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Abstract— In this paper, we study the dynamic node activation
schedule for the utility based coverage problem in solar-powered
wireless sensor networks. We assume that the utility achieved
by a WSN for coverage service is a submodular function over
the set of sensors that will provide the service. We first present
an integer programming formulation with submodular objective
functions. We then present an efficient simple greedy hill-climbing
algorithm such that the achieved average utility of the computed
schedule is at least 1/2 times that achieved by the optimal
schedule. To the best of our knowledge, this is the first polynomial
time algorithm that can ensure a good constant approximation
of the achieved utility for multi-target coverage problem. We
conduct extensive evaluations to study the performances of our
proposed aggregation scheduling algorithm on real testbed. Our
evaluation results corroborate our theoretical analysis.

Index Terms—Wireless sensor networks, multi-target coverage,
rechargeable battery, scheduling.

I. INTRODUCTION

One of the key challenges in deploying wireless sensor
networks is to increase the lifetime of sensor networks, since
sensors are often powered by batteries only. There are only
two different ways to increase the lifetime of sensor networks:
(1) reducing the expenditure rate of energy, and (2) increasing
the energy supply of batteries, by potentially harvesting the
environmental energy. There are several options for controlling
the power consumption of a sensor which directly affect its
performance. If the sensors allow dynamic voltage scaling, its
power consumption may be reduced by reducing its operating
speed. Radio is a major energy consumer in embedded sensors,
and reducing its transmission range may be helpful in reducing
power required. This may of course not be always possible
depending on network connectivity constraints. A third option
is to switch the device between active and sleep modes. In this
paper, we consider a system of sensor nodes that are highly
energy-constrained and capable of harvesting environmental
energy to support the activities of sensor nodes. The basic
operation in such a wireless sensor system is to provide certain
coverage service, and the systematic gathering of sensed data
to be eventually transmitted to a base station for processing.
We consider applications where sensors are deployed in a
forest to monitor the environmental changes and we need to
collect environment information (e.g. temperature, humidity
and optical intensity) from all sensors to base station. The
key challenge in such systems is dynamic node activation to
maximize the system utility, such as the average coverage ser-
vice. The benefits of using rechargeable batteries by harvesting
environmental energy to prolong sensor network lifetime have
been well recognized [1]–[11]. To this end, a lot of research

have been directed towards node activity scheduling in the
context of rechargeable sensor networks [1]–[11]. Although
the potential benefit of using rechargeable sensors to prolong
sensor network lifetime is significant, the theoretical difficulty
of this problem is enormous. Several key components are
tightly coupled in this problem.

The first challenge is to schedule the node activations (ac-
tive, or idle) such that the performance of the system is maxi-
mized when sensor nodes are able to harvest the environmental
energy. Previous studies assumed that the harvested energy
and the energy expenditure follow some random distributions.
In this work, we assume that the energy harvested can be
more accurately estimated in a short time scale (such as 2
hours), and the energy expenditure when a node is active is
often a fixed value, independent of the timeslots. Our extensive
testbeds measurements show that the energy expenditure of
a node only has a small fluctuation when a node is active
(for either idle listening, packets receiving, and/or packets
transmitting).

Utility of system: For a wireless sensor network, we will
achieve different quality of service if different sets of sensors
are set to be active at a timeslot. For different application
scenarios, the same set of activated sensors will result in
different utilities also. In this work, we assume a general
utility model: given a set 𝑆 of sensors that are activated
at a timeslot 𝑡, the utility achieved by 𝑆 is 𝑈(𝑆), where
𝑈() is a submodular, non-decreasing, positive function. This
assumption on utility function is general enough to capture the
majority applications [6].

Energy harvesting estimation: Another key challenge in
studying a WSN with rechargeable batteries is to estimate
the energy to be harvested in the near future. Let 𝜇𝑑 and
𝜇𝑟 denote discharging and recharging speed for each sensor
respectively. We assume that both 𝜇𝑑 and 𝜇𝑟 are predictable
within short time duration. Although these two parameters may
vary depending on different weather condition, our extensive
experiments show that within a relatively small period, e.g.,
2 hours, they will not change significantly in sunny weather.
Please refer to Section VI for details. In order to suit long-term
monitoring case, e.g. one week, we can dynamically choose 𝜇𝑑

and 𝜇𝑟 according to different weather condition. Throughout
this paper, we assume the working time ℒ of the system is
one day(daytime), e.g. ℒ = 12 hours. Then we try to design a
dynamic activation scheme for sensors to maximize the utility
in ℒ.

The main contributions of this paper are as follows.
1) Near optimal node activation scheduling: We study the
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node activation scheduling for solar-powered sensor network
where each sensor has identical discharging and recharging
speed. We propose a linear programming based solution for
arbitrary submodular objective functions. Then we design a
simple and effective greedy hill-climbing activation schedule
scheme, for which we theoretically proved that the utility
is at least 1/2 of the optimal schedule. To the best of our
knowledge, this is the first polynomial time algorithm that can
ensure a good constant approximation for the achieved utility
for multi-target coverage problem.

Fig. 1. (a) TelosB nodes with solar charging cells; (b) Our TestBed.

2) Testbed evaluations: We conducted extensive simulations
and also testbed verifications of our algorithm and protocols.
Figure 1 (a) is the solar powered sensor used in our evaluation,
and Figure 1 (b) illustrates the testbed deployed on top of the
building. We deploy 100 TelosB nodes with solar charging
cells.

