
Design Differentiated Service Multicast With Selfish Agents

WeiZhao Wang1, Xiang-Yang Li?1, and Zheng Sun??2

1 Illinois Institute of Technology, Chicago, IL, USA,{lixian,wangwei4 }@iit.edu
2 Hong Kong Baptist University, Hong Kong, China,sunz@comp.hkbu.edu.hk

Abstract. Differentiated service (DiffServ) is a mechanism to provide the Quality of Service (QoS) with a certain
performance guarantee. In this paper, we study how to design the DiffServ multicast when the participants are
selfish. We assume that the cost of a linkei to provide a multicast service with bandwidth demandx is ai · x. This
generalizes the traditional link weighted Steiner tree problem. The main contribution of the paper is as follows. This
paper studies the strategyproof mechanism design and fair payment sharing scheme for DiffServ multicast. First of
all, we show that a previous approximation method does not imply a strategyproof mechanism. We then give a
polynomial time method to construct a multicast tree whose cost is no more than8 times of the optimal when the
cost coefficient of each link is known. Based on this tree, we design a truthful mechanism for DiffServ multicast,
i.e., we give a polynomial-time computable payment scheme to compensate each chosen relay links such that each
link maximizes its profit when it declares its coefficient truthfully. We also study how to share the payment to relay
links among the given set of receivers who require the multicast service. Both positive results and negative results
are presented.
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1 Introduction

The Differentiated Services framework (DiffServ) [1, 2] has been proposed to provide multiple Quality of Service
(QoS) classes over IP networks. DiffServ is built upon a simple model of traffic conditioning and policing at the links
of the network in addition to classifying flows into different service classes. The traffic is forwarded using simple
differentiated treatments, called per-hop behaviors (PHBs), in the core of the network. This differential treatment
results in differential pricing [3], which is one of the motivating factors for adopting DiffServ by major network
providers and ISPs.

Multicast has been a popular mechanism for supporting group-based applications, such as video-conference and
content distribution. Although multicast and DiffServ are complementary technologies, there are still some architec-
tural conflicts between them. The first notable conflict is that multicast often requires the maintenance of per-group
state information at all routers, while DiffServ usually relies on statelessness of the core. The second notable con-
flict is that multicast is often based onreceiver-drivenQoS, while DiffServ is usually based onsender-drivenQoS.
Edge-based multicast (EBM) approach was proposed recently to address these possible conflicts. In this paper, we
characterize the different QoS of the links by the amount of bandwidth they dedicate to the multicast transmission.

In a multicast, different receivers of a multicast group could request different bandwidth demands. Each link
of the network may have different costs of providing multicast with different bandwidth dedication [4]. Due to the
heterogeneity in receivers’ demand requirements, different links in a multicast tree will carry different traffic such that
the demand requirements of downstream receivers are satisfied. The cost of a link in a multicast tree is then the cost
needed to dedicate a certain bandwidth for downstream receivers. This is often the maximum bandwidth required by
downstream receivers. Then the DiffServ multicast problem is to find atreeand the bandwidth reservation at each link
such that the receivers’ bandwidth QoS demand are met. Recall that the traditional Steiner tree problem is NP-hard for
both node weighted [5, 6] and link weighted graph [7, 8], and it is a special case of constructing the DiffServ multicast
tree with the minimum cost.

What makes things more complicated is that the links that relay the packets may benon-cooperative, instead of
cooperativeassumed by previous protocols. This means that the relay links will aim to maximize their own benefits
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instead of the whole network’s performance. We assume that a link will provide the service to receivers only if they
received a payment large enough to compensate its relay cost. To do so, each link is first asked to report its relay cost
and then a payment to this link is calculated based on some mechanisms. It is not often in the best interests of these
relay links to report their costs truthfully when we pay whatever they asked. Thus, instead of paying the links their
declaredcosts, we should design some payment scheme that can ensure all links reveal their true costs out of their own
interests, which is known asstrategyproof. The strategyproof mechanism for traditional multicast has been previously
addressed in [9, 10]. However, unlike the traditional multicast in which every link has afixed cost in the multicast
transmission, each link may incur different costs for different bandwidth demands in DiffServ multicast. Furthermore,
the strategyproof payment scheme is not the end story for the DiffServ multicast. A natural question to ask is that how
these payments (or costs if the links are indeed cooperative to report their true costs always) arefairly shared among
the receivers, which is known as themulticast payment sharingproblem. In summary, in this paper, we study three
different aspects of the DiffServ multicast: the construction of the multicast tree that has low cost, a strategyproof
payment scheme, and a fair payment sharing scheme.

The main contribution of the paper is as follows. First of all, we show that a previous approximation method
does not imply a strategyproof mechanism. We then characterize the necessary and sufficient conditions about the
multicast tree construction methods such that we can design a strategyproof payment scheme based on this. We give a
polynomial time method to construct a multicast tree whose cost is no more than8 times of the optimal when the cost
coefficient of each link is known. We then design a truthful algorithm mechanism for DiffServ multicast,i.e., we give
a polynomial-time computable payment scheme to compensate all chosen relay links such that each link maximizes
its profit when it declares its coefficient truthfully. We also study how to share the payment to relay links among the
given set of receivers who require the multicast service. Both positive results and negative results are presented.

The rest of the paper is organized as follows. In Section 2, we specify the network model, define the problem,
and review the necessary technical preliminaries. We also briefly review some approximation methods to construct the
multicast tree. We study how to pay the links in Section 3 and how to share the payment in Section 4 after presenting
our approximation method for constructing the multicast tree. We conclude our paper by pointing out some possible
future researches in Section 5.

2 Preliminaries and Previous Works

2.1 Algorithmic Mechanism Design

In a standard model of algorithm mechanism design, there aren agents{1, 2, · · · , n}. Each agenti ∈ {1, · · · , n} has
someprivateinformationti, called itstype, e.g. its cost to forward a packet in a network environment. All agents’ type
defines aprofile t = (t1, t2, · · · , tn). Each agenti declares a valid typeτ ′i which may be different from its actual type
ti and all agents’ strategy defines a declared type vectorτ = (τ1, · · · , τn). A mechanismM = (O,P) is composed of
two parts: an output functionO that maps a declared type vectorτ to an outputo and apaymentfunctionP that decides
the monetary paymentpi = Pi(τ) for every agenti. Each agenti has a valuation functionwi(ti, o) that expressed its
preference over different outcomes. Agenti’s utility or calledprofit is ui(ti, o) = wi(ti, o) + pi, given outputo and
paymentpi. An agenti is said to berational if it always chooses its strategyτi to maximize its utilityui.

