get a copy of the data. Here, for the purpose of analysis,
when a node v sends data to one of its “neighboring” nodes,

all its neighboring nodes will be charged a copy of the data.
Notice that here a node w may not be the intended receiver
of v. However, since when v is transmitting, any node w,
that is within distance R0 of v, cannot receive data simul-
taneously from any other transmitting node due to physical
interference, we will say that node w also gets a copy of the
data. For multicast with k − 1 receivers, clearly, at least k
nodes will get a copy of the data. Generally, assume that Ci

nodes will get a copy of the data when the k−1 receivers are
randomly selected for each possible source node vi. Obvi-
ously, with a set S of source nodes,

∑
vi∈S λi ·Ci ≤ n ·W ,

where source node vi generates data at rate λi. Further as-
sume that Pr (Ci ≥ C) → 1 as n or k goes to infinity. Then
the total multicast capacity satisfies, almost surely,

Λk(n) =
∑

vi∈S
λi ≤ n ·W

C
. (5)

For any multicast tree T , let D(T ) denote the region cov-
ered by the set of disks centered at every internal node of T
with a radius r. The following were proved in [12].

Lemma 9 The area of D(T ), denoted by |D(T )| is at most
τ
√

ka ·2r+k ·πr2/2 and w.h.p.is at least τ
√

ka·r
c0

when k <

( τ(1−(6(d+1)·ρ))
6(d+1)+1 )2 · a2

r2 , for some constant c0 = 1/(4ρπ),
where 0 < ρ < 1

12(d+1) and constant d ≤ 13.

Here τ is some constant independent of n, k, r and a.

Lemma 10 With high probability, the number C of nodes
that get a copy of the multicast data satisfies C > τ ·r·

√
k·n

2c0a .

Consequently, we know that the number of nodes that will
get a copy of the multicast data under physical interference
model is at least τ ·R0·

√
k·n

2c0a , w.h.p.. This implies that the
aggregated multicast capacity is at most, w.h.p.,

nW
τ ·R0·

√
k·n

2c0a

=
2c0

τ
· a

R0
· W√

k

Notice that to guarantee a connected network, we need that
the maximum transmission distance r0 should satisfy that

r0 > a
√

log n
πn . Notice that R0 = r0 ·( Bη2N0

P−BηN0
)1/α. Notice

that Lemma 10 is valid only if the number of receivers is at
most O(a2/r2

0). Thus, we have

Theorem 11 When k = O(n/ log n), the aggregated mul-
ticast capacity is at most, w.h.p.,

nW
τ ·R0·

√
k·n

2c0a

=
2c0

τ
· a

R0
· W√

k
= O(

√
n

k log n
·W ). (6)

We then study a lower bound on the aggregated multi-
cast capacity when k = O(n/ log n). In [12], a routing



9scheme based on a connected dominating set (CDS) was
proposed to achieve asymptotic optimum multicast capacity
for protocol interference model. First, we construct a CDS
using squarelet partition method. Then given a set Ui of
multicast receivers and source node, we build an Euclidean
minimum spanning tree (EMST(Ui)) spanning these nodes.
Then for each edge uv in EMST(Ui), we use the shortest
hop path in CDS to connect them. The resulting structure,
composed of all shortest paths for all edges in EMST, is
the final routing structure MT (Ui). Here we show that that
routing scheme also achieves asymptotic optimum multi-
cast capacity for physical interference model. In our routing
scheme, when we build CDS, we use radius r1 as the trans-
mission radius, i.e., two nodes can communicate directly
only if their Euclidean distance is at most r1. To schedule
transmissions using TDMA, two nodes within distance R1

will not be scheduled simultaneously for transmitting data.
In other words, r1 is the logic transmission range and R1

is the logic interference range to mimic the proofs used for
protocol interference model.

First of all, it was proved in [12] that the total Euclidean
length of edges in MT (Ui) is within a small constant factor
of EMST(Ui), which is at most 2

√
2
√

k · a. Thus, the total
area covered by all nodes within radius R1 will be at most
2
√

2
√

k · a · (2R1). Thus, the expected number E(c) of
nodes that will get a “copy” of the multicast data is at most
2
√

2
√

k ·a · (2R1) · n
a2 . Then we can show that C is at most

2E(c) with high probability. Consequently, we have

Theorem 12 When k = O(n/ log n), the aggregated mul-
ticast capacity is at least, w.h.p.,

nW

2E(C)
=

nW

2
√

2
√

k · a · (2R1) · 2n
a2

= Ω(
√

n

k log n
·W ).