TABLE I
NOTATIONS USED IN PAPER

Symbol Meaning

O𝑖 Target
𝑇𝑑 Discharge time of the sensor node
𝑇𝑟 Recharge time of the sensor node
𝑇 Charging period of the system which is defined as 𝑇𝑟 + 𝑇𝑑

ℒ Working time of the system which is a multiple of 𝑇
𝜌 Ratio between 𝑇𝑟 and 𝑇𝑑

𝑈() The overall utility function
𝑈𝑖() The utility gathered by covering target O𝑖

II. PROBLEM FORMULATION

A. Network Model

Assume that there are 𝑛 sensors 𝑉 = {𝑣1, 𝑣2, ⋅ ⋅ ⋅ , 𝑣𝑛}
distributed in a two-dimensional region. For simplicity of
notations, we also assume that the sensor node 𝑣𝑖 is at position
𝑣𝑖. We assume that the operation power of every sensor
is fixed. Thus, the region 𝑅(𝑣𝑖) that a sensor node 𝑣𝑖 can
cover (monitor) is fixed. For simplicity, we assume that the
monitored region 𝑅(𝑣𝑖) is known by certain measurement.
Note that different sensors can be located at different points in
the overall physical space of interest, and the coverage patterns
of different nodes can be different.

B. Recharging and Discharging Model

We consider a discharge-recharge model similar as the one
used in [1]. Specially, we assume each sensor is energy-
constraint and rechargeable. And the time is divided into
equal-sized slots (e.g., each time-slot is of 15 minutes) and
all sensors have synchronized clocks. Assume that the time-
slots start from time 0. Sensors could be turned on and off
at different time slots. Each sensor could be in one of three
states at each time instant: active, passive and ready.In the
active state, the sensor is powered on and begin sensing,
communicating or computing and hence consumes its energy
gradually. Once the energy of a sensor node is used up, it
will enter the passive state and be recharged without any other
operations. When its battery is fully charged, the sensor enters
the ready state. Sensors in ready state do not participate in
sensing and other operations until it is activated. Even though
the sensors under ready state do not actively sense the target,
they still need to wake up periodically in order to keep track
of the system state. However, the energy discharge rate speed
in the ready state is much slower than in the active state. Thus,
we assume that the energy level of a sensor in the ready state
does not change.

Remember that 𝜇𝑑 and 𝜇𝑟 denote discharging and recharg-
ing speed respectively. In this work, we study the case where
all the sensors are homogeneous, that is both 𝜇𝑑 and 𝜇𝑟 are
same for each sensor at the same time. For completeness
of this work, we also briefly discuss the random charging
model at last. For different weather conditions, although we
may have different discharging/recharing pattern, our extensive
experiments show that within a relatively small period, e.g., 2
hours in day time under sunny weather, those two parameters
will not change significantly. When the weather condition
changes significantly, e.g., during one week, we may choose
different charging pattern accordingly. Throughout this paper,
we assume the working time ℒ of the system is half day,
e.g. ℒ = 12 hours (since the sensor can only be recharged at
daytime). Then the objective is to design a dynamic activation
scheme for sensors in order to maximize the utility in ℒ.
The battery capacity of each sensor is denoted as 𝐵 and the
energy can be depleted to zero. Then we define the recharge
time as the time spent on the passive state, and discharge
time as the time spent on the active state. In particular,
the recharge time and discharge time can be formulated as
𝑇𝑟 = 𝐵/𝜇𝑑 and 𝑇𝑑 = 𝐵/𝜇𝑟. Based on the definition listed
above, we further define the charging period 𝑇 for the system
as 𝑇 = 𝑇𝑟 + 𝑇𝑑. Let 𝜌 = 𝑇𝑟/𝑇𝑑 denote the ratio between
recharge and discharge time. For simplicity of exposition, if
𝜌 ≥ 1 (or 𝜌 < 1), we assume 𝜌 (or 1/𝜌) is an integer
without affecting the generality of our results. When 𝜌 > 1(or
𝜌 ≤ 1), if we scale one time-slot to 𝑇𝑑(or 𝑇𝑟), each period
will contain 1+ 𝜌 (or 1+ 1/𝜌) time-slots, e.g., 𝑇 = 𝜌+1 (or
𝑇 = 1+1/𝜌). Please see Figure. 2 for illustration. As verified
by our experiments, 𝜌 almost remains at the same level within
2 hours under sunny weather. Assume that the time-slot size is
15 minutes and 𝜌 = 3. Then 𝑇 = (3+ 1)× 15 = 60 minutes,
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ℒ = 12 × 60 = 720 minutes. Throughout this paper, we will
use 𝑇 and 𝜌 + 1 (or 1/𝜌 + 1) interchangeably to denote the
time-slots contained in one period. And we assume the overall
working time of the system is a multiple of 𝑇 , e.g. ℒ = 𝛼𝑇 for
some integer 𝛼 ≥ 1. Clearly, each sensor can only be activated
one time-slot in one period when 𝜌 ≥ 1. Then depending on
different values of 𝜌, we have two cases to study: 𝜌 > 1 and
𝜌 ≤ 1.

Fig. 2. (a) Illustration of one period when 𝜌 > 1; (b)𝜌 ≤ 1.

C. Utility Functions

Sensor networks are often deployed to monitor a given set
of 𝑚 targets 𝒪 = {O1, O2, ⋅ ⋅ ⋅ , O𝑚} in a region or monitor
the whole region Ω. In this paper, we use 𝑉 (O𝑖) to denote the
subset of sensors in 𝑉 that can monitor the target O𝑖, i.e., O𝑖 is
inside the monitoring region 𝑅(𝑣𝑗) for each 𝑣𝑗 ∈ 𝑉 (O𝑖). De-
pending on the applications, different subset of sensors being
activated will provide different service qualities for the system.
We assume that the performance of the wireless sensor system
is characterized by a continuous, non-decreasing, submodular
function. More specifically, when WSN is used to monitor the
set 𝒪 of targets, 𝑈𝑖(𝑆) represents the utility gathered from the
target O𝑖 if the set 𝑆 of sensors are activated. For example, for
each sensor 𝑣𝑗 that can monitor O𝑖, let 𝑝𝑗 be the probability
that the sensor 𝑣𝑗 will detect a certain event happened at target
O𝑖. Then the utility 𝑈𝑖(𝑆) = 1 − ∏

