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Closing the Gap of Multicast Capacity for Hybrid
Wireless Networks

Xiang-Yang Li, Xufei Mao and Shaojie Tang

Abstract— We study the multicast capacity of a random hybrid
wireless network consisting of wireless terminals and base stations.
Assume that n wireless terminals (nodes) are randomly deployed
in a square region and all nodes have the uniform transmission
range r and uniform interference range R = Θ(r); each wireless
node can transmit/receive at Wa-bps. In addition, there are m base
stations (neither source nodes nor receiver nodes) that are placed
uniformly in this square region; each base station can communi-
cate with adjacent base stations directly with a data rate WB-bps
and the transmission rate between a base station and a wireless
node is Wc-bps. Assume that there is a set of ns randomly selected
nodes that will serve as the source nodes of ns multicast flows (each
flow has randomly selected k−1 receivers). We found that the mul-
ticast capacity for hybrid networks has three regimes and for each
of regimes, we derive the matching asymptotic upper and lower
bounds of multicast capacity.

Index Terms—Hybrid networks, capacity, multicast, broadcast.

I. INTRODUCTION

The asymptotic capacity of large scale random wireless net-
works has been widely studied. It is well known that the ca-
pacity of a wireless network depends on many aspects of the
network, like network architecture, routing strategies, power
constraints, interferences and node density, etc. A good under-
standing of the capacity of different networks will help the users
to use current network resources more effectively with respect
to different environment and conditions, especially for situa-
tions like battlefields, dangerous volcano areas. In pure wireless
ad hoc networks, wireless nodes may cooperate in routing each
others’ packets. However, lack of a centralized control of the
functionality and possible node mobility give rise to many chal-
lenging issues at the network layer, the medium access layer,
and physical layer of a wireless ad hoc network. Another well
known and studied network is cellular networks, in which all
wireless nodes communicate with the base stations within one
hop. In addition, the infrastructure of base stations in cellular
network is relative stable, thus guarantee a high performance.
However, in some cases, to deploy base stations in some area is
not only expensive, but almost impossible.

In this paper, we study the multicast capacity of hybrid net-
works when we choose the best protocols for all layers. A hy-
brid wireless network consists of two types of network devices:
base stations and wireless terminals. We assume that all m base
stations are regularly placed as a grid in a square region with
side-length a meters, and each base station is connected with
adjacent base stations by wired lines or wireless channels. Here
two base stations are said to be adjacent if their Voronoi regions
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share a common boundary segment. Assume that each link that
connects two base stations has rate WB-bps and a base station
is neither a data source nor a data receiver; it simply serves as
a relay gateway. Further we assume that n wireless terminals
(with common communication range r and interference range
R = Θ(r)) are randomly placed in this square region. When the
communication is successful, the data rate between two wire-
less terminals is Wa-bps. The data rate between a base station
and any wireless terminal is Wc-bps. Given all base stations Z,
the Voronoi region, denoted as Vor(zi, Z), of a base station zi

is called the service cell of base station zi.
We study the capacity of a given hybrid network, and how the

capacity of hybrid networks scale with the number of nodes, or
with the number of base stations in the networks when a fixed
deployment region is given. For most results presented in this
paper, we assume that the numbers a, r, n, and m are selected
such that the resulting hybrid network is connected with high
probability. Due to spatial separation, several wireless nodes
can transmit simultaneously provided that these transmissions
will not cause destructive wireless interferences to any of other
transmissions, and all transmissions between two base stations
are considered wired links, thus there are no interference to
other simultaneous transmissions. Notice that the transmission
between a wireless node and a base station is wireless transmis-
sion, thus bears interference constraints.

For all randomly distributed n nodes, each node vi has a ran-
domly chosen k−1 destination nodes from other n−1 wireless
nodes, to which it wishes to send data at an arbitrary data rate
λi. The minimum per-flow multicast capacity of a random net-
work is defined as minns

i=1 λi when there is a schedule of trans-
missions such that all multicast flows will be received by their
destination nodes successfully. For presentation simplicity, we
assume that there is only one channel in the wireless networks.
As always, we assume that a wireless node has enough memory
to buffer all the packets it generates or relay for others such that
no packets will be lost through one- or multi-hop transmission.
For most of the results presented here, the delay of the routing
is not considered, i.e., the delay in the worst case could be large
for some results.

Basically, for multicast, there are three different routing
strategies in a hybrid network. The first one is named Ad Hoc
Routing: given the source node and k− 1 receivers, a multicast
tree using only wireless terminal is constructed and the routing
is performed on this tree. This approach has the same capacity
as ad hoc wireless network. The second one is based on service
cell. For a multicast flow, for each cell that contains at least
one receiver (or source node) inside, we construct a tree that
spans the receivers (or source node) including the base station
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in this cell. Then the forest (composed of trees built for each
cell) will be connected by links among base stations. This is
similar to the routing in cellular networks. We call this routing
strategy as Cellular Routing. The third routing method can use
any subgraph of the original communication graph that spans
the receivers and the source node for routing. We call this rout-
ing strategy as Hybrid Routing. Thus, hybrid networks actually
present a tradeoff among traditional BS-oriented network and
ad hoc wireless network.

Compared with the similar work by Mao et al., [19], we study
more general cases rather than only studying Cellular Routing
strategy and further close the gap between the upper bound and
lower bound in multicast capacity for hybrid networks. Surpris-
ingly, our results show that we can either use Ad Hoc Routing
strategy or Cellular Routing strategy to beat any other routing
strategy asymptotically.

The multicast capacity of hybrid wireless networks has been
studied in [19]. They assume that all links (links between base
stations, links between base stations and ordinary nodes, and
links between ordinary nodes) have the same capacity W -bps.
They derive asymptotic upper bounds and lower bounds on
multicast capacity of the hybrid wireless networks. The total
multicast capacity is O(

√
n√

log n
·
√

m
k ·W ) when k = O( n

log n ),

k = O(m), k√
m
→ ∞ and m = o(a2

r2 ); the total multicast

capacity is Θ(
√

n√
log n

· W√
k
) when k = O( n

log n ), k = Ω(m)
and m

k → 0. When k = O( n
log n ) and k = O(

√
m), the

upper bound for the minimum multicast capacity is at most
O( r·n

a · √m · W
k ) and is at least Ω(W ) respectively. When

k = Ω( n
log n ), the multicast capacity is Θ(W ). Compared

with their results, we assume a more general heterogeneous link
capacities and close the gap between lower bounds and upper
bounds for all possible cases.

Our Main Contributions: In this paper we derive match-
ing upper bounds and lower bounds on multicast capacity of a
hybrid wireless network, in which base stations are distributed
regularly in a grid illustrated by Figure 2. Assume that the
deployment region and the transmission range r are selected
such that the network is connected w.h.p. In other words,
nπr2 = Θ(log n) [13]. We always assume that m = O(a2/r2).
We show that

Theorem 1: The asymptotic per-flow capacity of ns multi-
cast sessions by Cellular Routing is

ϑk(n) =

{
Θ(min(WB

√
m

ns

√
k

, Wcm
nsk , Wam

nsk )) if k = O(m)

Θ(min(WB

ns
, Wc

ns
, Wa

ns
)) if k = Ω(m)

(1)
When the Ad Hoc Routing strategy is used, it was proved in

[12] that the minimum per-flow multicast capacity is

λk(n) =

{
Θ(a

r · Wa

ns

√
k
) if k = O(a2

r2 )

Θ(Wa

ns
) if k = Ω(a2

r2 )
(2)

We then proved that the Hybrid Routing strategy will achieve
a network capacity at most the larger one of the asymptotic ca-
pacity achieved by Cellular Routing strategy and the asymptotic
capacity achieved by the Ad Hoc Routing strategy. Combining
the preceding results, we further prove that

Theorem 2: The minimum per-flow capacity ϕk(n) by Hy-
brid Routing strategy when m = O(a2

r2 ) is of order




Θ(max
[
min

(
WB

√
m

ns
√

k
, Wcm

nsk
, Wam

nsk

)
, Wa

ns
√

k

a
r

]
) if k = O(m)

Θ(a
r
· Wa

ns
√

k
) if k = Ω(m), k = O(a2

r2 )

Θ(Wa
ns

) if k = Ω( a2

r2 )
(3)

The multicast capacity of hybrid networks when using Cellular
routing and Ad Hoc Routing is shown in Fig. 1. An important
finding of our paper is that we prove that the asymptotic multi-
cast capacity achieved in hybrid networks is the upper envelop
of those two curves (Cellular routing and Ad Hoc Routing). So
we can either use Cellular routing or Ad Hoc Routing to “beat”
any other routing strategy asymptotically.
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Fig. 1. The capacity bounds (curves) for Cellular Routing and Ad Hoc Routing.
The upper envelop of two curves is the capacity bound for Hybrid Routing.