Let τ−i = (τ1, · · · , τi−1, τi+1, · · · , τn), i.e., the strategies of all other agents excepti andτ |iti = (τ1, τ2, · · · ,
τi−1, ti, τi+1, · · · , τn). A mechanism isstrategyproofif for every agenti, revealing its true typeti will maximize its
utility regardlessof what other agents do. In this paper, we are only interested in mechanismsM = (O,P) that satisfy
the following three conditions:
1. Incentive Compatibility (IC) : ∀ agenti, ∀τ , wi(ti,O(τ |iti)) + pi(τ |iti) ≥ wi(ti,O(τ)) + pi(τ)
2. Individual Rationality (IR) (a.k.a., Voluntary Participation): Each agent must have a non-negative utility, i.e.,

wi(ti,O(τ |iti)) + pi(τ |iti) ≥ 0.
3. Polynomial Time Computability (PC): O andP are computed in polynomial time.

2.2 Problem Statement

Differentiated Multicast Tree Construction: We assume that there is a connected networkG = (V, E) with vertex
setV , edge setE, where|V | = n and|E| = m. Every edgeei has a cost functionci = aix wherex is the bandwidth
ei dedicates to the multicast transmission. Hereafterai is called the cost coefficient of the linkei. All links’ coefficients
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define a vectora = (a1, a2, · · · , am). There is a source nodes and a set of receiversR ⊂ V that request to receive the
multicast service. Every receiverri ∈ R has a bandwidth demanddi that specifies the minimum bandwidth it needs.
The DiffServ multicast is also called Quality of Service Steiner Tree (QoSST) problem in [11].

A bandwidth demand is homogeneous if all receivers require the same bandwidth. This is the standard Steiner
tree problem and several constant approximation algorithms [7, 8] have been proposed. For differentiated multicast
(also called heterogeneous hereafter), different receivers may require different bandwidth. The differentiated multicast
problem consists of two parts: 1) a network topology rooted at the senders that spans all receivers in the receiver set; 2)
a bandwidth reservation for each link for this multicast. The tree topology and bandwidth reservation should satisfy that
for any receiverri, each link on the tree path betweenri ands has a bandwidth reservation not smaller thandi. Thus,
for a link ei, the reserved bandwidth should not be smaller than the maximum bandwidth demand of its downstream
receivers. The weight of a multicast topologyT with link bandwidth reservation vectorb = {b1, b2, · · · , bm} is
ω(T, b) =

∑
ei∈T ci =

∑
ei∈T ai · bi. Given the cost coefficients vectora of all links and the bandwidth demandd

of all receivers, the differentiated multicast problem is to construct a treeT and a bandwidth reservationb with the
minimum costω(T, b).

The DiffServ multicast problem was studied before in several contexts. Maxemchuk [4] proposed a heuristic algo-
rithm for its solution. Some results for the case of few rates were obtained in [12, 13]. Specifically, an algorithm was
suggested in [13] for the case of two non-zero rates with approximation ratio of4

3α, whereα ' 1.549 is currently the
best approximation ratio [8] of an algorithm for the Steiner tree problem. Recently, Charikaret al. [14] gave the first
constant-factor approximation algorithm for an unbounded number of rates. They achieved an approximation ratio of
4α using rounding andeα ' 4.211 using randomized rounding. Recently, Karpinskiet al. [11] gave algorithms with
improved approximation factors. They achieved an approximation ratio of1.960 when there are two non-zero rates and
an approximation ratio of3.802 when there is an unbounded number of rates. Calinescuet al. [15] gave a Primal-Dual
algorithm with approximation ratio4.311. Xue et al. [16] and Kim et al. [17] studied the Grade of Service Steiner
Tree Problem (GOSST) in Euclidean planes.
Payment Computation: Throughout this paper, we assume all the links are selfish and rational. Recall that a mech-
anismM consists of two parts: an output methodO and a payment schemeP. Thus, after designing a methodO to
construct a multicast tree, we need to design a payment schemeP for the links such that the mechanismM = (O,P)
is truthful. We useP(R, a) to denote the total payment to the links,i.e., P(R, a) =

∑
ei∈E Pi(R, a). HerePi(R, a)

denotes the payment to a linkei given the cost coefficient vectora and the receiver setR.
Payment Sharing:For a given set of receiversR, after we calculate the payment for every link, it is natural to ask
who will pay these payments. Two possible payment models have been proposed in the literature.
1. Outside bankor Group payment model: an outside bank or an organization to which the receivers belong will pay

all these relay agents.
2. Payment sharing model: each receiveri should pay areasonablesharingξi of the total payment. We will address

what we mean “reasonable” (or calledfair) later.
For outside bank model, the only thing we should care is how to find the truthful mechanism for the multicast,

which will be addressed in Section 3. In practice, it is often the case that the receivers have to share the payments
among themselves. Thus, we will study how to share the payments fairly. Notice that the payment sharing is different
from the traditional cost sharing studied in [18–20], which assumes that costs of relay links are public and the multicast
topology is a fixed tree. Given a networkG with coefficienta and a set of potential receiversR, we letξ(i, R) ≥ 0
denote how much receiverri is charged. We will give both negative and positive results on designing fair payment
sharing mechanisms.

2.3 Literature Review of Steiner Tree Construction

Given a homogeneous bandwidth demandd, the weight of a treeT is ω(T, d) =
∑

ei∈T ci =
∑

ei∈T ai · d =
d

∑
ei∈T ai = d ·ω(T, 〈1〉). Thus, in order to minimize the weight of the tree that spans all receivers, we can normalize

the demand of every receiver to1. Therefore, we can define cost vectorc = a and the problem becomes the standard
link weighted Steiner tree problem, which enjoys several constant approximation metods [7, 8]. In Algorithm 1 we
review a2-approximation method given in [7]. We call the tree constructed by Algorithm 1 aLink Weighted Steiner
Tree(LST), denoted asLST (R, c).

The method by Charikaret al. [14] works as follows. Given an instance of the DiffServ multicast, they first
construct the rounded-up instance by rounding up all demands of receivers to the nearest power of2. Then they solve
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Algorithm 1 Construct homogeneous multicast tree
Input: A networkG = (V, E), c is the cost vector of the links, a source nodes and a receiver demand vectord.
Output: A spanning treeLST (R, c) rooted ats that spans the receiver setR.

1: Initialize LST (R, c) = ∅.
2: repeat
3: for each receiveri in R do
4: Find the least cost pathLCP(s, ri, G) betweens andri.
5: end for
6: Find the receiverrj with the minimum cost of the shortest pathLCP(s, rj , G).
7: Removerj from R and addLCP(s, rj , G) to LST (R, c).
8: Set all links’ costs onLCP(s, rj , G) as0.
9: until R is empty.