𝑣𝑗∈𝑆(1 − 𝑝𝑗) denotes
the probability that the event happened at the target O𝑖 will
be detected by these 𝑆 sensors. We always assume that, for
every target O𝑖, 𝑈𝑖() is non-decreasing submodular function.
Specially, it satisfies the follow conditions:

⎧⎨
⎩

𝑈𝑖(∅) = 0,

𝑈𝑖(𝑆1) ≤ 𝑈𝑖(𝑆2), if 𝑆1 ⊆ 𝑆2, and

𝑈𝑖(𝑆1 ∪ 𝐴)− 𝑈𝑖(𝑆1) ≥ 𝑈𝑖(𝑆2 ∪ 𝐴)− 𝑈𝑖(𝑆2), 𝑆1 ⊆ 𝑆2

Note that if more sensors are activated, we may gain
more utility. However, if the number of active sensors is
already huge, due to the diminishing returns property of the
submodular utility function, the incremental utility may be tiny
by adding new active sensors at the same time-slot. Thus, we
may want to let each sensor active evenly as intuition.

The overall utility achieved by the wireless sensor net-
work is 𝑓(𝑈1(), 𝑈2(), ⋅ ⋅ ⋅ , 𝑈𝑚()). Here we assume that the
function 𝑓() is symmetric, e.g., 𝑓(𝑈1(), 𝑈2(), ⋅ ⋅ ⋅ , 𝑈𝑚(𝑥)) =∑𝑚

𝑖=1 𝑈𝑖(). In the rest of paper, when WSN is used to monitor
a set of static targets, we always consider the overall utility
function as

𝑚∑
𝑖=1

𝑈𝑖(). (1)

Observe that here function 𝑈𝑖() may be different for different
targets.

When the sensors are used to monitor a given region Ω,
we cannot simply use the number of activated sensors in
the system to characterize the utility of the system. One
possible way is to use the total area of regions that can be
monitored by all activated sensors. In certain cases, we may
have different monitoring preferences over different places in
Ω. To capture this, we assume that the region Ω is divided into
polynomial number of subregions defined by all monitored
regions 𝑅(𝑣𝑖), for 𝑣𝑖 ∈ 𝑉 . For example, when regions
𝑅(𝑣𝑖), 𝑣𝑖 ∈ 𝑉 , are all convex, all such monitored regions
𝑅(𝑣𝑖) (𝑣𝑖 ∈ 𝑉 ) will subdivide the region Ω into at most 𝑛2

subregions, where 𝑛 is the number of sensors in the system.
See Figure 3 for illustration of subregions. For simplicity, let
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Fig. 3. (a) Here the red hexagons are targets to be monitored by a WSN.
(b) WSN is used to monitor a region Ω. The region Ω (denoted by a
large rectangle area) is subdivided into a number of subregions (38 for this
example).

𝒜 = {𝐴1, 𝐴2, ⋅ ⋅ ⋅ , 𝐴𝑏} be the set of 𝑏 subregions produced,
where 𝑏 is bounded by a polynomial of 𝑛. Then, given a set
of activated sensors 𝑆(𝑡) at time slot 𝑡, we know the subset of
regions to be covered by this set of activated sensors 𝑆. The
utility achieved by 𝑆 is then characterized by a utility function

𝑈(𝑆) =
𝑏∑

𝑖=1

𝐼𝑖(𝑆) ⋅ 𝑤𝑖 ⋅ ∣𝐴𝑖∣, (2)

where 𝐼𝑖(𝑆) = 1 if the subregion 𝐴𝑖 is contained inside
the monitored region of some sensors in 𝑆, and 𝐼𝑖(𝑆) = 0
otherwise. Here 𝑤𝑖 > 0 captures the preferences over different
subregions, and ∣𝐴𝑖∣ is the area of the subregion 𝐴𝑖. Note
that the coverage areas of different sensors will typically be
different. This implies that at any time, utilities in different
parts of the area of interest can differ significantly from one
another. Recall that we divided the time into time-slots and
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at the beginning of every time-slot 𝑡, we will make decision
on which sensors to be activated during time-slot 𝑡. Let
variable 𝑥(𝑣𝑖, 𝑡) ∈ {0, 1} indicate whether the sensor node
𝑣𝑖 is activated or not at time-slot 𝑡, e.g., we set 𝑥(𝑣𝑖, 𝑡) = 1
when node 𝑣𝑖 is under active state at time slot 𝑡; otherwise,
𝑥(𝑣𝑖, 𝑡) = 0.

D. Problem Statement

In this paper, we essentially will study how to dynamically
activate the sensor nodes to maximize the utility achieved by
the WSN. Assume that the sensor network is expected to
work for ℒ time-slots, where ℒ is a multiple of 𝑇 . Recall
that we assumed that the energy recharging is periodic with
a period 𝑇 = 𝜌 + 1 time-slots when 𝜌 ≥ 1. For example, we
can estimate the energy harvesting pattern for a duration of 2
hours.

Most of previous works study the coverage problem under
identical coverage model where all sensors can and will cover
the same target. However, a WSN is not deployed to monitor
only one target typically; it is often used to monitor a set of
targets 𝒪 distributed in a region Ω. Moreover, not all sensors
can monitor any single target O𝑖 ∈ 𝒪. In this case, the utility
of the WSN at a time-slot 𝑡 is

∑𝑚
𝑖=1 𝑈𝑖(𝑆𝑋(O𝑖, 𝑡)), where

𝑆𝑋(O𝑖, 𝑡) is the set of activated sensors that can monitor the
target O𝑖 at times-lot 𝑡 under a dynamic sensor activation
policy 𝑋 . Thus, the average utility of the WSN in its working
time ℒ is

𝑈𝑋 =

ℒ−1∑
𝑡=0

𝑚∑
𝑖=1

𝑈𝑖(𝑆𝑋(O𝑖, 𝑡)).