Note that when the transmission range r is smaller, the
achievable asymptotic capacity will be larger. However, on the
other hand, the transmission range r should be at least a cer-
tain value such that the network formed by base stations and
terminals will be connected w.h.p. It has been shown in [19]
that when a

r ≤
√

cnπ
log(c n

m )+β for β → ∞, the resulting net-

work G = (V ∪ Z, E) is connected with probability at least
1

ee−β → 1, when β →∞ and c is constant.
The rest of the paper is organized as follows. In Section II

we discuss in detail the network model used in this paper. In
Section III and IV we present the matching upper bounds and
lower bounds for multicast capacity respectively for the hybrid
networks when Cellular Routing strategy is used. In Section
V, we give the multicast capacity bound when Hybrid Routing
strategy is used. We review the related results on network ca-
pacities in Section VI and conclude the paper in Section VII
with the discussion of some possible future works.

II. NETWORK MODEL

We assume that there is a set V = {v1, v2, · · · , vn} of n
ordinary wireless terminals randomly deployed in a square re-
gion with a side-length a. Each wireless node has transmission
range r such that nodes vi and vj can communicate success-
fully iff the Euclidean distance |vi − vj | ≤ r. The data rate
of every link vivj is Wa-bps when no interference occurs. A
communication from vi to vj is interference-free if there is no
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any other node u that is transmitting and within distance R of
receiving node vj .

We further assume that there are m base stations Z =
{z1, z2, · · · , zm} regularly placed in the region. For exam-
ple, the base stations are placed regularly at positions ( a

2
√

m
+

i a√
m

, a
2
√

m
+ j a√

m
) with 0 ≤ i ≤ √

m − 1, and 0 ≤ j ≤√
m− 1. We generally assume that m is a square of some inte-

ger. Fig. 2(a) illustrates a simple example of hybrid networks.
Clearly, these m regularly placed base stations divide the orig-
inal square region into m cells as Voronoi diagrams with same
side length a√

m
. We use Si to denote the cell defined by base

station zi, and for simplicity, by abusing the notation little bit,
we say the cell Si is the service region of base station zi, i.e., zi

serves as a functional gateway for all wireless nodes in cell Si

when Cellular Routing strategy is used. The transmission range
of a base station is also assumed to be r. In other words, a base
station can only directly serve nodes within distance r. The to-
tal data rate that a base station can serve all ordinary wireless
nodes is at most Wc-bps with Wc ≥ Wa. In other words, a base
station can serve at most Wc

λ flows if each flow requires a data
rate λ.

Each base station is connected to its adjacent base stations (at
most 4) by wired lines or wireless channels (using frequency
different from the frequency used between ordinary wireless
nodes). The links between base stations have a large capac-
ity WB to support traffics. We further assume that m = o(a2

r2 )
throughout the paper due to the following observation: when
the number of base stations m ≥ a2

r2 , all these regularly dis-
tributed base stations will cover the whole square, thus a hybrid
network will act as a cellular network.

An ordinary node and a base station can communicate with
each other only if the Euclidean distance between them is at
most r. In other words, the wireless communication range
of any base station is also assumed to be r. The complete
communication network is a graph G = (V ∪ Z, E), where
V = {v1, v2, · · · , vn} is the set of ordinary wireless nodes
and Z = {z1, z2, · · · , zm} is the set of base stations, and
E = Ea ∪ EB ∪ Ec is the set of all possible communication
links

1) Ea is the set of ad hoc links uv where u ∈ V , v ∈ V , and
‖u− v‖ ≤ r. Each link in Ea has data rate Wa-bps.

2) EB is the set of backbone links zizj where zi ∈ Z, zj ∈
Z, and ‖zi − zj‖ = a√

m
. The data rate of each link in EB

is WB-bps.
3) Ec is the set of cellular links zivj where zi ∈ Z, vj ∈ V ,

and ‖zi − vj‖ ≤ r. The data rate (both up-link and down-
link) of each link in Ec is Wc-bps.

For simplicity, we use Ed to denote the set of crossing ad hoc
links: Ed = {(vi, vj) | vi and vj are from different cells}. We
assume that Wa ≤ Wc ≤ WB . Given a multicast flow with
source vi and the set of receivers Ui, the routing structure must
be a subgraph of G. Three different routing strategies that will
be studied here can be categorized as follows

1) Ad Hoc Routing strategy will use only the links in Ea.
We use λk(n) to denote the asymptotic multicast capac-
ity achievable by ad hoc routing strategy.

2) Cellular Routing strategy will not use links in Ed, i.e.,

uv ∈ Ea such that u and v are from different cells. We use
ϑk(n) to denote the asymptotic multicast capacity achiev-
able by cellular routing strategy.

3) Hybrid Routing strategy can use any links in G. We use
ϕk(n) to denote the asymptotic multicast capacity achiev-
able by hybrid routing strategy.

Please see Fig 2 for illustration. In this paper, we mainly as-

(a) Original network (b) Ad Hoc routing strategy

(c) Cellular routing strategy (d) Hybrid routing strategy
Fig. 2. Illustration of Three Routing Strategies, we use the red node to denote
a source node and blues nodes to denote its k receivers

sume that the transmission range r is fixed and thus normalized
to one unit throughout the paper.

Random Multicast Flows: In this paper, we will concen-
trate on the multicast capacity of a random hybrid network,
which generalizes both the unicast capacity [6] and broadcast
capacity [9, 14] for random networks (when m = 0). Assume
that a subset S ⊆ V of ns = |S| random nodes will serve as
the source nodes of ns multicast sessions. We randomly and
independently choose ns multicast sessions. To generate the i-
th (1 ≤ i ≤ ns) multicast session, k points pi,j(1 ≤ j ≤ k)
are randomly and independently chosen from the deployment
region. Let vi,j be the nearest wireless node from pi,j (ties
are broken randomly). Observe that doing this, it is possible
that some nodes will serve as a receiver of multiple multicast
flows, and a multicast flow may have less then k − 1 receivers.
It is not difficult to show that with high probability, each flow
will have at least (1 − ε)(k − 1) receivers for a small value
0 < ε < 1. Thus, for simplicity, we always assume that each
flow has k − 1 receivers. In the i-th multicast session, vi,1 will
be chosen as source node and multicast data to k − 1 nodes
Ui = {vi,j | 2 ≤ j ≤ k} at an arbitrary data rate λi.

In this paper, we mainly focus on the protocol interference
model induced in [6]. We assume that each node vi has a
fixed interference range R which is within a small constant
factor of the transmission range r, i.e., %1r ≤ R ≤ %2r for
some constants 1 < %1 ≤ %2. Under the protocol interference
model, any node vj will be interfered by the signal from vk if
‖vk − vj‖ ≤ R where node vk is sending signal to some node



4

other than vj .
Capacity Definition: We assume that any node vi could

serve as the source node for some multicast, here 1 ≤ i ≤ n.
And for each source node vi, we randomly select k−1 receiver
nodes from other n−1 nodes, say Ui ⊆ V −{vi}. Assume that
node vi will send data to these receivers Ui with a data rate λi.

Let λ = (λ1, λ2, · · · , λn−1, λn) be the rate vector of the
multicast data rate of all multicast sessions. When given a fixed
network G = (V ∪Z, E), where the node positions of all nodes
V , the position of all base stations Z, the set of receivers Ui

for each source node vi, and the multicast data rate λi for each
source node vi are all fixed,

Definition 1: Given a network, a multicast rate vector λ =
(λ1, λ2, · · · , λn−1, λn) bits/sec is feasible if there is a spatial
and temporal scheme for scheduling transmissions such that by
operating the network in a multi-hop fashion and buffering at
intermediate nodes when awaiting transmission, every node vi

can send λi bits/sec average to its chosen k − 1 destination
nodes. That is, there is a T < ∞ such that in every time interval
(with unit seconds) [(i−1) ·T, i ·T ], every node can send T ·λi

bits to its corresponding k − 1 receivers.
The average per flow multicast throughput capacity is defined

as αk(n) =
∑n

i=1 λi

ns
, where ns is the number of multicast ses-

sions, and k is the total number of nodes in each multicast ses-
sion, including the source node. Similarly, given ns multicast
sessions with S as source nodes, the minimum per-flow multi-
cast capacity is defined as

ϕk(n) = min
vi∈S

λi.