10: OutputLST (R, c).

the standard Steiner tree problem for the receivers of each different demand separately by applying any of the well-
known heuristics. Finally, they do a “clean-up” process that transforms the graph given by the union of these Steiner
trees into a tree. They proved that this simple approach yields a4αST approximation of the optimal cost, whereαST is
the approximation factor of the used Steiner tree heuristic. Our algorithm is similar to this approach at the first glance,
but it has some key differences, which will be described later.

3 Payment for Selfish Links

In this section, we discuss how to design a truthful payment scheme for links when they are selfish. For the multicast
when the receivers have a homogeneous bandwidth demand, in [10], Li and Wang proved that the VCG mechanism
[21–23] is not truthful if the tree is computed by Algorithm 1. In light of the failure of VCG mechanism, they proposed
a truthful payment scheme for any round-based method constructing a multicast tree.

To construct a truthful payment scheme for heterogeneous multicast, one naive approach seems to be combining
the algorithm of [14] with a truthful payment scheme for homogeneous multicast. More specifically, for each distinct
bandwidth demand rate in the rounded-up instance, a homogeneous multicast tree is constructed and the payment
for each selected link is determined. The union of these multicast trees, after the clean-up process described in [14],
is the final heterogeneous multicast tree, with the payment of each link set to be the maximum of its payments in
all homogeneous multicast trees computed. Although this approach (i.e., taking the union of partial outcomes and
using the maximum payment of each agent over all partial outcomes as its final payment) works for binary selection
problems (see [24, 10] for more details), for differentiated multicast the resulting payment scheme is no longer truthful,
as demonstrated by the example in Figure 1. Figure 1.a shows the original networkG containing two receiversr1 and
r2, with bandwidth demandsd1 = 1 andd2 = 10 respectively. For bandwidth demand rate1, links sv1 andv1r1 are
selected, and for bandwidth demand rate10, links sv1 andv1r2 are selected. The final heterogeneous tree is shown in
Figure 1.b (no clean-up process is necessary). The payment tosv1 is max{29, 2·10} = 29, while its cost is1·10 = 10,
giving a utility of 19. However, ifsv1 reportsa1 = 3 instead (see Figure 1.c), its payment is still29 (as it no longer
needs to relay forr2 with bandwidth rate10), and yet its cost is only1, giving an utility of 28. The reason why this
approach does not work for DiffServ multicast is that the cost of a link here is no long a fixed number: it depends on the
outcome of the game. Thus, although a link may not be able to change the payment it would get from the mechanism
by lying its cost coefficient, it could reduce its final cost it will incur through lying. As a consequence, it still increases
its utility by lying.

In this section, instead of simply presenting a truthful payment scheme for a specific tree construction method,
such as Algorithm 3, we study how to design a truthful payment scheme for any given service differentiated multicast
tree. In Subsection 3.1, we fist give a necessary and sufficient condition for the existence of a truthful payment scheme
when given a multicast tree construction method. In the meanwhile, we also present a truthful payment scheme if it
exists. We then apply this general framework to the DiffServ multicast tree constructed by Algorithm 3 and design a
truthful payment scheme.
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Fig. 1. The naive mechanism is not strategyproof.

3.1 General Framework

From the definition of the truthfulness, we can fix the graphG, the receiver setR and bandwidth demandd. Thus, for
our notational convenience, we useb(A, a) = {b1(A, a), · · · , bm(A, a)} to denote the bandwidth reservation vector
computed by an algorithmA, wherebi(A, a) is the bandwidth reserved at linkei.

We assume that thebi(A, a) is piecewise continuouswith respect to any variableaj , i.e., a finite number of piece-
wise linear functions. The only possible types of discontinuities for a piecewise continuous function are removable and
step discontinuities. In the following we give a definition that is critical to the presentation of our general framework.

Definition 1 (Monotone Non-increase Property (MNP)).An algorithmA is said to satisfy themonotone non-
increase propertyif for every linkei and two of its possible coefficientsai1 < ai2 , bi(A, a|iai1) ≥ bi(A, a|iai2).

Now we are ready to present the necessary and sufficient condition for the existence of truthful payment scheme
given an algorithmA that computes the bandwidth reservation. This theorem is similar to the forklore for the binary
demand games.

Theorem 1. For a given algorithmA, there exists a payment schemeP such that the mechanismM = (A,P) is
truthful if and only ifA satisfies MNP.

PROOF. First, we prove that if there exists a strategyproof mechanismM = (A,P) thenA satisfies MNP. We consider
two coefficients profilea|iai1 anda|iai2 whereai1 ≤ ai2 .

Consider the case when linkei actually has coefficientai1 . RememberP is strategyproof, thus if linkei lies its
coefficient toai2 , its utility should not increase. Thus, we have

Pi(A, a|iai1)− ai1 · bi(A, a|iai1) ≥ Pi(A, a|iai2)− ai1 · bi(A, a|iai2).

Now consider the case when linkei has actual costai2 . Similarly, we have

Pi(A, a|iai2)− ai2 · bi(A, a|iai2) ≥ Pi(A, a|iai1)− ai2 · bi(A, a|iai1)

Combining the above two inequalities, we obtain

ai2 · [bi(A, a|iai1)− bi(A, a|iai2)] ≥ Pi(A, a|iai1)−Pi(A, a|iai2) ≥ ai1 · [bi(A, a|iai1)− bi(A, a|iai2)] (1)

Thus, we havebi(A, a|iai1) ≥ bi(A, a|iai2) asai1 ≤ ai2 . This proves thatA satisfies MNP.
To prove that ifA satisfies MNP then there exists a strategyproof paymentP, we prove it by construction. For

a link ei, we first fix a−i and usex to denote cost vectora|ix if no confusion is caused. From the assumption that
A satisfies MNP, functionbi(A, x) is non-increasing. Recall thatbi(A, x) is a piecewise continuous function. We let
x1 < x2 · · · < xm be the points at whichbi(A, x) is not continuous, and introduce a dummy pointxm+1 = ∞. We
define a functionκi(x) such that, forxp < x ≤ xp+1,

κi(x) = x · bi(A, x) +
∫ xp+1

x

bi(A, y)dy +
m∑

j=p+1

∫ xj+1

xj

bi(A, y)dy.
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Fig. 2. Bandwidth allocation functionbi(DMT, a|ix).

In Figure 2,κi(x) corresponds to the area of the shaded region. Given an algorithmA and coefficients vectora,
Algorithm 2 defines the payment based on algorithmA.

Algorithm 2 Payment Scheme based onA
Input: AlgorithmA and coefficient vectora.
Output: The payment schemeP.