Here we want to find a dynamic sensor activation policy 𝑋 that
will maximize the overall utility 𝑈𝑋 . Note that the identical
coverage model is a special case of the model studied in this
paper.

III. HARDNESS OF THE PROBLEM

In the following theorem, we prove that the dynamic acti-
vation schedule problem is NP-Hard.

Theorem 3.1: The dynamic activation schedule problem is
NP-Hard.

Proof: Here we only need to consider a simple case where
there is only one target which can be covered by all sensors,
the working time is one period, e.g., ℒ = 𝑇 . Assume 𝜌 ≥ 1,
we next prove that even for this simplest case, it is already NP-
Hard which implies the NP-Hardness for the original problem.
In this case, since each sensor can only be activated one time-
slot, the objective becomes finding a way to allocate all sensors
to 𝑇 time slots such that the utility is maximized. We will
reduce it from the Subset-Sum Problem: Given a set of integers
𝐼1, ⋅ ⋅ ⋅ , 𝐼𝑛, determine whether there exists a subset of numbers
from 𝐴 such that the sum of those numbers

∑
𝐼𝑖∈𝐴𝑐 𝐼𝑖 =∑

𝐼𝑖∈𝐴 𝐼𝑖/2.
Then given an input as listed above, we construct a schedul-

ing problem as follows: In the constructed scheduling problem,
we have 𝑛 sensors, and the period 𝑇 is set to 2, e.g. 𝜌 = 1.

We further define the utility function as:

𝑈(𝑆) = log(1 +
∑
𝑣𝑖∈𝑆

𝐼𝑖)

The utility function is clearly a non-decreasing submodular
function. Thus based on the “diminishing returns” property
of the submodular function, it can be easily proved that
the utility gained by the optimum solution can achieve 2 ×(
log(1 +

∑
𝑖∈𝑆 𝐼𝑖)/2)

)
if and only if there exists a subset 𝐴𝑐

of 𝐴 such that
∑

𝐼𝑖∈𝐴𝑐 𝐼𝑖 =
∑

𝐼𝑖∈𝐴 𝐼𝑖/2. This finishes the
proof.

While the NP-hardness established in the previous theorem
brought us negative news, the approximation hardness of the
same problem should bring us good news. In the following
sections, we propose a number scheduling schemes to tackle
this problem.

IV. SCHEDULING SCHEME

A. 𝜌 > 1

We first study the case when the discharge time is shorter
than recharge time. As mentioned before, we normalize one
time-slot to 𝑇𝑑 in this case. As observed in our experiment, this
case is more likely to happen in realistic sensing environment.

1) Linear Programming Solution: We first formulate the
node activation problem as an integer programming as follows.
Let 𝑥(𝑣𝑖, 𝑡) ∈ {0, 1} denote whether sensor node 𝑣𝑖 is
activated at time slot 𝑡. And let 𝑎𝑖𝑗 be a indicator which is
defined as follows:

𝑎𝑖𝑗 =

{
1 if sensor 𝑣𝑖 cover target O𝑗

0 else.

Since 𝜌 > 1, each node can work for at most 1 time slot
every 𝑇 time slots in order to keep the residual energy in
the node more than zero. In order to determine the optimal
activating schedule for each node to maximize the overall
network utility, we solve the 𝑥(𝑣𝑖, 𝑡) of each node 𝑣𝑖 for from
an integer programming problem as follows:

𝑀𝑎𝑥
ℒ∑

𝑡=1

𝑚∑
𝑗=1

𝑈𝑗(𝑆𝑋(O𝑗 , 𝑡))

𝑠.𝑡 0 ≤ 𝑈𝑗(𝑆𝑋(O𝑗 , 𝑡)) ≤ 𝑈𝑗(∪𝑖:𝑥(𝑣𝑖,𝑡)=1,𝑎𝑖𝑗=1
𝑣𝑖), ∀𝑗, ∀𝑡

𝑥(𝑣𝑖, 𝑡) ∈ {0, 1}, ∀𝑖, ∀𝑡
𝑡+𝑇∑
𝑡=𝑡′

𝑥(𝑣𝑖, 𝑡
′) ∈ {0, 1}, ∀𝑖, ∀0 ≤ 𝑡′ ≤ ℒ− 𝑇

The first two conditions are straightforward. The third
condition ensure the feasibility of the schedule. Specifi-
cally, during one period 𝑇 , each sensor can be activated
no more than one time-slot. By relaxing the conditions

𝑥(𝑣𝑖, 𝑡),
𝑡′+𝑇∑
𝑡=𝑡′

𝑥(𝑣𝑖, 𝑡) ∈ {0, 1} to 0 ≤ 𝑥(𝑣𝑖, 𝑡),
𝑡′+𝑇∑
𝑡=𝑡′

𝑥(𝑣𝑖, 𝑡) ≤
1, the above integer programming becomes a linear program-
ming problem. After solving the linear programming problem
in polynomial time, we let each node 𝑣𝑖 be active at time-
slot 𝑡 with probability 𝑥(𝑣𝑖, 𝑡). However, after the rounding
procedure, all the constraints may not hold anymore. For
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example, some sensor may be active for more than two time
slots within one charing period. To overcome this problem,
we may use the iteration method proposed in [13]. Basically,
the rounding procedure will not stop until a feasible solution
is found. We can show that the expected utility is good here.
Note that when 𝑛, 𝑚 and 𝑇 are large, the time spent by the
rounding procedure will be too long to be practical. Thus,
instead of keeping iterating the rounding procedure, we may
carefully deactivate some sensors to achieve feasibility. The
details are omitted here to save space.