In this paper, we will focus on the minimum per-flow capacity.
Definition 2: We say that the multicast capacity per flow of

a class of random networks is of order Θ(f(n)) bits/sec if there
are deterministic constants c > 0 and c < c′ < +∞ such that

lim
n→∞

Pr (λk(n) = cf(n) is feasible) = 1

lim inf
n→∞

Pr (λk(n) = c′f(n) is feasible) < 1

Throughout this paper, we will focus on studying the mini-
mum per-flow multicast capacity which is defined as ϕk(n) =
minvi∈S λi.

III. UPPER BOUNDS IN MULTICAST CAPACITY BY
CELLULAR ROUTING

When Cellular Routing is used, the capacity for a hybrid net-
work can be constrained due to three different congestion sce-
narios: (1) the backbone formed by the links EB is congested;
(2) the cellular links Ec are congested; and (3) the ad hoc links
Ea \ Ed in some cell are congested. We will derive an upper
bound separately on minimum per-flow multicast capacity for
each of the aforementioned three conditions.
TECHNIQUE LEMMAS: Throughout this paper, we will repeat-
edly use these lemmas.

Lemma 3: For the i-th flow, let ki,j be the number of termi-
nals that will fall inside the service cell of the jth base station
zj . Then, ki,j is a random variable with mean E(ki,j) = k

m and
variance Var(ki,j) = k

m (1− 1
m ).

Note that Pr (ki,j = t) is
(
k
t

) (
1
m

)t (
1− 1

m

)k−t
.

Lemma 4: Let variable k′i,j denotes the number of terminals
of the i-th flow that fall inside the cell of the base station zj , but
not inside the communication disk of zj (centered at zj with
radius r). Then

Pr
(
k′i,j = t

)
=

(
k

t

) (
1

m
− r2

a2

)t (
1− 1

m
+

r2

a2

)k−t

Then its mean is E(k′i,j) = k( 1
m − r2

a2 ) and variance

Var(k′i,j) = k( 1
m − r2

a2 )(1− 1
m + r2

a2 ). Recall that in this paper,

we assumed that the number of base stations m ≤ ca2

r2 for some
constant 0 < c < 1. Thus, 1

m − c2

a2 ≥ (1 − c) 1
m . This implies

that E(k′i,j) ≥ (1 − c) k
m and variance (1 − c)k 1

m (1 − (1 −
c)) 1

m ) ≤ Var(k′i,j) ≤ k 1
m (1− 1

m ).
Lemma 5: Let variable Xi,j ∈ {0, 1} denote whether the j-

cell (defined by base station zj) contains some terminals from
the ith flow, i.e., Xi,j = 1 if ki,j > 0, and Xi,j = 0 if ki,j = 0.
Thus, Pr (Xi,j = 1) = 1− (1− 1

m )k. In addition, Var(Xi,j) =
E(X2

i,j)− E(Xi,j)2 = (1− (1− 1
m )k)(1− 1

m )k.
Lemma 6: Let variable fj denote the number of flows, each

of which has at least a terminal node inside the j-th cell. Then
fj =

∑ns

i=1 Xi,j . In addition, E(fj) = ns(1− (1− 1
m )k) and

variance Var(fj) = ns · Var(Xi,j) = ns(1 − (1 − 1
m )k)(1 −

1
m )k.

Lemma 7: Let variable X ′
i,j ∈ {0, 1} denote whether some

terminals from the ith flow fall into the jth-cell, but not inside
the communication disk centered at zi, X ′

i,j = 1 if k′i,j > 0,
and X ′

i,j = 0 if k′i,j = 0. Thus, Pr
(
X ′

i,j = 1
)

= 1 − (1 −
( 1

m − r2

a2 ))k. In addition, Var(X ′
i,j) = E(X2

i,j)− E(Xi,j)2 =
(1− (1− ( 1

m − r2

a2 ))k)(1− ( 1
m − r2

a2 ))k.
Lemma 8: Let variable f ′j denote the number of flows, each

of which has at least a terminal node inside the j-th cell, but
not inside the communication disk centered at zj . Then f ′j =∑ns

i=1 X ′
i,j . In addition, E(f ′j) = ns(1 − (1 − ( 1

m − r2

a2 ))k)
and variance Var(f ′j) = ns · Var(X ′

i,j) = ns(1 − (1 − ( 1
m −

r2

a2 ))k)(1− ( 1
m − r2

a2 ))k.
Lemma 9: Let variable ki denote the number of cells that

has at least one terminal from flow i inside. Clearly, ki =∑m
j=1 Xi,j . Then E(ki) = m(1 − (1 − 1

m )k) and variance
Var(ki) = m · Var(Xi,j) = m(1− (1− 1

m )k)(1− 1
m )k. Fur-

thermore, when k ≤ m, k
2 ≤ E(ki) ≤ min(m, 2k). When

k > m, m
2 ≤ E(ki).

Given a routing strategyA, let Ti(A) be the tree used to route
the i-th flow. When A is clear from the context, we will sim-
plify it as Ti by dropping A. The following lemma was shown
in [22].

Lemma 10: Given k points Q randomly placed in a square of
side length a, the Euclidean minimum spanning tree, denoted as
EMST(Q), has an expected total edge length Θ(

√
ka) and its

variance Var(EMST(Q)) ¿ a2 · log k.
It was proved in [11, 12] that any routing tree Ti for a set Q of
random k points in the square of side-length a, its total edge
length is at least 1

2 times the total edge length of EMST(Q).
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A. Upper Bound Due to Links in EB

The upper bound on multicast capacity due to links in EB

has two regimes: k = O(m) and k = Ω(m).
1) When k = O(m): In this case, for each flow i, we let Bi

be the set of base stations whose service cell contains at least
one terminal from the i-th flow. Then we need build a connected
structure using only links in EB to span Bi. Let T i

B be the
tree (covering all base stations in Bi) constructed by a given
routing method. Then we know that |T i

B | ≥ |EMST(Bi)|/2.
Hereafter, if S is a set, we use |S| to denote the cardinality
of S; if S is a tree, we use |S| to denote the total Euclidean
length of tree S . Notice that the set Bi is a random variable
and |Bi| = ki, where random variable ki is as defined before.
Similar to [22], we can prove the following lemma:

Lemma 11: Given ki base stations Bi randomly selected and
all base stations are placed in a square region of side-length
a, the Euclidean minimum spanning tree EMST(Bi) has an
expected total edge length c1

√
kia for a constant c1 ∈ (0, 2

√
2]

and its variance Var(|EMST(Bi)|) ¿ a2 · log ki.
Theorem 12: When k ≤ θ0m for some constant θ0, there is a

constant c3 such that, with probability at least 1− 2e−ns/8, the
minimum data rate that can be supported using cellular routing
strategy is at most WB

√
m

c3ns

√
k

for any routing strategy due to the
congestion in backbone links.

Proof: Let C(T i
B) denote the number of cells that

the routing tree T i
B will use, i.e., the number of base sta-

tions used in T i
B . Obviously, C(T i

B) ≥ ki, the number of
cells that contain the receivers of the i-th flow. Notice that
each base station is connected to at most 4 adjacent base sta-
tions. Then |T i

B |/(4 a√
m

) ≤ C(T i
B) = |T i

B |/( a√
m

). Let vari-
able L =

∑ns

i=1 C(T i
B), denoting the total load of all cells.