1: for each linki do
2: Fix a−i. The payment toi isPi(A, a) = κi(ai).
3: end for

Thus, we only need to prove the payment scheme computed by Algorithm 2 is truthful. See Lemma 3 in the
appendix for the proof of this statement. This finishes the proof of the theorem.

If we specify that if a linkei has0 bandwidth reservation then it should receive0 payment (which is called
normalizedpayment scheme), then we have the following theorem. See appendix for the proof of the theorem.

Theorem 2. Given an algorithmA satisfying MNP, the payment scheme defined by Algorithm 2 is theonly normalized
truthful scheme.

We then summarize the general framework to design a truthful payment schemeP, such thatM = (A,P) is
truthful, for a given output algorithmA that constructs a differentiated multicast tree and outputs the bandwidth
allocation for differentiated multicast.
1. Check whether the bandwidth allocation of algorithmA satisfies MNP. If not then return, else continue.
2. Find the bandwidth reservationb(A, a).
3. Design the payment according to Algorithm 2.

3.2 Design Truthful Mechanism

First of all, we would like to see whether we could design a payment scheme based on the methods presented before,
especially the first constant-factor approximation method presented by Charikaret al. [14]. Let T1, T2, · · · , Tk bek
different Steiner trees constructed by their method fork different demand values. For each treeTi, we can define a
strategyproof mechanism based on the criteria characterized in [10, 9]. Letpe,i be the payment to linke based on treeTi

andbe,i be the bandwidth reservation on linke based onTi. For the union of these trees, it is unclear how a paymentP
could be defined such that mechanism(

⋃k
i=1 Ti,P) is truthful. Notice that when all trees are zero-one demand games,

we can simply pay each link the maximum payment it could get from thesek separated trees. However, here these trees
are not zero-one demanded: a link has a bandwidth reservation. The profit of a linke is its final paymentpe received
minus its costae · be, wherebe is its final bandwidth reservation. Here it is possible that the treeTi has the maximum



7

paymentpe,i to link e, while the valuebe could be different frombe,i. Thus, simply taking maximum payment will not
guarantee strategyproof here. Further more, even if we can define a strategyproof mechanism for output

⋃k
i=1 Ti, it is

still not clear how to extend it to a strategyproof mechanism for the output computed by “clean-up”.
Thus, in this paper, we take a different approach by redesigning some new DiffServ multicast tree construction

methods. Before we present our algorithm, we give some notations that will be used later. Given a networkG with
edge cost vectorc and receiver setR, we useTmin(R, c) to denote the minimum weight Steiner tree wherec is the
cost vector of the links in the network. For a receiver setR with bandwidth demand vectord = {d1, d2, · · · , dk}, we
denote the multicast tree with the minimal weight that spansR asT opt and the corresponding bandwidth allocation
vector asBopt. Given a subsetS ⊆ R, for notational simplicity, we useT opt(S) to denote the subtree inT opt induced
by S if no confusion is caused.

Remember that the cost function of a linkei is fi(x) = aix. Given a networkG, a receiver setR, a cost coefficient
vector a and a bandwidth demand vectord, the following algorithm shows how to find a DiffServ multicast tree
DMT (a, d) and its corresponding bandwidth allocationB with low weight. We also call this algorithmDMT if no
confusion is caused.

Algorithm 3 Construct Differentiated Multicast Tree
Input: A networkG with coefficient vectora, a source nodes, a set of receiversR and a bandwidth demand vectord.
Output: A treeDMT (a, d) spanning the receivers and a bandwidth allocation vectorB.

1: Sort all receivers according to their bandwidth demands. Without loss of generality, we can assume that the receiversR =
{r1, r2, · · · , rk} are sorted in a descending order of their bandwidth demands.

2: Initialize the treeT to empty, sett = 1, and label all links in the treeWHITE.
3: repeat
4: Let rj be the first receiver in the receiver setR.
5: Find the maximal indexk such thatdk ≥ dj

2
.

6: Set the cost of eachWHITE link asci = ai · dj and eachBLACK link asci = 0.
7: Let Rt = {rj , · · · , rk} and find the spanning treeTt = LST (Rt, c) using any Steiner tree heuristic, such as Algorithm 1.
8: RemoveRt from R and mark all links in treeTt asBLACK .
9: SetT = T

S
Tt.

10: Sett = t + 1.
11: until the receiver setR is empty.
12: for each linkei in treeT do
13: Find the maximal bandwidth demand ofei’s downstream receivers, sayrj .
14: ei allocates a bandwidthBi = dj .
15: end for
16: Output treeT and bandwidth vectorB.

The major difference of this method compared with the method presented by Charikaret al.[14] is that we directly
construct a tree. Instead of rounding the demands up to the nearest power of2, we divide the demands into several
segments such that, in each segment, the ratio of the maximum demand over the minimum demand is at most2. We
also have the following theorem3.

Theorem 3. Algorithm 3 constructs a tree whose weight is at most4αST times the weight of the minimal cost DiffServ
multicast treeT opt.

With the general framework, we would like to design a truthful payment scheme based on Algorithm 3. However,
the following lemma shows that there is no such truthful payment.

Lemma 1. Algorithm 3 does not satisfy MNP.

PROOF. We prove it by presenting an example here. A networkG has three receiversr1, r2, r3 with bandwidth
demandd1 = d2 = 1 andd3 = 2. The coefficient of the link is described in Figure 3 (a). When we apply Algorithm

3 Although there is a subtle difference between the algorithm presented here and the one in [14], the proof is not as obvious as that
one. The proof is omitted here due to space limit.
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Fig. 3. The spanning tree constructed by Algorithm 3.

3 to networkG, we obtain a tree shown in Figure 3 (b). Let agent2 be link v2v3. The bandwidth allocation of link
e2 = v2v3 is 2. Consider the scenario when the coefficient of linke2 changes from1.1 to 0.9 while other coefficients
remain the same. The new spanning tree topology constructed by Algorithm 3 is shown in Figure 3 (c). The bandwidth
allocation ofe2 becomes1, which decreases by half compared with the bandwidth reservation with coefficient1.1.
This finishes our proof.

From Theorem 1 and Lemma 1, we have the following theorem directly.

Theorem 4. There is no truthful mechanismM based on Algorithm 3.

In light of the negative result in Theorem 4, we would like to design another algorithm for constructing the differ-
entiated service multicast tree that satisfies MNP and, in the meanwhile, has a weight that is not too large compared
with the optimal. With a little modification of the Algorithm 3, we present a new method to construct the multicast
tree in Algorithm 4. The trees constructed by Algorithm 3 and Algorithm 4 are the same, and the only difference is
on the bandwidth allocation. In Algorithm 3, the bandwidth of a link is set to the maximum bandwidth demand of its
downstream receivers. In Algorithm 4, the bandwidth of a link is set to a bandwidth greater than the bandwidth set in
Algorithm 3. In order to distinguish these two algorithms, we useDMT to denote the tree constructed by Algorithm
4. We can show that our new algorithm achieves the same approximation ratio as Algorithm 3.