2) Greedy Hill-Climbing Activation Scheme: In this sec-
tion, we propose a simple and effective Greedy Hill-climbing
Node Activation Scheme. We theoretically prove that this
scheme can achieve 1/2-approximation even for the general
case. Later, our extensive evaluation results show that it can
perform even better than the theoretical bound.

To describe our solution in a easier way, we first study a
simple case where the working time of the system contains
only one period, e.g., ℒ = 𝑇 = 𝜌 + 1. Since each sensor
can only be activated one time-slot during ℒ in this case, our
problem becomes how to allocate 𝑛 sensors to 𝜌+1 time-slots
in order to maximize the overall utility. Recall that the utility
function at each time-slot is defined as:

𝑚∑
𝑖=1

𝑈𝑖(𝑆𝑋(O𝑖, 𝑡))

where 𝑆𝑋(O𝑖, 𝑡) is the set of activated sensors that can
monitor the target O𝑖 at times-lot 𝑡 under a dynamic sen-
sor activation policy 𝑋 . Based on the assumption that the
utility function 𝑈𝑖(𝑆) for each target O𝑖 is non-decreasing
submodular, it is easy to prove that the overall utility func-
tion

∑𝑚
𝑖=1 𝑈𝑖(𝑆𝑋(O𝑖, 𝑡)) for each time-slot 𝑡 is also non-

decreasing submodular.
The key idea of the greedy hill-climbing scheme is: We

schedule the sensor one by one following a simple greedy
rule described below: at each step, we schedule a sensor to
some time-slot in order to maximize the incremental utility
together with previous scheduled sensors. We keep repeating
this procedure until all sensors are scheduled. Clearly, we
need exactly 𝑛 steps to finish the scheduling. Please refer to
Algorithm 1 for details.

For example, if 𝜌 = 5 and 𝑛 = 9. Then we find a
scheduling for each sensor one by one following the greedy
rule, allocating a senor to some time-slot which can maximize
the incremental utility. As illustrated in Figure. 4, at the first
step, we allocated 𝑣4 to time-slot 𝑡1 since it can give us
the largest utility. Then we delete 𝑣4 from the candidate set,
and we next find that allocating 𝑣6 to 𝑡3 has the maximum
incremental utility by assuming 𝑣4 is already activated at 𝑡1.
Following this greedy rule, we can finish the scheduling after 9
steps. The resulted activation schedule is: sensor 𝑣4 is activated
at time-slot 𝑡1; 𝑣2 and 𝑣7 at 𝑡2;𝑣6 at 𝑡4; 𝑣1 and 𝑣5 at 𝑡4; 𝑣3 at
𝑡5; 𝑣8 and 𝑣9 at 𝑡6.

Next we first prove that the greedy activation scheme has
1/2-approximation when ℒ = 𝑇 . We further prove that by
repeatedly using the same scheduling in each period, we can

Algorithm 1 Greedy Hill-Climbing Activation Scheme

Input: The sensor nodes set 𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝑛}, the
time slots set T = {𝑡1, 𝑡2, . . . , 𝑡𝑇 }, the targets set 𝒪 =
{O1, O2, . . . , O𝑚}, the utility function 𝑈().
Output: The set of (𝑣𝑖, 𝑡𝑘) pairs indicating sensor 𝑣𝑖 will be
activated at time-slot 𝑡𝑘.

1: 𝑙 = 𝑛;
2: while 𝑙 > 0 do
3: for each sensor 𝑣𝑖 ∈ 𝑉 do
4: for each time-slot 𝑡𝑗 ∈ T do
5: Choose and assign the pair (𝑣𝑚𝑎𝑥, 𝑡𝑚𝑎𝑥) which

can maximize the incremental utility by activating
𝑣𝑚𝑎𝑥 at time-slot 𝑡𝑚𝑎𝑥;

6: 𝑉 := 𝑉 ∖𝑣𝑚𝑎𝑥;
7: end for
8: end for
9: 𝑙 := 𝑙 − 1;

10: end while

Fig. 4. In this example, 𝜌 = 5 and 𝑛 = 10. In each step, we allocate a
sensor to some time-slot which can maximize the incremental utility.

still achieve 1/2-approximation when ℒ = 𝛼𝑇 for any integer
𝛼 ≥ 1.

Lemma 4.1: The greedy hill-climbing activation scheduling
scheme can achieve 1/2-approximation when ℒ = 𝑇 .

Proof: We prove it through induction. Let 𝑃 denote the
original problem with 𝑛 sensors and 𝜌 + 1 available time
slots. We define 𝑃 ′ as a new problem with 𝑛 − 1 sensors
by assuming the first sensor has already been scheduled by
Algorithm 1, i.e. sensor 𝑣1 is scheduled to be active at time
slot 𝑖 by Algorithm 1. In other words, we will not consider
𝑣𝑖 anymore in problem 𝑃 ′. Instead, we redefine the utility
function at time slot 𝑖 by activating subset of sensors 𝐴 as

492



Fig. 5. This figure illustrates the structure of our schedule when ℒ = 𝛼𝑇 .
Basically, we repeatedly use the previous schedule in each single period.

𝑈 ′(𝑖, 𝐴) = 𝑈(𝑖, 𝐴∪{𝑣1})−𝑈(𝑖, {𝑣1}) where 𝑈(𝑖, 𝑆) = 𝑈(𝑆)
is the original utility function for any subset 𝑆. The utility
function for all other time slots except 𝑖 is not changed.
Actually, we can consider our hill climbing algorithm as
scheduling sensor 𝑣1 at time slot 𝑖 first. Then we run it on
problem 𝑃 ′ recursively. We use 𝑈𝑃

𝐴𝐿𝐺 to denote the utility
gained by the hill climbing algorithm on problem 𝑃 , and
𝑈𝑃
𝑂𝑃𝑇 to denote the utility gained by the optimal solution.