Here the load of a cell by a routing method is the number of
flows passing the cell for the multicast tree constructed. Then
L ≥ ∑ns

i=1 |T i
B |/(4 a√

m
) ≥ ∑ns

i=1 |EMST(Bi)|/(8 a√
m

). No-
tice that E(

∑ns

i=1 |EMST(Bi)|) = nsc1E(
√

ki)a and
Var(

∑ns

i=1 |EMST(Bi)|) ¿ n2
sa

2 log ki. Thus E(L) ≥
c1nsE(

√
ki)
√

m/8.
We then compute the value E(

√
ki). Recall that variable

Xi,j denotes whether the j-th cell contains any terminal from
the i-th flow and ki =

∑m
j=1 Xi,j . By definition, E(

√
ki) =

E(
√∑m

j=1 Pr (Xi,j = 1)) =
√

m(1− (1− 1
m )k). Then,

√
min(m, k)/2 ≤ E(

√
ki) ≤

√
min(m, 2k)

When k ≤ θ0m, we have E(
√

ki) ≥ c2

√
k for a constant c2 =√

min( 1
2θ0

, 1).
Define random variables Xq =

∑q
j=1(|EMST(Bj)| −

E(|EMST(Bj)|)). Then E(Xq+1 | X1, · · · , Xq) = Xq ,
i.e., variables Xi are martingale. In addition, |Xq − Xq−1| =
||EMST(Bq)| − E(|EMST(Bq)|)| ≤ |EMST(Bq)|, which is
≤ 2

√
2
√

kia ≤ 2
√

2
√

ka. From Azuma’s Inequality, we have
Pr (|Xns −X0| ≥ t) ≤ 2 exp(− t2

2
∑ns

i=1 8ka2 ).

Let t = ε
∑ns

i=1 E(|EMST(Bi)|). Clearly, εnsc1c2

√
ka ≤

t ≤ 2
√

2ε
√

ka. Note that X0 = 0. Then,

Pr

(
ns∑
i=1

|EMST(Bi)| ≤
ns∑
i=1

E(|EMST(Bi)|)− t

)

≤ Pr (|Xns | ≥ t) ≤ exp(− t2

2
∑ns

i=1 8ka2
)

≤ exp(− (εnsc1c2

√
ka)2

8nska2
) = exp(−nsε

2c2
1c

2
2

8
)

Consequently, for a constant ε ∈ (0, 1), we have

Pr

(
ns∑

i=1

|EMST(Bi)| ≤ (1− ε)nsc1E(
√

ki)a

)
≤ 2e−

nsε2c21c12
8 ,

Pr

(
ns∑

i=1

|EMST(Bi)| ≥
ns∑

i=1

c1E(
√

ki)a/2

)
≥ 1− 2e−nsc2

1c2
2/32.

Then,

Pr
(
L ≥ nsc1E(

√
mki)/16

)
≥ 1− 2e−nsc2

1c2
2/32.

It implies

Pr
(
L ≥ nsc1c2

√
km/16

)
≥ 1− 2e−nsc2

1c2
2/32 if k ≤ θ0m.

Recall that L denotes the total load of all cells. Then by Pi-
geonhole principle, with probability at least 1 − 2e−nsc2

1c2
2/32,

there is at least one cell, that will be used by at least nsc1c2
√

km
m

flows. Thus, with probability at least 1 − 2e−nsc2
1c2

2/32, the
minimum data rate that can be supported using cellular rout-
ing strategy is at most WB

nsc1c2
√

km
m

= WB
√

m

c1c2ns

√
k

for any routing

strategy due to the congestion in backbone links. By letting
c3 = c1c2 finishes the proof of the theorem.

2) When k = Ω(m): Recall that in this case, we have shown
that E(ki) ≥ m/2, i.e., for each flow, the expected number
of cells that will contain its terminals is at least m/2. More
precisely, it is easy to show that, for any cell j, the probability,
Pr (Xi,j = 1), that it will contain a terminal from flow i is at
least 1 − 1/e > 1/2. Then using Azuma’s Inequality, we can
prove that, with probability at least 1 − 2e−ns/8, the total load
L ≥ nsm/4. Thus, by Pigeonhole principle, there is one cell
such that its load (the number of flows using its base-station) is
at least ns/4. Consequently, we have the following theorem.

Theorem 13: When k ≥ θ0m for some constant θ0 > 1,
with probability at least 1 − 2e−ns/8, the minimum data rate
that can be supported using cellular routing strategy is at most
4WB

ns
for any routing strategy due to the congestion in backbone.

B. Upper Bound Due to Links in Ec

In this subsection, we study the minimum per-flow data rate
due to the congestion when ordinary wireless nodes access the
base-stations in their cells. Recall that we assume that both the
uplink rate and the down-link rate between the base-station and
the ordinary wireless nodes in its cell is Wc-bps. We will study
upper bounds based on two subcases, whether k = O(m) or
not. We essentially will study the number of flows fj inside of
jth cell that will pass through a base-station zj .
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1) When k = O(m): We first study the case when the
number of terminals per-flow is k = O(m). Notice that
when k ≤ m, E(fj) = ns(1 − (1 − 1

m )k) > k
2mns and

Var(fj) < 2k
m ns.

Lemma 14: When ns satisfies the condition (4), the variable
maxm

j=1 fj is Θ(ns
k
m ) with probability at least 1− 1

n .
Proof: We use the VC-Theorem to prove this lemma.

Let the set C = {Vor(zj , Z) | 1 ≤ j ≤ m} be the class of
cells defined by all base-stations. Let Fi be the i-th flow and
Fi is said to “belong to” the j-th cell if some of its terminals
is contained inside the j-th cell Vor(zj , Z), which is denoted
as Fi ∈ Vor(zj , Z). Then fj =

∑
Fi

I(Fi ∈ Vor(zj , Z)),
where I(Fi ∈ Vor(zj , Z)) = 1 if Fi ∈ Vor(zj , Z) and I(Fi ∈
Vor(zj , Z)) = 0 otherwise. Obviously, VC-d(C) ≤ log m
since the cardinality of C is m. In addition, the probability
P (A) that a flow “belongs to” a cell A is P (A) = 1−(1− 1

m )k.
It is easy to show that, when 0 < k < m, we have k

2m <

P (A) < 2k
m . Then by VC-Theorem, we know that for every

ε, δ > 0, Pr
(
supA∈C

∣∣∣
∑ns

i=1 I(Fi∈A)

ns
− P (A)

∣∣∣ ≤ ε
)

> 1−δ when-

ever ns > max
{

8·VC-d(C)
ε

· log 13
ε

, 4
ε
log 2

δ

}
. When we choose

the parameters ε = k
4m , δ = 1

n , and

ns > max
(

32m log m

k
log

52m

k
,
16m

k
log(2n)

)
, (4)

Then

Pr
(

m
sup
i=1

|fi − nsP (A)| ≤ ns
k

4m

)
> 1− 1

n
.

Hence, Pr
(∀i ∈ [1, m], ns

k
4m ≤ fi ≤ ns

9k
4m

)
> 1− 1

n .
Based on the preceding lemma, we conclude that,
Theorem 15: When k ≤ m, the rate due to the congestion of

accessing the base-stations, with probability at least 1− 1
n , is at

most Wc

maxi fi
≤ Wc·(4m)

nsk = O(Wc·m
nsk ).

2) When k = Ω(m): We then study an upperbound on the
rate achievable due to the congestion of accessing base-stations
when k > m. In this case, ns > E(fj) = ns(1− (1− 1

m )k) >
ns(1− 1

e ).
Lemma 16: When ns satisfies the condition (5), the variable

maxm
j=1 fj is also Θ(ns) with probability at least 1− 1

n .
Proof: Similar as the proof for Lemma 14, except that

when k ≥ m, we have 1 − 1
e < P (A) < 1. Based on VC-

Theorem, by choosing the parameters ε = 1
e , δ = 1

n , we know
that when

ns > max (8e log m log(13e), 4e log(2n)) , (5)

Then

Pr
(

m
sup
i=1

|fi − nsP (A)| ≤ ns
1
e

)
> 1− 1

n
.

Hence, we have

Pr
(
∀i ∈ [1,m], ns(1− 2

e
) ≤ fi ≤ ns

)
> 1− 1

n
.

This finishes the proof.
Obviously, we have the following theorem.
Theorem 17: When k ≥ m, with probability at least 1 − 1

n ,
the minimum per-flow rate by any Cellular Routing strategy is
at most Wc

ns(1− 2
e )

.

C. Upper Bound Due to Links in Ea \ Ed

In previous subsections, we study upper bounds on the mul-
ticast capacity in hybrid networks due to the congestion at the
backbone links (connecting pairs of base-stations), and due to
the congestion in accessing the base-stations. We now focus on
studying the capacity upper bounds due to the congestion in ad
hoc links Ea \ Ed.