Theorem 5. Algorithm 4 satisfies MNP and it constructs a tree whose weight is at most8 times the weight of the
minimal cost differentiated service treeT opt(a, d).

PROOF. The proof of8-approximation ratio is similar to the proof of Theorem 3 and is thus omitted here. We focus
on the proof that Algorithm 4 satisfies MNP. Given a linkei, if it does not appear in the treeDMT (a, d) then
bi(DMT, a) = 0. Otherwise, ifei ∈ Tj −

⋃j−1
k=1 Tk, i.e., in iterationj, the link ei is added to the spanning tree

DMT (a, d) for the first time, thenbi(DMT, a) = Rmax
j . Whenei has a smaller coefficientai, we show by cases that

it will have a larger bandwidth reservation.
Case 1:ei is added to the spanning treeDMT (a, d) no later than iterationj. Without loss of generality, we assume

thatei is added toDMT (a, d) in iterationj′ ≤ j. Remember that the partition ofR does not depend on coefficient
vectora, thusbi(DMT, a|ia) = Rmax

j′ ≥ Rmax
j = bi(DMT, a).

Case 2:ei is not added to the spanning treeDMT (a, d) before iterationj. In this case, every link’s label does
not change in the beginning of iterationj. For Algorithm 1, it has been proven in [10] that if any link originally in
LST (R, c) reduces its cost fromci to c′i, then it is still inLST (R, c|ic′i). Thus, the resulting spanning treeTj still has
the linkei in it, which means thatbi(DMT, a|iai) = Rmax

j keeps the same.
This proves thatbi(DMT, a) does not decrease whenai decreases. Thus, Algorithm 4 satisfies MNP.

From Theorem 1 and Theorem 5, we know that there exists a truthful payment for Algorithm 4. In order to find the
truthful payment for Algorithm 4, we should find the bandwidth allocation functionbk(DMT, a|kx) for every linkek

first. Recall that for every linkei, the bandwidth could only be a real value that is equal toRmax
j for some indexj. Let

xk
1 < xk

2 < · · · < xk
q be the points at whichbk(DMT, a|kx) is not continuous, then the bandwidth allocation function

bk(DMT, a|kx) should be a constant, sayyk
j in (xk

j , xk
j+1) as shown in the Figure 2. In order to find the values of
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Algorithm 4 Construct Multicast Tree with MNP
Input: A networkG with coefficient vectora, a source nodes, a set of receiversR and a bandwidth demand vectord.
Output: A tree topologyT that spanning the receivers and a bandwidth allocation vectorB.

1: Sort all receivers according to their bandwidth demands in an descending order, sayR = {r1, r2, · · · , rk}.
2: Initialize the treeT to empty and indexi = 1.
3: for each linkej do
4: Label it asWHITE and setBj = 0.
5: end for
6: repeat
7: Let rj be the first receiver in the receiver setR.
8: Find the maximal indexk such thatdk ≥ dj

2
.

9: Set the cost of eachWHITE link et asct = at · dt and eachBLACK link as0.
10: Let Ri = {rj , · · · , rk} and find the spanning treeTi = LST (Ri, c) using Algorithm 1.
11: RemoveRi from R and mark all links in treeTi asBLACK .
12: SetT = T

S
Ti.

13: for each linkek in Ti do
14: if Bk = 0 then
15: SetBk = dj .
16: end if
17: end for
18: Seti = i + 1.
19: until the receiver setR is empty.
20: OutputT asDMT andB.

these discontinuous points, we first need to compute the truthful payment for standard Steiner tree problem. Please
refer for [10] for more details. We useτ(c−i, R) to denote the payment computed for a linkei based on a Steiner tree
heuristic and study how to find the bandwidth allocation function for Algorithm 4. Algorithm 5 shows how we can
find the bandwidth-allocation function.

With the bandwidth allocation functionbk(A, a|kx), we give our truthful payment scheme by following the general
framework illustrated by Algorithm 6. The proof of the correctness of these algorithms are either straightforward or
omitted here due to space limit.

3.3 Performance Improvement and Special Case

In essence, Algorithm 4 converts the original instance of the differentiated multicast problem to a “rounded-up” one,
with bandwidth demand vector forming a geometric sequence of ratio2. According to the result of Charikaret al.
[14], the approximation ratio of8 of Algorithm 4 can be improved (while still using Algorithm 1 for computing
approximately optimal Steiner trees) if the “randomized bucketing” technique is used. Specifically, a numbery is
picked randomly with a uniform distribution in the range[0, 1], and the (non-zero) bandwidth demands of all nodes
are rounded up to the nearestey+i. (Note that the ratio of the geometric sequence ise instead of2.) The expected
approximation ratio ise · 2 ' 5.437.

Here we argue that we can also convert the mechanism described above for differentiated multicast to a randomized
one with an expected approximation ratio of5.437, while maintaining strategyproofness. First of all, it is easy to see
that using a “start point” ofey for some fixedy and replacing the ratio of2 by e for the geometric sequence (of
rounded up bandwidth demands) should not affect strategyproofness. Furthermore, the randomized process also does
not encourage untruthfulness of the links: if for any fixed start pointey, the links find no incentive to lie, nor will they
find incentives to lie when such start point is randomly selected.

Charikaret al. [14] also proposed a de-randomized process to replace the above random selection of start pointey,
with the cost of an increased time complexity. For each distinct bandwidth demanddi, the same algorithm is invoked
with yi = ln di − bln dic. It is claimed that there is at least oneyi such that the solution fory = yi has a cost no more
than the expected cost of the solution for a randomly pickedy. Therefore, we can simply pick the best solution (with
the minimum cost) among all solutions computed using differenty. A similar technique is used for the case with only
two non-zero rates for bandwidth demands [13], improving the approximation bound to4

3 · 2 = 2.667. The common
characteristic of the two algorithms is to compute multiple differentiated multicast trees using different methods (or
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Algorithm 5 Bandwidth Allocation Function for Algorithm 4
Input: A networkG with link cost vectorc, a source nodes and a receiver setR with demand vectord.
Output: The bandwidth allocation function for Algorithm 4.

1: Apply Algorithm 4. Let` be the number of iterations in Algorithm 4.
2: for every linkek in DMT (a, d) do
3: Setck = ∞ and apply Algorithm 4 again.
4: At the beginning of each iterationi, compute the valueτ i

k(a−k, Ri).
5: Initialize the listXk = ∅, Y k = ∅, up = 0, andq = 0.
6: for i = 1 to ` do
7: if τ i

k(a−k, Ri) > up then
8: q = q + 1.
9: Setxk

q = τ i
k(a−k, Ri) andyk

q = Rmax
i .