For simplicity of analysis, let 𝑧 = 𝑈({𝑣1}). Clearly, we have
𝑈𝑃
𝐴𝐿𝐺 = 𝑈𝑃 ′

𝐴𝐿𝐺+𝑧 based on the definition of problem 𝑃 ′. We
next try to show that 𝑈𝑃

𝐴𝐿𝐺 ≤ 𝑈𝑃 ′
𝐴𝐿𝐺 + 2𝑧. Let 𝑄1, ⋅ ⋅ ⋅𝑄𝜌+1

be the optimal scheduling for problem 𝑃 , where 𝑄𝑗 represents
the active sensors at time slot 𝑗 under optimal scheduling. we
next have two cases to study:

Case 1: We first study the case when 𝑣1 ∈ 𝑄𝑖. Since we
assume that 𝑣1 is also scheduled at time slot 𝑖 by Algorithm
1, it indicates that the scheduling of 𝑣1 by Algorithm 1 is
optimal. Thus, 𝑈𝑃

𝑂𝑃𝑇 = 𝑈𝑃 ′
𝑂𝑃𝑇 + 𝑧 based on the definition of

𝑃 and 𝑃 ′.
Case 2: When 𝑣1 /∈ 𝑄𝑖, we can modify the optimal schedule

by rescheduling 𝑣1 at time slot 𝑖. All other sensors still have
the same scheduling. Obviously, this is a possible scheduling
for 𝑃 ′. Based on the submodularity of utility function and the
greedy manner of our algorithm, we can guarantee that the
loss resulted from removing 𝑣1 is at most 𝑧. Thus, we have
𝑈𝑃
𝑂𝑃𝑇 ≤ 𝑈𝑃 ′

𝑂𝑃𝑇 + 2𝑧.
Finally, we get 𝑈𝑃

𝑂𝑃𝑇 ≤ 𝑈𝑃 ′
𝑂𝑃𝑇 + 2𝑧. The proof can be

finished by induction on 𝑃 ′ since the utility function defined
in 𝑃 ′ is also submodular based on Lemma 4.2. Thus,

𝑈𝑃
𝑂𝑃𝑇 < 𝑈𝑃 ′

𝑂𝑃𝑇 + 2𝑧 < 2𝑈𝑃 ′
𝐴𝐿𝐺 + 2𝑧 = 2𝑈𝑃

𝐴𝐿𝐺.

This finishes the proof.
Lemma 4.2: The utility function defined in problem 𝑃 ′ is

still submodular.
Proof: The detailed proof can be found in Appendix.

To this end, we have proved that the greedy scheme can
guarantee a constant approximation when ℒ = 𝑇 . However,
when ℒ = 𝛼𝑇 for arbitrary integer 𝛼 ≥ 1, can we still
get a constant approximation by repeatedly implementing the
previous schedule in each period 𝑇 ? Our answer is positive. In

particular, we will prove that by applying the same schedule
in each period, we can still get a 1/2-approximation.

Theorem 4.3: The greedy hill-climbing activation schedul-
ing scheme can achieve 1/2-approximation when ℒ = 𝛼𝑇 for
any integer 𝛼 ≥ 1.

Proof: We first show that by repeatedly using the previous
schedule in each period, it is still a feasible schedule, that is,
each sensor is activated at most once among any consecutive
𝑇 time-slots. Clearly, by following our greedy scheme, each
sensor is activated exactly once among each period which
implies its feasibility.

Next, we prove that it also achieves 1/2-approximation.
Assume that ℒ = 𝛼𝑇 for some integer 𝛼 > 1. Let 𝑈<𝑇>

𝑂𝑃𝑇

and 𝑈<𝛼𝑇>
𝑂𝑃𝑇 denote the utility of the optimal solution when

ℒ = 𝑇 and ℒ = 𝛼𝑇 respectively; 𝑈<𝑇>
𝐴𝐿𝐺 and 𝑈<𝛼𝑇>

𝐴𝐿𝐺 denote
the utility gained from our greedy scheme when ℒ = 𝑇 and
ℒ = 𝛼𝑇 respectively. Then we have 𝑈<𝛼𝑇>

𝑂𝑃𝑇 ≤ 𝛼𝑈<𝑇>
𝑂𝑃𝑇 . Since

we repeatedly using the greedy scheme in each period, then
together with Lemma 4.1, we get

𝑈<𝛼𝑇>
𝐴𝐿𝐺 = 𝛼 ⋅ 𝑈<𝑇>

𝐴𝐿𝐺 ≥ 𝛼 ⋅ 1
2
𝑈<𝑇>
𝑂𝑃𝑇

Thus, 𝑈<𝛼𝑇>
𝐴𝐿𝐺 ≥ 𝛼 ⋅ 1

2
𝑈<𝑇>
𝑂𝑃𝑇 ≥ 1

2
𝑈<𝛼𝑇>
𝑂𝑃𝑇

This finishes the proof.
Obviously the time-complexity of the hill-climbing method is
𝑂(𝑛/𝜌) for a network of 𝑛 nodes and 𝜌 < 1.

B. 𝜌 ≤ 1

In this section, we will study the activation problem when
𝜌 ≤ 1. Clearly, by modifying some conditions, we can still
use the integer programming scheme to derive a activation
schedule. The details are ignored due to space limit.