A trivial upper bound for total multicast capacity is Wa · n
since there are n source nodes in total and each can send data
at Wa bits/sec. However, we can make the upper bounds more
tight due to the following observations. For each source node
vi, when we multicast the data from one source node vi to all
its k − 1 receivers in set Ui = {vi1 , vi2 , · · · , vik−1}, the re-
sulting multicast tree will contain at least k nodes, and possibly
more. More possibly, when a non-leaf node v in the multi-
cast tree sends data to its children, all nodes that are within its
transmission range will receive the data or at least they cannot
transmit successfully at the same time no matter these nodes are
intended receivers or not. In this case, we say all these nodes
are charged a copy of the data. To study the multicast capacity,
we partition the deployment square into grids of size r. Clearly,
there are at most da

r e2 = Θ(a2

r2 ) such grid cells. Notice that
among such grid cells, some of them can be directly reached
by some base-stations. Let g be the total number of grid cells
that is disjoint from the union of disks

⋃m
j=1 D(zj , r). Then

obviously g ≥ da
r e2 − 9m = Θ(a2

r2 ) when m ≤ a2

10r2 . Here,
the constant 9 comes from the fact that any base station only
can over at most 9 grids of size r at the same time due to our
previous assumption that the transmission range of each base
station is also r. Thus, throughout this paper, we assume that
m ≤ a2

10r2 .
Recall that we assume that the interference range R > %1r.

Then at any time instance, the distance between two active
senders v1 and v2 is at least R− r ≥ (%1 − 1)r. Consequently,
we have

Lemma 18: For any grid of side-length r, there are at most
a constant number (denoted as κ < (1 + 2

%1−1 )2) of nodes in-
side the grid that can send data simultaneously without causing
interference to receivers.
This lemma implies that the total data that can be sent out from
any grid during any time interval t is at most Wa · κt for a con-
stant κ. To prove an upper bound on the capacity, we will only
consider the grid cells that are disjoint from the disks defined
by base-stations. In other words, for nodes located inside these
grid-cells, it cannot reach the base-stations directly and its data
have to be relayed by some other nodes to reach the base sta-
tions. Given a routing strategy, for the i-th flow and j-th grid
cell, let Yi,j be the variable denote whether the i-th flow will
be routed through the j-th grid cell by this routing strategy. Let
Yj =

∑ns

i=1 Yi,j the total number of flows that will be routed
through the j-th grid cell by this routing strategy. Then from
Lemma 18, we can conclude that the minimum per-flow data
rate is at most

Wa · κ
maxg

j=1 Yj
(6)

The rest of the subsection is devoted to give a better lower
bound on maxg

j=1 Yj , thus a tighter upper bound of multicast
capacity of the hybrid wireless network. Notice that the bound
on maxg

j=1 Yj depends on the routing strategy. We actually will
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prove that, regardless of routing strategies used, maxg
j=1 Yj will

be at least a certain value w.h.p. For simplicity, hereafter when
we say k receivers, we mean that one source node pluses all its
k − 1 receivers.

1) When k = O(m): As we know, under the Cellular Rout-
ing strategy, all flows inside of a cell with side-length a√

m
will

firstly go to the closest base station by one- or multi-hop. Be-
fore the traffic reach the base station, the last hop transmission
is a cellular link and the second to the last hop link is an ad hoc
link. Thus, the potential congestion will happen on those sec-
ond to last hop ad hoc links for the following two reasons: a)
Each base station only has transmission range r and can cover
(touch) a relatively small area (at most 9 adjacent cells with side
length r around the base station.) b) Intuitively, the cell closed
to the base station will have much burden to relay ad hoc traffic
to the base station. Clearly, it is equivalent to study the number
of flows f ′j inside of jth cell but not inside of the communica-
tion disk centered at zi.

Lemma 19: When ns satisfies the condition (7), the variable
maxm

j=1 f ′j is Θ(ns
k
m ) with probability at least 1− 1

n .
Proof: We use the similar proof used in Lemma 14 to

prove this. Assume the set C′ = {Vor(z′j , Z) | 1 ≤ j ≤ m}
be the class of regions (each region is the cell without the
communication disk of the base station) defined by all base-
stations. The ith flow F ′i is said to ”belong to” the jth cell
if some of its terminals is contained inside the j-th cell, but
not inside the communication disk centered at zj , Vor(z′j , Z),
which is denoted as F ′i ∈ Vor(z′j , Z). In addition, the proba-
bility P (A′) that a flow “belongs to” a region A′ is P (A′) =
1−(1−( 1

m− r2

a2 ))k. It is easy to show that, when 0 < k < 10m
9

and m ≥ a2

10r2 we have 9k
20m < P (A′) < 9k

5m . By the same ar-
gument in Lemma 14 and VC-Theorem, we have

∀ε, δ > 0, Pr
(

sup
A′∈C′

∣∣∣∣
∑ns

i=1 I(F ′i ∈ A′)
ns

− P (A′)
∣∣∣∣ ≤ ε

)
> 1− δ,

whenever ns > max
{

8·VC-d(C)
ε

· log 13
ε

, 4
ε
log 2

δ

}
. When we

choose the parameters ε = k
4m , δ = 1

n , and

ns > max

(
32m log m

k
log

52m

k
,
16m

k
log(2n)

)
, (7)

we have

Pr
(

m
sup
i=1

|f ′i − nsP (A′)| ≤ ns
k

4m

)
> 1− 1

n
.

Hence, Pr
(∀i ∈ [1, m], ns

k
5m ≤ f ′i ≤ ns

41k
20m

)
> 1− 1

n .
Based on the preceding lemma, we conclude that
Theorem 20: When k ≤ 10m

9 and ns satisfies the condition
(7), the rate due to the congestion of ad hoc links, with proba-
bility at least 1− 1

n , is O(Wam
nsk ).

Proof: By Lemma 19, for jth cell, the number of ad hoc
flows f ′j which will converge to base station zj , maxm

j=1 f ′j =
θ2

nsk
m with probability at least 1 − 1

n where ns satisfies the
condition (7) and θ2 is some positive constant. In addition, there
are at most 9 cells with side-length r to relay these flows such
that there exist at least one cell has to relay at least θ2

9
nsk
m flows

by Pigeonhole principle. Therefore, by equation 6, the min-
flow capacity cannot exceed Wa·κ

θ2
9

nsk
m

= O(Wam
nsk ) where κ and

θ2 are constants.
2) When k = Ω(m) and k = O(a2

r2 ): We are going to study
an upper bound on the rate achievable due to the congestion of
all ad hoc flows (links) which targets to or from the base station
when k > m. Recall that we use f ′j to denote all the ad hoc
flows which exist in jth cell and as we have shown before, the
expected value of E(k′i,j) ≥ (1− c) k

m ) for some constant c. It
is not difficult to show that ns > E(f ′j) = ns(1 − (1 − ( 1

m −
r2

a2 ))k) > ns(1 − ( 1
e )1−c). Next, we show that the maximum

number of ad hoc flows inside some cell is the constant fraction
of total ns multicast flows by the following Lemma 21.

Lemma 21: When ns satisfies the condition (8), the variable
maxm

j=1 f ′j is also Θ(ns) with probability at least 1− 1
n .

Proof: Similar as the proof for Lemma 19 except that
when k ≥ m we have 1 − ( 1

e )1−c < P (A′) < 1. Based on
VC-Theorem, by choosing parameters ε = ( 1

e )1−c, δ = 1
n , we

know that when

ns > max
(
8e1−c log m log(13e1−c), 4e1−c log(2n)

)
, (8)

Pr
(
supm

i=1 |f ′i − nsP (A)| ≤ ns( 1
e )1−c

)
> 1 − 1

n . Hence,
Pr

(∀i ∈ [1,m], ns(1− 2
e1−c ) ≤ f ′i ≤ ns

)
> 1− 1

n .

Zj

r

r

Fig. 3. The scenario where multiple ordinary nodes are close to the base station
zj in the jth grid cell.

Because all the ad hoc flows inside of a cell will finally go
to or come from the base station based on the Cellular Rout-
ing strategy, the potential congestion will happen when the ad
hoc flows converge into the communication disk of central base
station. See Fig. 3 for illustration. Because the base station zj

has transmission range r, zj’s service range can cover at most
9 adjacent small grids with side length r. In other words, all
the ad hoc flows inside the jth cell have to go through these 9
small cells. From Lemma 18, each cell with side length r can
only have κ concurrent transmitters. Therefore, by Equation 6
and Lemma 21, we have

Theorem 22: With probability at least 1 − 1
n , the minimum

per-flow rate for ns multicast sessions is bounded by O(Wa

ns

where k = Ω(m) and k = O(a2

r2 ). due to the capacity con-
straints of ad hoc links in Ea \ Ed.