10: Add xk
q to setXk andyk

q to Y k.
11: end if
12: end for
13: Setxk

0=0 andxq+1 = ∞.
14: for i = 1 to q + 1 do
15: Setbk(A, a|kx) = yk

i for xk
i−1 ≤ x < xk

i .
16: end for
17: end for

Algorithm 6 Payment Scheme for Algorithm 4
Input: A networkG with link cost vectorc, a source nodes and a receiver setR with demand vectord.
Output: A payment scheme for Algorithm 4.

1: Compute the multicast treeDMT by applying Algorithm 4.
2: Compute the bandwidth allocation function for treeDMT by applying Algorithm 5.
3: for each linkek do
4: if ek is in treeDMT then
5: Find i such thatxk

i < ak ≤ xk
i+1. Then the payment isPk(a) =

P|Xk|−1
j=i+1 yk

j · (xk
j+1 − xk

j ) + (xk
i+1 − ak) · yk

i .
6: else
7: Pk(a) = 0.
8: end if
9: end for
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same method but with different parameters), and pick the one with the smallest cost. Although this approach (i.e.,
taking the best output of several outcomes and using the some combination of the payments for these separated games
as its final payment) works for binary selection problems under certain conditions [25, 24], a problem arises when it
comes to determining the payments to the links for DiffServ multicast.

In the network shown in Figure 4 (a), receiverr1 has bandwidth demandd1 = 1 unit and receiversr2, r3, r4 has
bandwidth demandd2 = 4. Let R1 = {r1} andR2 = {r2, r3, r4}, c be the cost vector shown in Figure Figure 4 (a).
If we change the cost of edgesv1 from 1.5 + ε to 1.5 − ε while keep all other links’ cost unchanged, the cost vector
is denoted asc′. Figure 4 shows that the treeLST (R, c) andLST (R, c′) is the same. We haveω(LST (R, c), b) =
ω(LST (R, c′), b′) = 5.5 · d2 = 22. Figure 4 (c) shows the treeLST (R1, c) ∪ LST (R2, c) and its weight is1.5 ·
d1 + (5 + ε) · d2 = 21.5 + 4ε < ω(LST (R, c), b) for small ε. Thus, whensv1 has cost1.5 + ε, it has bandwidth
reservationd2 = 4. Consider the cost vectorc′, Figure 4 (c) shows the treeLST (R1, c

′)∪LST (R2, c
′) and its weight

is 1.5 · d1 + (6 + 3ε) · d2 = 25.5 − 12ε > ω(LST (R, c′), b) for small ε. Thus, whensv1 has cost1.5 − ε, it has
bandwidth reservation0. This shows that the tree output by the algorithm in [13] violates the MNP property, which
implies that is not such truthful payment.
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Fig. 4. An example to show that simply choose the best solution may not work.

4 Payment Sharing

4.1 Preliminaries of Sharing Scheme

In this section, we assume that each receiver is willing to pay whatever a share of total payment/cost computed as long
as it isfair under some definitions. If the relay links are cooperative in declaring their truthful costs,i.e., the costs of
relay links are publically known, we essentially will study how to share the costs of the multicast tree among receivers
fairly. If the relay links are selfish, then we have to share the payments to these relay links. For fair cost sharing, most
of the literatures [18–20] used theEqual Link Split Downstream(ELSD) sharing scheme to charge receivers: thecost
of each link is sharedequallyamong all its downstream receivers. However, if we simply use the ELSD as our charging
scheme to share the payment, it usually is not reasonable in common sense.

Consider a setU of n players. For a subsetS ⊆ U of players, letC(S) be thecost4 of providing service toS.
HereC(S) could be the minimum cost, denoted byOPT(S), or the cost computed by some algorithmA, denoted
by A(S). We always assume that the cost functionC(S) is cohesive, i.e., for any two disjoint subsetsS1 andS2,
C(S1 ∪ S2) ≤ C(S1) + C(S2). A cost sharing scheme is simply a functionξ(i, S) with ξ(i, S) = 0 for i 6∈ S,
for every setS ⊆ U of players. An obvious criterion is that the sharing method should befair. While the definition
of budget-balance is straightforward, defining fairness is more subtle: many fairness concepts were proposed in the
literature, such ascore and bargaining set[26]. We call a charging schemeξ reasonableor fair if it satisfies the
following criteria.
1. Budget Balance (BB): The payment to all relay agents should be shared by all receivers,i.e., P(R, a) =∑

ri∈R ξ(i, R). When budget-balance cannot be met, we relax it toβ-budget-balanced. For all receiversR,
β · C(R) ≤ ∑

i∈R ξ(i, R) ≤ C(R), for some given parameterβ ≤ 1. Equivalently, if we divide the shares
by β, we would require that the total cost shares of all receivers are at least the cost of providing the service, but
do not exceed1β of that.

4 Here the cost is generic. It could be the payment to the links here.
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2. No Positive Transfer (NPT): Any receiverri’s sharing should not be negative. In other words, we don’t pay the
receiver to receive.

3. fairness under core(Core): For any subsetS ⊆ R,
∑

i∈S ξ(i, S) ≤ OPT(S). In other words, the cost shares
paid by any subset of players should not exceed the minimum cost of providing the service to them alone, hence
they have no incentives to secede.

4. Cross-monotonicity (CM): For any two subsetsS ⊆ T andi ∈ S, ξ(i, S) ≥ ξ(i, T ). In other words, the cost
share of a playeri should not go up if more players require the service. This is also calledpopulation monotone.
When each receiver has a maximum payment it is willing to pay to receive the multicast service, several other

properties could also be required. Letzi be the willing payment by receiverri to receive the multicast service. Letz
be the vector of the willing payments of all receivers. Some common requirements are
1. Voluntary Participation (VP): zi − ξz(i, S) ≥ 0 for any S ⊆ R. Users are always free to not receive the

transmission and not be charged, which would result in an individual welfare of zero; the network can’t force a
user to be worse off than this baseline option.

2. Consumer Sovereignty(CS): If the bids of all other players are fixed, for every playeri, there exists a threshold
τi such that playeri is guaranteed to get the service when its bid is at leastτi.

3. Group Strategyproof (GS): No group of receivers can increase their welfare by lying about their utilitiesw.
In this paper, we will study the payment sharing that satisfies a subset or all of the above properties. Notice that

the definition of “reasonable” can be changed due to different requirements. For example, a common criterion for
multicast charging scheme is to maximizenetwork welfare: select a subset of receivers such that the network welfare
is maximized. Here, the network welfare is defined as the total valuations of all selected receivers minus the cost of
the network providing service. Then instead of sharing the payment (or costs) among all receivers, we can only share
it among the selected receivers.