Here we are more interested in designing a greedy hill-
climbing scheme while sustaining a constant approxima-
tion. Surprisingly, by slightly modifying the previous greedy
scheme, we can still get a constant approximation. Notice that
when 𝜌 ≤ 1, each sensor can be active for 1/𝜌 time-slots
while only needing to be passive for 1 time-slot. The key idea
of our scheme is, instead of studying how to allocate the active
time-slot for each sensor as in previous case, we try to allocate
the passive time-slot for each sensor in order to maximize the
utility.

Similarly, we first study the case when ℒ = 𝑇 . Initially,
we assume all sensors are active all 𝑇 time-slots. Then we
allocate the passive time of each sensor in the following greedy
manner: At each step, we allocate the passive time of some
sensor to some time-slot in order to minimize the decremental
utility. We can also extend the greedy scheme to the case when
ℒ = 𝛼𝑇 by simply repeating the same schedule in each period.
Then we have the following theorem whose proof is omitted
to save space:

Theorem 4.4: The greedy hill-climbing activation schedul-
ing scheme can achieve 1/2-approximation when 𝜌 ≤ 1.
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(a) SolarMote 1 (b) SolarMote 2 (c) SolarMote 3 (d) Testbed

Fig. 6. TelosB nodes with solar charging cells.

V. DISCUSSION ON OTHER CHARGING MODELS

In some cases, the discharging time is not a fixed value.
Instead, it is a variable depending on some random events
that happen with some probability distribution, such as Poisson
arrival with a rate 𝜆𝑎. For each event, assume the time duration
follows the exponential distribution with the mean duration
𝜆𝑑. Let 𝑇𝑑 denote the discharging time when a sensor is
working or sensing continuously. Thus, the mean discharging
time 𝑇𝑑 monitoring the event is 𝑇𝑑/𝜆𝑎 ⋅𝜆𝑑. We will ignore the
mechanism for waking up sensors when some event happens.

On the other hand, recharging time 𝑇𝑟 may also be a random
variable even for one day. We assume that this variable follows
the normal distribution with mean 𝑇𝑟.

We then define 𝜌′ = 𝑇𝑟/𝑇𝑑 as the ratio between the ex-
pected discharging and recharging speeds instead of 𝜌 defined
in Section II. Then we can use the new defined ratio 𝜌′ in the
linear programming based solution. However, it is non-trivial
to extend the greedy scheme under this model. Thus, we leave
it as possible future work.

VI. EVALUATION

This section describes our experiments established on real
solar-powered sensor network. We implement a series of
experiments to validate the algorithms designed in previous
sections. Our experiment contains two parts: energy charging
pattern measurement and algorithms testing. In the first part,
we conducted a number of experiments using TelosB nodes
with solar cells in different scenarios. By these experiments,
we obtain the charging patterns under different weather condi-
tions. In the second part of our experiment, a number sensor
nodes with solar-cell charger are composed to form a real
sensor network, in which our algorithms are implemented and
evaluated.

A. Charging Pattern Measurement

To obtain the charging pattern under different weather con-
dition, we build a testbed which is on the top of a building as
shown in Figure 6 (d). In order to sample the information from
the real network, we locate a sink in a lab in the building and
deploy several relay nodes. Each TelosB node is equipped with
one or two solar cells as shown in Figure 6. Each sensor can
harvest energy by solar cell and store energy. We conducted
experiments to find different charging patterns under different
weather conditions. The experiment is launched at 21:55:51
GMT+08:00, July 16, 2009. 2009, and ended at 19:54:59

GMT+08:00, July 17, 2009. The experimental results are
shown in Figure 7, the charging pattern is presented as the
voltage vs. light strength. We only reported the pattern of
2 nodes here due to space limit although we measured the
patterns of much more sensors.

Based on the observed experimental results, we find that
within one day, the light strength varies significantly. However,
the charging voltage almost remains at the same level as long
as it starts to harvest the energy. These results verify our claim
that 𝑇𝑟 is fixed within a relatively small working time, e.g.
one day. Since all sensors used in our testbed are identical,
they also have same and fixed discharging speed 𝑇𝑑. Typically,
for the sensors used in our experiments, the recharge time is
around 45 minutes and the discharge time is 15 minutes when
weather is sunny. Thus, we will set 𝑇𝑑 = 15 and 𝑇𝑟 = 45 in
our following algorithm evaluation. Note that we may choose
different pattern each day for different weather condition.

B. Evaluation of the Greedy Hill-Climbing Algorithms

To evaluate our greedy algorithm, we deployed 100 sensors
with solar charge cells and let the system run 30 days
(daytime). In the following contents, we define the average
utility as the average utility achieved per target per time-slot.
We first study the case when there is only one target. Here the
average utility is

𝑈 =

∑ℒ
𝑡=1 1− (1− 𝑝)∣𝑆(𝑡)∣

ℒ
where 𝑝 = 0.4, 𝑆(𝑡) is the set of activated sensors at time-
slot 𝑡 and ∣𝑆(𝑡)∣ is the size of 𝑆(𝑡). The upper-bound on the
optimum utility is computed using formula 𝑈

∗
= 1− (1−𝑝)𝑛

where 𝑛 = ⌈𝑛/𝑇 ⌉ and 𝑛 is the total number of sensors.
The average utility achieved by our algorithm is

0.983408764, while the optimum solution is upper bounded
by 0.999380. Please see Figure. 8 (a) for illustration. We then
study the multi-target case where the number of targets varies
from 2 to 4, the achieved utilities have been demonstrated in
Figure. 8(b)(c)(d). Obviously, the performance of our greedy
scheme is sufficiently close to the optimal solution in most
cases. Here the optimal solution is obtained by enumerating
all possible scheduling.