3) When k = Ω(a2

r2 ): In the previous subsection, we
showed an upper bound of the multicast capacity of hybrid net-
work when k < θ1 · a2/r2. In this subsection we will present
an upper bound on multicast capacity when k ≥ θ1 · a2/r2.

In [11], Li has proved that when k = Ω(a2

r2 ), the union of
the transmission disks of these k receiver nodes in a multicast
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session will cover at least a constant fraction, say 0 < ρ2 ≤ 1,
of the deployment region. Thus the minimum per-flow capac-
ity of hybrid network due to the congestion of ad hoc link will
approximately be equal to the broadcast capacity, i.e., O(Wa

ns
).

Combined with Theorem 13 and Theorem 17, we have the fol-
lowing theorem:

Theorem 23: When k ≥ θ · a2/r2 for a constant θ, the
minimum per-flow multicast capacity for the hybrid network
is bounded by O(min(WB

ns
, Wc

ns
, Wa

ns
)) with high probability.

IV. LOWER BOUNDS IN MULTICAST CAPACITY BY
CELLULAR ROUTING

In this section, we will derive asymptotically lower bound in
the multicast capacity by presenting a multicast scheme.

A. Implement of Routing Strategies

We proposed the following multicast routing strategy for Cel-
lular Routing in Algorithm 1. As we have explained before,
based on the Cellular Routing strategy, each receiver node will
try to reach or be reached by the closest base station by one- or
multi-hop. Assume set U i = {vi

1, v
i
2, · · · , vi

k} is the union set
of source node vi and its randomly selected k − 1 receivers for
the ith multicast flow, here we assume vi

k = vi for simplicity.
Assume U i

j is the node set containing all receivers of the ith

multicast flow which are falling into the jth cell. Obviously,
U i =

⋃m
j=1 U i

j . We further assume set Zi = {zi
1, z

i
2, · · · , zi

t}
contains all the base stations, each of whose cell contains at
least one receiver of the ith multicast flow. Clearly, 1 ≤ t ≤ k.

Algorithm 1 Cellular Routing strategy for ith multicast flow
Input: U i

1: Compute Zi based on U i, then construct a Minimum Span-
ning Tree (MST) which contains all nodes in Zi (may need
other base station as internal nodes) by backbone links
only. Assume the root of the constructed MST is the base
station (say zs) which falls in the same cell as the source
node vi does. Then do broadcasting from zs to the other
base stations on the MST.

2: for each cell Sj which contains at least one receiver inside
do

3: if Si contains the source node vi, then vi find a shortest
path connecting to zi

4: if Si contains at least one receiver from k − 1 receivers,
construct a BFS tree from the root zi which covers all re-
ceivers inside. This may need other non-receiver nodes
as internal nodes on the BFS tree. Then do broadcasting
from base station zj to all wireless nodes on the con-
structed BFS tree.

5: end for

In the following section, we will analyze the lower bound
multicast capacity where k = O(a2

r2 ) and k = Ω(a2

r2 ) sepa-
rately as we did in the previous sections. When the number
of receivers, plus the source node, k is at most θ1

a2

r2 , we will
construct a multicast tree in each cell Si which spanning ki re-
ceivers inside and thus obtain a multicast forest which spans

all k receivers. Next, we will show the lower bound capacity
achievable by the Algorithm 1 under different cases.

B. When k = O(m)

When the number of receivers of each multicast session satis-
fies k = O(m), we analyze the minimum per-flow lower bound
capacity achievable by backbone links, cellular links and ad hoc
links one by one. For each multicast flow, we use Algorithm 1
to do routing.

We first introduce the lower bound capacity achievable by the
backbone links. We know for each multicast flow, the broadcast
capacity on the MST tree constructed in Algorithm 1 is Θ(WB)
due to the result in [9]. In addition, according to the result (The-
orem 31) in [11]) we know that if there are ns random multicast
flows in a square region with side-length a, there is a sequence
of δ(n) → 0 such that for any square cell s with side-length

a√
m

inside of the square region,

Pr
(

# of flows using s ≤ 3δ3ns
2

√
k a√

m

a

)
= 3δ3ns

2

√
k√
m

where δ3

is some constant. Hence, w.h.p, the number of flows needed
to be relayed by any base station is no more than 3δ3ns

2

√
k√
m

.
Therefore, the lower bound capacity for backbone links is at
least Ω(WB

√
m

ns

√
k

) by Algorithm 1 with a TDMA schedule.
Next, we show the lower bound capacity achievable by cel-

lular links when k = O(m). By Lemma 14, we know for
all m cells, when ns satisfies the condition (4), the variable
maxm

j=1 fj is Θ(ns
k
m ) with probability at least 1 − 1

n . Here,
fj denotes the number of flows inside of jth cell that will pass
through the base station zj . Thus, for any base station, by a
simple TDMA schedule, the achievable lower bound capacity
for cellular links is Ω(Wcm

nsk ).
The remaining part of this subsection, we show the lower

bound capacity achievable by ad hoc links using Cellular Rout-
ing when k = O(m). Recall that after applying Algorithm 1,
each multicast flow will have a BFS tree (down-link direction)
rooted at the base station or a shortest path (up-link direction)
connecting the source node to the base station in each cell if
this cell contains at least one receiver of this flow. Due to the
result in [9], we know that for each flow, the broadcast capacity
achieved by the BFS tree constructed in Algorithm 1 is Θ(Wa)
and it is not difficult to show that the up-link direction short-
est path which connects the source node to the base station can
achieve rate Θ(Wa) as well without considering all other non-
related simultaneously transmission. In addition, by Lemma
19, we know when the total number of multicast flow ns sat-
isfies the condition 7, the maximum number of ad hoc flows
inside of any cell satisfies maxm

j=1 f ′j is Θ(ns
k
m ). Assume

maxm
j=1 f ′j = c8ns

k
m for some constant c8. In other words,

w.h.p, we have at most have c8ns
k
m up-link flows or c8ns

k
m

down-link flows existing in each cell. We simply consider the
down-link flows and up-link flows separately. Clearly, by a
TDMA schedule, the minimum per-flow rate for both up-link
flows and down-link flows can reach at least Wa

c8ns
k
m

. Hence, we
have

Theorem 24: When k = O(m) and ns satisfies the condi-
tion 7, the lower bound capacity for ad hoc links achieved by
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applying Algorithm 1 and TDMA schedule is Ω(Wam
nsk ) With

probability at least 1− 1
n .

C. When k = O(a2/r2) and k = Ω(m)
We still use Algorithm 1 to do routing. The achievable lower

bound capacity for backbone links and cellular links are easy to
get (similar analysis as we did when k = O(m)). The only dif-
ference in this case is that the number of multicast flows which
will go through some base station could be up to but no more
than ns flows due to Lemma 21. Then after applying Algorithm
1 and TDMA scheduling, the achievable lower bound capacity
by backbone links and cellular links are Ω(WB

ns
) and Ω(Wc

ns
) re-

spectively.
The lower bound capacity achievable by all ad hoc links us-

ing Cellular Routing (Algorithm 1) when k = Ω(m) can be
get by the similar proof as we did in subsection IV-B. The dif-
ference is that the possible up-link flows and down-link flows
in each cell could be up to but no more than ns flows (due to
Lemma 21). By the same argument, we have the following the-
orem.

Theorem 25: With probability at least 1 − 1
n , the minimum

per-flow rate for ad hoc links achievable by applying Algorithm
1 is Ω(Wa

ns
) when k = Ω(m) and k = O(a2

r2 ).

D. When k = Ω(a2

r2 )
In this case, we have proved that the upper bound on the total

multicast capacity is only Θ(W ). Obviously, the total multicast
capacity for hybrid network is at least the lower bound of the
capacity for broadcast no matter we use either Cellular Routing
or Ad Hoc Routing. In [9], Keshavarz-Haddad et al.. present a
broadcast scheme to achieve capacity Θ(Wa). Thus, we have

Theorem 26: The minimum per-flow multicast capacity
achievable by all ad hoc links is at least c7

Wa

ns
, where c7 ≤ 1

∆+1
is a constant.
Obviously, the minimum per-flow multicast capacity achievable
by backbone links and cellular links are Ω(WB

ns
) and Ω(Wc

ns
) by

the similar analysis we used in IV-C.