It was proved in [18] that a cost-sharing mechanism satisfies BB and GS if it satisfies the BB and cross-monotone
(CM) property. They also [18] offered a characterization of a whole class of budget-balanced and group strategyproof
mechanisms.

4.2 Payment Sharing for DiffServ Multicast

In this paper, we assume that each receiver’s willing payment is infinity. We obtain the following negative result for
multicast with tree construction method (illustrated by Algorithm 4) and payment scheme (illustrated by Algorithm
6).

Theorem 6. There is no payment-sharing mechanism satisfies both BB and CM for differentiated multicast if we use
tree construction method illustrated by Algorithm 4 and payment scheme illustrated by Algorithm 6.

PROOF. Recall that the standard Steiner tree heuristic LST and its coupled payment scheme is a special case of
tree construction algorithm 4 and payment scheme 6 when the bandwidth demand is homogeneous. Thus, in order
to prove the above theorem, we prove that there is no payment-sharing mechanism satisfies both BB and CM for
multicast with homogeneous bandwidth demand if we use tree construction algorithm 1 and payment scheme 4. We
prove this by presenting a counter example. In a networkG, the bandwidth demand is1 and the costs of links are
shown in Figure 5. The treeLST (r1, c) is shown in Figure 5 and the paymentP(r1, c) = 2.6. We assumef is
the payment-sharing scheme satisfying BB and GS. From the characterization of the payment-sharing satisfying BB
and GS, we obtainf1(r1, c) = P(r1, c) = 2.6. The treeLST (r2, c) is shown in Figure 5 and the total payment
P(r2, c) = 1.4+1.5 = 2.9. Similarly, we havef2(r2, c) = 2.9. The treeLST (r1∪ r2, c) is shown in Figure 5 and the
total paymentP(r1∪r2, c) = f1(r1∪r2, c)+f2(r1∪r2, c) = 6.5. Remember thatfi(R+j) ≤ fi(R) for all i, j ∈ P ,
thusf1(r1∪r2, c) ≤ f1(r1, c) = 2.6 andf2(r1∪r2, c) ≤ f2(r1, c) = 2.9. Therefore,f1(r1∪r2, c)+f2(r1∪r2, c) =
6.5 ≤ 2.9 + 2.6 = 5.5, which is a contradiction. This finishes our proof.

With the negative result from Theorem 6, we have to relax the requirement of BB for the payment sharing scheme
if cross-monotone is needed. Given a payment sharing scheme, if the total charge from the receivers is at leastβ times
of the total payment to the links, then we call this payment achieves aβ-budget-balance. If it is bothβ-budget-balance
and in the core, then it is calledβ-core. We first present the following result about theβ-core payment sharing scheme.

Lemma 2. There is noβ-core payment sharing scheme forβ = Ω(1/n) if Steiner tree heuristic LST is used.
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PROOF. We briefly show it by the example shown in Figure 6. The receiversq1 andq2 have demand1. There aren−1
nodes between nodesq1 andv4: v5, v6, · · · , vn+4. Every linkvivi+1, for i ≥ 5 has costε = 1

n . The payment to each
link is shown in Figure 6. Ifq1 andq2 play along, we haveξ(q1, {q1}) ≤ 2.6 andξ(q2, {q2}) ≤ 2.9. If q1 andq2 are
receivers, we haveξ(q1, {q1, q2}) + ξ(q2, {q1, q2}) ≤ 5.5 from the CM property. On the other hand, notice that the
total payment to links by providing service toq1 andq2 areC(q1 ∪ q2) = 5 + n · (0.5 + ε) = 6 + 0.5n. Thus, if a
payment sharing scheme isβ-core we should haveβ = Ω(1/n).

Currently, we are able to design a payment sharing scheme that is1
n2 -core for any strategyproof payment schemes

for DiffServ multicast. The detailed methods are omitted here due to space limit.

4.3 Cost Sharing for DiffServ Multicast

In this subsection, we study how to share the cost of DiffServ multicast among the set of receivers fairly. For the cost
sharing scheme, we first compute theLCPT cost sharing, then divide by1

r wherer is the number of the receivers. The
algorithm is summarized as following.

Although Algorithm 7 use the structure LCPT, but the actual multicast routing tree is still constructed by Algorithm
4. Regarding the cost sharing scheme 7, we have the following theorem. The proof of this theorem is similar to [9] and
thus is omitted.

Theorem 7. The cost sharing scheme 7 is cross-monotonic and1
8r -budget balance, wherer is the number of the

receivers.

When the DiffServ multicast tree is actually constructed based on LCPT, then the above cost-sharing scheme is
budget-balanced and in the core.

Theorem 8. The cost sharing scheme 7 is cross-monotonic, budget-balanced, and in the core if the DiffServ multicast
tree is actually constructed based on LCPT.
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Algorithm 7 Cost Sharing Scheme for DiffServ Multicast
Input: A networkG = (V, E), cost coefficients vectora, receiver setR, and the demand vectord.
Output: A cost sharing methodξ that is fair.

1: Set the costci = ai for each linkei.
2: Find the shortest path between source nodes and each receiverri ∈ R.
3: Union all these pathes to form a tree called Least Cost Path Tree (LCPT).
4: for every linkei in the LCPTdo
5: Sort ei’s downstream receivers according to their demands in an ascending order. If two or more receivers have the same

value, the receiver with smaller ID ranks first. Let{rσ0 , rσ1 , · · · , rσq(ei)
} be the downstream receivers. Here, we add a

dummy receiver with demanddσ0 = 0 to rankingσ.
6: For receivers that are not downstream receivers ofei, its sharing is0.
7: For a receiverqσk who is a downstream receiver ofei, its sharing is:

f i
σk

(R, a) =

kX
x=1

ak · (dσx − dσx−1)

q(ei)− x + 1
(2)

8: end for
9: The final sharing of receiverri is

ξ(i, R) =

P
ej∈E f j

i (R, a)

|R|

Based on this cost sharing scheme, we can also design a payment sharing scheme: treat the cost sharing of a
receiver simply as its shared payment. Then we can prove the following theorem.

Theorem 9. The payment sharing scheme induced from the cost sharing scheme 7 is cross-monotonic and1
8r·γ -budget

balanced, wherer is the number of the receivers andγ is the overpayment ratio of our DiffServ multicast.