We then simulate a larger sensor system using the real
data collected from 100 sensors we deployed. Please refer
to Figure. 9 for illustration. This experiment result basically
disclose the performance of the greedy scheme under various
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(a) Node 5 at 15𝑡ℎ, (b) Node 5 at 16𝑡ℎ, (c) Node 5 at 17𝑡ℎ

(d) Node 6 at 15𝑡ℎ, (e) Node 6 at 16𝑡ℎ, (f) Node 6 at 17𝑡ℎ

Fig. 7. Time vs. Light strength vs. Charging voltage.

environments, e.g. number of sensors varies from 100 to 500
and the number of targets varies from 10 to 50. When the
amount of deployed sensors is around 100−200, the achieved
average utility is at least 0.69. In contrast, when the number of
sensors is increased to 300−500, the average utility is no less
than 0.78. Thus, in either case, the average utility is no less
than 0.5 which corroborates our theoretical analysis (since the
maximum average utility is no more than 1).
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Fig. 8. The average utility achieved by our methods when the number of
targets 𝑚 is fixed. (a)m=1; (b)m=2; (c)m=3; (d)m=4

VII. RELATED WORK

This section will review related work on rechargeable sensor
networks. The literature on the topics of wireless sensor net-
works with rechargeable battery that harvest the environmental
energy (such as solar [14], [15], wind [16], and thermal [17])
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Fig. 9. The average utility achieved by our methods: number of sensors vs.
number of targets.

has been greatly expanded in recent years. In [1], [6], [12],
Jaggi et al. examined a scenario where the derived utility
(e.g., probability of event detection) depends only on the
number of currently activated sensors. In [2], the sensors
are allowed to be activated even when partially recharged
and an asymptotically optimal policy is proposed. In [3], the
authors considered the activation question for a single sensor
where events have temporal correlations, and posed it in a
stochastic decision framework. In [4], the authors modeled
the rechargeable sensor system as a system of finite-buffer
queues. In [7], each rechargeable sensor node can hold up to
𝐾 quanta of energy. In [8], Kansal et al. studied the scheduling
for single sensor with rechargeable energy. In [10], Pryyma et
al. aim to provide uniformly distributed sensing throughout
the entire life-time of the network. Compared with our system
model, in all these results [1]–[3], [6], [12], either the energy
discharge, or the energy harvesting, or both are assumed to be
random events, following Poisson distributions or exponential
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distributions. In addition, only efficient suboptimal policies
are proposed and numerically evaluated for multiple node
networks [6]. They also assumed that the mean discharge rates
and the mean charging rates are same for all sensor nodes.
Further they assumed that the mean charging rate is smaller
than the mean discharge rate. Efficient routing and admission
control for sensor networks with rechargeable batteries has
also been studied. In [18], Lin et al. studied the admission
control and routing problem for wireless sensor networks with
rechargeable battery. They considered a multihop network
where the nodes have knowledge of the short-term future
recharge process. In [11], Gatzianas et al. considered the
problem of cross-layer resource allocation for single-hop,
time-varying, wireless networks operating with rechargeable
batteries.

VIII. CONCLUSION

There are a number of challenging problems left for future
work. In this work we assumed that a node can be activated
only if it is fully charged. We would like to study the case
that allow partially recharged sensors to be activated. The
second challenge is to design efficient method for heteroge-
nous sensor network where different sensor may have different
charging/recharging pattern even at the same time.
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APPENDIX

Proof For Lemma 4.2:
Proof: Since the utility function is unchanged for all other

time slots except 𝑖 according to the definition of 𝑃 ′. We only
need to prove that the utility function at time slot 𝑖 is also sub-
modular. Recall that 𝑈 ′(𝑖, 𝐴) = 𝑈(𝑖, 𝐴 ∪ {𝑣1})− 𝑈(𝑖, {𝑣1}),
let 𝑋 ⊆ 𝑌 , we have,
[
𝑈 ′(𝑖, 𝑆 ∪𝑋)− 𝑈 ′(𝑖,𝑋)

]− [
𝑈 ′(𝑖, 𝑆 ∪ 𝑌 )− 𝑈 ′(𝑖, 𝑌 )

]

= [(𝑈(𝑖, 𝑆 ∪ {𝑣1} ∪𝑋)− 𝑈(𝑖, {𝑣1}))− (𝑈(𝑖,𝑋 ∪ {𝑣1})− 𝑈(𝑖, {𝑣1}))]
− [(𝑈(𝑖, 𝑆 ∪ {𝑣1} ∪ 𝑌 )− 𝑈(𝑖, {𝑣1}))− (𝑈(𝑖, 𝑌 ∪ {𝑣1})− 𝑈(𝑖, {𝑣1}))]

= [𝑈(𝑖, 𝑆 ∪ {𝑣1} ∪𝑋)− 𝑈(𝑖,∪{𝑣1} ∪𝑋)]

− [𝑈(𝑖, 𝑆 ∪ {𝑣1} ∪ 𝑌 )− 𝑈(𝑖,∪{𝑣1} ∪ 𝑌 )]

= [𝑈(𝑖, 𝑆 ∪𝑋′)− 𝑈(𝑖,𝑋′)]− [𝑈(𝑖, 𝑆 ∪ 𝑌 ′)− 𝑈(𝑖, 𝑌 ′)]
> 0

The last equality is because of the following: (1) we denote
𝑋 ∪ {𝑣1} by 𝑋 ′ and 𝑌 ∪ {𝑣1} by 𝑌 ′, (2) since 𝑋 ⊆ 𝑌 , we
have 𝑋 ′ ⊆ 𝑌 ′, (3) 𝑈(𝑖,𝑋) is submodular.

It follows that for any 𝑋 ⊆ 𝑌 , we have

𝑈 ′(𝑖, 𝑆 ∪ 𝑋)− 𝑈 ′(𝑖,𝑋) ≥ 𝑈 ′(𝑖, 𝑆 ∪ 𝑌 )− 𝑈 ′(𝑖, 𝑌 ).

This finishes the proof.
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