V. CAPACITY BOUND FOR HYBRID ROUTING

In this section, we will give asymptotic upper bounds for any
Hybrid Routing strategy. The surprising implication of this re-
sults is that if we choose the one who can gain larger capacity
between Ad Hoc Routing and Cellular Routing as our routing
strategy, the attainable capacity is the same order of the upper
bounds of any Hybrid Routing strategy. It implies that the up-
per bounds are tight and our routing strategy is asymptotically
optimal.

The aforementioned result is based on the following obser-
vation. First, when Hybrid Routing is applied, any link in G
could be used, in other words, for any multicast flow fi, the
corresponding (resultant) multicast tree Ti for Hybrid Routing
may contain at most three types of links, the links in Ea, EB or
Ec. Assume T i

a = Ea

⋂
Ti, T i

B = EB

⋂
Ti and T i

c = Ec

⋂
Ti,

i.e., T i
a (T i

B and T i
c ) contains all ad hoc links (backbone links

and cellular links) used by tree Ti. Furthermore, we use sets Ta,
TB and Tc to denote the ”union” of all ad hoc links, backbone

links and cellular links used by all ns multicast trees. Notice,
here the reason that we quote the word union is because the
link which is belong to different multicast trees will be counted
multiple times in Ta, TB and Tc, i.e., if we use |S| to denote the
summation of the ’ length of all links belong to link set S, then
|Ta| =

∑ns

i=1 |T i
a|, |TB | =

∑ns

i=1 |T i
B |, |Tc| =

∑ns

i=1 |T i
c |.

A. When k = O(m)
Instead of studying the upper bound for any giving routing

strategy directly, we may view this problem in a alternative
way: For any given routing strategy, if we can always construct
a new routing tree based on it such that the upper bound of mul-
ticast capacity by using our new routing strategy is no smaller
than the original one, then the upper bounds for the new routing
strategy must be one of the valid upper bounds for the original
routing strategy. Next, we first give a illustration of our con-
struction method, then a upper bound for the new constructed
routing tree will be derived, finally, we use the above upper
bounds as one desired upper bounds. In the following contents,
we will use Di to denote a set of base stations used by flow i
such that each base station in this set has at least one cellular
link adjacent to it.

We first give a illustration of our construction approach based
on the given routing strategy Ti for flow i as follows:

1) Use the minimum length tree spanning Di to replace T i
B ,

we use T i
B
′ to denote new tree.

2) Adjust the links contained in T i
c and T i

a such that there are
no more than 19 cellular links on the resultant tree after
construction to each base station, denoting the new trees
(forests) by T i

c
′ and T i

a
′ respectively .

Next we will explain and analyze these stages in details, in
the following contents, we will use λi

a, λi
a
′, λi

B , λi
B
′, λi

c and
λi

c
′ to denote the achievable data rate on T i

a, T i
a
′, T i

B , T i
B
′, T i

c

and T i
c
′ respectively.

First, we have |T i
B
′| ≤ |T i

B |, it is straight forward from the
fact that T i

B
′ is a minimum length tree spanning Di. Second,

we have λi
c
′ ≥ c11λ

i
c for some constant c11, this is based on

the following observation: Due to the results in [23], we know
we can find at most 19 nodes as ”connectors”(one hop away
from the base station using cellular links) which can connect to
a number of wireless nodes (say ”dominators”, two hop away
from the base station) such that these dominators can cover all
nodes which are two hop away from base station. Next, we let
all receivers (exiting in the communication disk of the base sta-
tion) which are not selected to the 19 base stations connect to
the closest connector. On the one hand, for down-link from the
base station, our construction will not decrease the cellular link
rate. On the other hand, for upper link, we know that only con-
stant number of wireless node (in our case at most 4κ nodes)
can transmit at the same time such that each of 19 connectors
will have addition burden at most 4κ times than before the con-
struction. Obviously, comparing with the original scheduling
period T , after construction, 4κT time is enough for a schedul-
ing period. Hence, we have λi

c
′ ≥ c11λ

i
c for some constant

c11. See Fig. 4 for illustration. Third, λi
a
′ ≥ c10λ

i
a for some

constant c10. We guarantee this point by the following reser-
vation. After we get connectors during the second step (after
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adjust cellular links). For some nodes which are two hop away
from the base station in the routing tree before our construction,
they could lost the connection to the base station when their re-
laying nodes to the base station are not selected as ”connectors”
in the second step. If so, we simply let these nodes connect to
the closest ”dominator”. See Fig. 4 for illustration. Let us
take u as an example. First, for each internal node u (”domi-
nator”) closed to the base station. After reconstruction, some
other nodes (who lost connection to the base station) will turn
to u and ask u to help to relay traffic to the base station. How-
ever, these nodes must satisfy two conditions. (1). They are in
the communication range of u. (2). They can transmit simulta-
neously based on the original routing and scheduling strategy.
Clearly, u can at most cover 4 closest square region with side
length r and for each square cell with side length r, there are
at most κ nodes can transmit simultaneously as we have proved
before. Hence, we can guarantee, there are at most 4κ nodes
will turn to u in one time slot after construction, in other words,
after construction, node u can achieve at least 1

4κ rate of the
original rate before construction by a TDMA scheduling, i.e.,
λi

a
′ ≥ 1

4κλi
a.

These three important observations guarantee that the upper
bounds for the new constructed routing strategy derived from
the following analysis are also valid upper bounds for the orig-
inal routing strategy. See Fig. 4 for illustration.
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(a) Before reconstruction. (b) After reconstruction.

Fig. 4. Part of the Hybrid Network which is near the base station. The dash
line from red nodes to u are new added ”burden” for node u. zj is the base
station for jth cell. Black nodes denote internal nodes. Red nodes are nodes
who will changed their routing strategy after construction. Blue node is one of
receivers which is in the communication disk of the base station zj .

From now on, we focus on studying the upper bounds for
the new constructed routing tree: Due to the result in [11], we
know that the total length of internal edges of ns multicast trees
spanning k receivers satisfies∑ns

i=1 |T ′i | =
∑ns

i=1 |T i
a
′| +

∑ns

i=1 |T i
B
′| +

∑ns

i=1 |T i
c
′| =

|T ′a|+ |T ′B |+ |T ′c| ≥ c9ns · a ·
√

k
for some constant c9. Then we discuss the following two

cases respectively:
(1) If |T ′a| ≥ |T ′B | + |T ′c|: Since the total length of T ′a, T ′B

and T ′c is no smaller than c9ns · a ·
√

k, we have |T ′a| ≥ 1
2c9ns ·

a ·
√

k. As shown in [11], the total area covered by all of these
ad hoc trees is at least η1 · ns · a ·

√
k · r for some constant

η1, the number of nodes covered by all ad hoc trees is at least
η1ns ·a

√
kr× n

a2 with high probability. Based on the data copy
argument, it follows that: λi

a ≤ c10λ
i
a
′ ≤ c10Waa

η1ns

√
kr

.

(2) If |T ′a| < |T ′B |+|T ′c|: We have |T ′B |+|T ′c| ≥ 1
2c9ns·a·

√
k

According our construction approach, we know that for any

routing tree T ′i , each base station has at most 19 adjacent cellu-
lar links, then together with the fact that the length of each cel-
lular link is at most r, we have the following inequality: |T ′c| ≤
|T ′B |

a/
√

m
× 19 × r. Since m = O(a2

r2 ), we have |T ′c| ≤ |T ′B |/19,

it follows that |T ′B | ≥ c3nsa
√

k for some constant c3. This
implies that there is at least one base station which is used by
at least c3nsa

√
a√

m
flows. Due to the congestion on this base sta-

tion, we gain the following upper bound: λi
B ≤ λi

B
′ ≤ WB

√
m

c3ns

√
k

.

Furthermore, because T i
B
′ spans |Di| base stations, we have

|T i
B
′| ≤ 2

√
2
√
|Di|a according to the results in [11]. It follows

that c3nsa
√

k ≤ |T ′B | =
∑ns

i=1 |T i
B
′| ≤ ∑ns

i=1 2
√

2
√
|Di|a.

Together with the fact that (
∑

ap
i )

1
p (

∑
bq
i )

1
q ≥ ∑

aibi, we
have the following inequality:

ns∑
i=1

|Di| ≥ η2(

∑ns
i=1

√
|Di|√

ns
)2 ≥ (

η3ns

√
k√

ns
)2 = η2

3nsk

We conclude that there is at least one based station which is
used by at least η2

3nsk
m flows to connect wireless nodes directly.