(7)

This is due to the fact that R1 = Θ(1), and we can set
a = Θ(

√
n

log n ) to have a connected network with high

probability.
When k = Ω(n/ log n), we can show that multicast is

asymptotically same as broadcast, and thus, the asymptotic
aggregated multicast capacity is in the order of Θ(W ). The
proof details are omitted here due to space limit.

6 Literature Reviews

Gupta and Kumar [5] studied the asymptotic capacity
of a multi-hop wireless networks for two different mod-
els. When each wireless node is capable of transmitting at
W bits per second using a fixed range, the throughput ob-
tainable by each node for a randomly chosen destination is
Θ( W√

n log n
) bits per second under a non-interference pro-

tocol, where n in number of nodes. Similar results also

hold for physical interference model. Grossglauser and
Tse [4] recently showed that mobility actually can help to
improve the capacity if we allow arbitrary large delay. Their
main result shows that the average long-term throughput
per source-destination pair can be kept constant even as the
number of nodes per unit area increases. The main idea
used in [4] is to use some intermediate node to serve as ferry
node: this node will carry the data from the source node and
move around and it will dump the data to the target node
when it is within its communication range. In summary, for
random networks, under the protocol model, the achievable
throughput capacity λ(n) and the average travel distance L
satisfies λ(n) · L ≤ Θ( W

∆2n·r(n) ). This phenomenon has
also been observed in [11]. In [3] Gastpar and Vetterli stud-
ied the capacity of wireless networks when network coding
can be used to improve the capacity.

Capacity can also be generalized to the notion of capac-
ity region. For a given statistical description of the network,
a set of constraints (such as power per node, link capacity,
etc.), and a list of desired communication pairs, the capacity
region is the closure of all rate tuples that can be achieved
simultaneously. Here a rate tuple specifies the rate for each
of the desired communications. Kyasanur and Vaidya [10]
studied the capacity region on random multi-hop multi-
radio multi-channel wireless networks when there are to-
tal c channels available and each node has m ≤ c wire-
less interfaces. On the other aspect, several papers [2,9] re-
cently studied how to satisfy a certain traffic demand vector
from all wireless nodes by a joint routing, link scheduling,
and channel assignment under certain wireless interference
models.

Broadcast capacity of an arbitrary network has been
studied in [8, 15]. They essentially show that the broad-
cast capacity of a given network is Θ(W ) for single source
broadcast and the achievable broadcast capacity per node is
only Θ(W/n) if each of the n nodes will serve as source
node. They assume a simple channel model: when no inter-
ference exists, a node can transmit to its neighbors at data
rate at most W bits/second. They also assume that all wire-
less nodes have a uniform transmission range r and uni-
form interference range R = Θ(r): a node v cannot re-
ceive data from a transmitting node u with ‖u − v‖ ≤ r if
there is another transmitting node w with ‖w − v‖ ≤ R.
Keshavarz-Haddad et al. [7] studied the broadcast capacity
with dynamic power adjustment for physical interference
model. Their results are most similar to ours. They mainly
considered the dense model. They did consider both phys-
ical interference model and Generalized Physical Interfer-
ence model (called Gaussian channel model here). In phys-
ical model used, a node can receive data correctly only if
the SINR is at least a threshold. The Physical Model mod-
els interference more accurately, but still assigns a constant
transmission rate once successful transmission is guaran-



10teed. The Generalized Physical Model allows for a trans-
mission rate that depends on the level of interference and
the distance between sender and receiver and thus allows
for a more precise assessment of the broadcast capacity. In
this model the transmission rate Wi,j between a sender i
and a receiver j is determined using Shannon’s formula for
a wireless channel with additive Gaussian white noise. Li
et al. [12] studied multicast capacity for large scale wireless
ad hoc networks under the Protocol Interference model.

7 Conclusions

In this paper, we essentially studied the broadcast ca-
pacity that can be achieved by some wireless networks.
We derive analytical upper bounds and lower bounds on
broadcast capacity of a wireless network when all nodes in
the network has the same bounded transmission power P
and nodes are deployed in a square of side-length a. We
also generalize our results to multicast capacity. Assume
that for each node v in the network, we randomly select
1 ≤ k < n nodes as receiver nodes of a multicast from
v. We show that the asymptotic aggregated multicast ca-
pacity is Θ(

√
n

k log nW ) when k = O(n/ log n) and the

aggregated multicast capacity is Θ(W ) otherwise. It is in-
teresting to study the broadcast capacity and the multicast
capacity when nodes could dynamically adjust its coding to
change the data rate based on the receivers.
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