Due to the congestion on both ad hoc links and cellular links
accessing the base station, we further have the following two
upper bounds for this case:

{
λi

a ≤ c10λ
i
a
′ ≤ Wa

η2
3nsk/m

= Wam
η2
3nsk

λi
c ≤ c11λ

i
c
′ ≤ Wc

η2
3nsk/m

= Wcm
η2
3nsk

(9)

It concludes that the upper bound in this case is

O(min{WB
√

m

ns

√
k

,
Wam

nsk
,
Wbm

nsk
})

The final upper bound is gained by choosing the maximum
one between case 1) and case 2):

Lemma 27: The capacity bound for any Hybrid Routing
strategy is

O(max

[
min{WB

√
m

ns

√
k

,
Wam

nsk
,
Wbm

nsk
}, Waa

ns

√
kr

)

]
)

when k = Ω(m) and m = O(a2

r2 ).
It implies that when k = Ω(m), its asymptotic optimal to

choose the larger one between Ad Hoc Routing and Cellular
Routing as our routing strategy based on the calculated lower
bound for each routing strategy.

B. When k = Ω(m) and k = O(a2

r2 )

Same as the proof for the previous case, we first construct
a new routing tree based on any given routing strategy. Since
the upper bound for the new constructed routing tree can also
be considered as a valid upper bound for the original routing
strategy, we will focus on studying the upper bound for the new
constructed routing tree.

Similarly, we have two possible cases need to address:
(1) If |T ′a| ≥ |T ′B | + |T ′c|: The proof is exactly same as the

one shown before for the same case, we gain following upper
bound: λi

a ≤ c10λ
i
a
′ ≤ c10Waa

η1ns

√
kr

.
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(2) If |T ′a| < |T ′B | + |T ′c|: We will prove that this case is
impossible when k = Ω(m). Since T i

B
′ is a tree spanning

at most m base stations using only backbone links, we get
|T ′B | ≤ ns(m − 1) · a/

√
m < ns

√
ma, we also know that

|T ′c| ≤ 19nsmr because each base station has at most 19 adja-
cent cellular links. We immediately have when k > Ω(m), it is
impossible that |T ′B | + |T ′c| > 1

2c9ns · a ·
√

k, in other words,
|T ′a| ≮ |T ′B |+ |T ′c|.

We finally have the following lemma:
Lemma 28: The capacity bound for any Hybrid Routing

strategy is O( Waa

ns

√
kr

) when k = Ω(m) , k = O(a2

r2 ) and

m = O(a2

r2 ).
This result implies that when k = Ω(m) and k = O(a2

r2 ),
using Ad Hoc Routing is already asymptotic optimum.

C. When k = Ω(a2

r2 )

Again, because when k = Ω(a2

r2 ), the union of the transmis-
sion disks of these k receiver nodes in a multicast session will
cover at least a constant fraction, say 0 < ρ2 ≤ 1, of the de-
ployment region with high probability when k = Ω(a2

r2 ). Then
based on the data copy argument stated in [12], we have the
following lemma:

Lemma 29: The capacity bounds for any Hybrid Routing
strategy is O(Wa

ns
) when k = Ω(a2

r2 ), m = O(a2

r2 ).
It is not hard to find that its asymptotic optimum to choose

Ad Hoc Routing as our routing strategy when k = O(a2

r2 ).

D. Put It All Together

By summarizing these results, we have
Theorem 30: The upper bounds of the multicast capacity for

any Hybrid Routing strategy is




O(max
[
min

(
WB

√
m

ns
√

k
, Wbm

nsk
, Wam

nsk

)
, Wa

ns
√

k

a
r

]
) if k = O(m)

O(a
r
· Wa

ns
√

k
) if k = Ω(m), k = O(a2

r2 )

O(Wa
ns

) if k = Ω( a2

r2 )
(10)

We then give a general routing strategy that can achieve the
asymptotic upper bound for hybrid network Nn,m,a:
• If k = O(m), we choose the one who can gain larger data

rate between Ad Hoc Routing strategy and Cellular Rout-
ing strategy.

• If k = Ω(m), we use Ad Hoc Routing strategy.
Then together with the lower bound for Ad Hoc Routing strat-

egy and Cellular Routing strategy, we get the main theorem 2.

VI. LITERATURE REVIEW

Gupta and Kumar [6] studied the asymptotic unicast capacity
of a multi-hop wireless networks. When each wireless node is
capable of transmitting at W -bps using a constant transmission
range, the throughput achievable by each node for a randomly
chosen destination is Θ( W√

n log n
) bits per second. Grossglauser

and Tse recently showed that the unicast capacity can be im-
proved by the mobility of wireless nodes regardless of delay.
Gastpar and Vetterli studied the capacity of random networks

using relay in [1]. Chuah et al. [2] studied the capacity scal-
ing in MIMO wireless systems under correlated fading. The
capacity scaling in delay tolerant networks with heterogeneous
mobile devices was studied by Garetto et al. [3]. Keshavarz-
Haddad et al. studied the bounds for the capacity of wireless
networks imposed by topology and demand in [8]. Their tech-
niques can be used to study unicast, multicast and broadcast
capacity.

Broadcast capacity of both arbitrary networks and random
networks has been studied in [9, 14]. Keshavarz-Haddad et al.
[4] studied the broadcast capacity with dynamic power adjust-
ment for physical interference model.

Multicast capacity was also studied in the literature. Jacquet
and Rodolakis [5] studied the scaling properties of multicast
for random wireless networks. They claimed that the maximum
rate at which a node can transmit multicast data is O( W√

kn log n
).

Recently, rigorous proofs of the multicast capacity were given
in [12, 15]. Li et al. [12] studied asymptotic multicast capacity
for a large-scale random wireless networks. They showed the
total multicast capacity is Θ(

√
n

log n · W√
k
) when k = O( n

log n )

and when k = Ω( n
log n ), the total multicast capacity is equal

to the broadcast capacity, i.e., Θ(W ). Li et al. [18] studied
the lower bound of multicast capacity for large scale wireless
networks under Gaussian Channel model by presenting some
novel methods. This result was recently improved by Wang et
al. [24]. Hu et al. [10] recently studied the capacity and delay
tradeoffs of multicast capacity when the mobility model is i.i.d.
They show that mobility and redundancy do improve the multi-
cast capacity when the number of receivers k per flow is small.
Lee et al. [20] studied the scalability of DTN multicast rout-
ing. They propose RelayCast, a routing scheme that extends
the two-hop relay algorithm in [7] in the multicast scenario.

Liu et al. [17] studied the unicast capacity of hybrid net-
work (a wireless ad hoc network with infrastructure). They
essentially studied the unicast capacity of hybrid wireless net-
works under the one-dimensional network model and two-
dimensional strip model respectively. Kozat and Tassiulas [16]
also studied the unicast capacity of ad hoc networks with a ran-
dom flat topology under the present support of an infinite ca-
pacity infrastructure network. They showed that the per source
node capacity of Θ(W/ log n). In [19], Mao et al., studied the
multicast capacity for hybrid networks by using Cellular Rout-
ing strategy.

VII. CONCLUSIONS

In this paper, we essentially studied the multicast capacity
that can be achieved by hybrid networks with randomly dis-
tributed wireless nodes and regularly distributed base stations.
We derived analytical upper bounds and lower bounds on mul-
ticast capacity of hybrid networks.

Observe that all our results are proved when the deployment
region is a square with side-length a and the transmission range
of all nodes is uniform with value r. It is not difficult to show
that all our results still apply when the deployment region is
a fixed square with side length a = 1, while the transmission

range is selected appropriately, i.e., r = Θ(
√

log n
c·n ) for some
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constant c. In addition, our results still hold when r = 1 while
the deployment region has a bounded aspect ratio such as a disk
or a rectangular area when ratio width/height is bounded.

A number of interesting questions remain challenging. The
first is to study the capacity when other interference models
are applied such as physical interference model and Gaussian
channel model. The second is to investigate the capacity re-
gions when opportunistic spectrum usage is adopted by some
wireless terminals. The last, but not the least, is to study the
capacity region for delay tolerant networks where the wireless
terminals are mobile (following some mobility model) and we
want to study the achievable capacity when we can tolerate cer-
tain delay.
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