PROOF. First, we prove that it is cross-monotonic. It was proved in [9] thatf j
i (R, a) ≥ f j

i σk(R′, a) for any receiver
ri, link ej andR ∈ R′. Thus, we have

f j
i (R, a)
|R| ≥ f j

i (R′, a)
|R′|

for any receiverri, link ej andR ∈ R′. Therefore,ξ(i, R′) =
P

ej∈E fj
i (R′,a)

|R′| ≤
P

ej∈E fj
i (R′,a)

|R′| ≤ ξ(i, R). This

proves that the cost sharing scheme is cross-monotonic. Following we prove that payment sharing scheme is1
8r·γ -

budge balanced. In other word, for any receiver setR, we should prove thatP(R,a)
8r·γ ≤ ∑

ri∈R ξ(i, R) ≤ P(R, a). For
the tree LCPT constructed in Algorithm 7, if we assign every linkei in LCPT a costai · bi, wherebi is the maximum
demand ofei’s downstream receivers, the cost of the tree LCPT is denoted asLCPT (R, a). Let T opt(R, a) be the
tree with the minimal cost, then|LCP(s, ri, G)| ≤ ω(T opt(R, a)) for anyri ∈ R. Thus, we have

|LCPT (R, a)| ≤
∑

ri∈R

|LCP(s, ri, G)| ≤ r · ω(T opt(R, a))

Recall that
∑

ri∈R ξ(i, R) = |LCPT (R,a)|
r ≤ ω(T opt(R, a)) < P(R, a), which proves one direction. For another

direction, remember that|LCPT (R, a)| ≥ T opt(R, a) ≥ ω(DMT (a,d),B)
8 ≥ P(R,a)

8γ . Thus, we have
∑

ri∈R ξ(i, R) =
|LCPT (R,a)|

r ≥ P(R,a)
8γ , which finishes our proof.

5 Conclusion

In this paper, we studied the differentiated multicast problem in a game theoretic context, where network links are
selfish agents who would demand payments to at least cover their costs when relaying data packets, and may lie
about their actual costs in order to maximize their gains. We show that a naive conversion of the previously known
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8-approximation algorithm does not work; the mechanism is either not strategyproof, or the resulting network struc-
ture is not a tree. We then propose an alternative approximation algorithm for differentiated multicast with the same
approximation bound. We also introduced a general method to convert any differentiated multicast algorithm satisfy-
ing the Monotone Non-increase Property to a strategyproof mechanism, and applied it to the algorithm we proposed.
Finally, we showed how the payments to the links can be shared fairly among nodes demanding multicast services.

References

1. K. Nichols, S. Blake, D.B.: Definition of the differentiated services field (ds field) in the ipv4 and ipv6 headers. In: IETF RFC
2474. (1998)

2. K. Nichols, S.B.: Differentiated services operational model and definitions. In: Networking. (1993)
3. Wang, X., Schulzrinne, H.: Pricing network resources for adaptive applications in a differentiated services network. In:

INFOCOM. (2001) 943–952
4. Maxemchuk, N.F.: Video distribution on multicast networks. IEEE JSAC (1997)
5. Klein, P., Ravi, R.: A nearly best-possible approximation algorithm for node-weighted steiner trees. J. Algorithms19 (1995)

104–115
6. Guha, S., Khuller, S.: Improved methods for approximating node weighted steiner trees and connected dominating sets. In:

Foundations of Software Technology and Theoretical Computer Science. (1998) 54–65
7. Takahashi, H., Matsuyama, A.: An approximate solution for the steiner problem in graphs. Mathematical Japonica24 (1980)

573–577
8. Robins, G., Zelikovsky, A.: Improved steiner tree approximation in graphs. In: Proceedings of ACM/SIAM Symposium on

Discrete Algorithms. (2000) 770–779
9. Wang, W., Li, X.Y., Sun, Z., Wang, Y.: Design multicast protocols for non-cooperative networks. In: IEEE INFOCOM. (2005)

Accepted for publication.
10. Wang, W., Li, X.Y., Wang, Y.: Truthful mutlicast in selfish wireless networks. In: ACM MobiCom 2004. (2004)
11. Karpinski, M., Mandoiu, I.I., Olshevsky, A., Zelikovsky, A.: Improved approximation algorithms for the quality of service

steiner tree problem. In: WADS. (2003)
12. Balakrishnan, A., Magnanti, T., Mirchandani, P.: Modeling and heuristic worst-case performance analysis of the two-level

network design problem. Management Science (1994) 846–867
13. Balakrishnan, A., Magnanti, T., Mirchandani, P.: Heuristics, lps, and trees on trees: Network design analyses. Operations

Research (1996) 478–496
14. Charikar, M., Naor, J.S., Schieber, B.: Resource optimization in qos multicast routing of real-time multimedia. In: IEEE

INFOCOM. (2000)
15. Calinescu, G., Fernandes, C., Mandoiu, I., Olshevsky, A., Yang, K., Zelikovsky, A.: Primal-dual algorithms for qos multimedia

multicast. In: GlobeCom. (2003)
16. Xue, G., Lin, G.H., Du, D.Z.: Grade of service steiner minimum trees in the euclidean plane. Algorithmica (2001) 479–500
17. Kim, J., Cardei, M., Cardei, I., Jia, X.: A polynomial time approximation scheme for the grade of service steiner minimum

tree problem,. Journal of Global Optimization24 (2002) 439–450
18. Moulin, H., Shenker, S.: Strategyproof sharing of submodular costs: Budget balance versus efficiency. In: Economic Theory.

Volume 18. (2001) 511–533
19. Feigenbaum, J., Papadimitriou, C.H., Shenker, S.: Sharing the cost of multicast transmissions. Journal of Computer and System

Sciences63 (2001) 21–41
20. Herzog, S., Shenker, S., Estrin, D.: Sharing the “cost” of multicast trees: an axiomatic analysis. IEEE/ACM Transactions on

Networking5 (1997) 847–860
21. Vickrey, W.: Counterspeculation, auctions and competitive sealed tenders. Journal of Finance (1961) 8–37
22. Clarke, E.H.: Multipart pricing of public goods. Public Choice (1971) 17–33
23. Groves, T.: Incentives in teams. Econometrica (1973) 617–631
24. Kao, M.Y., Li, X.Y., Wang, W.: Polynomial-time truthful mechanisms for binary selection problems: A general design frame-

work (2004) Submitted for publication.
25. Mu’alem, A., Nisan, N.: Truthful approximation mechanisms for restricted combinatorial auctions: extended abstract. In:

Proceedings of the 18th National Conference on Artificial Intelligence, Edmonton, Alberta, Canada, American Association for
Artificial Intelligence (2002) 379–384

26. Osborne, M.J., Rubinstein, A.: A course in game theory. The MIT Press (2002)



16

6 Appendix

Theorem3 Algorithm 3 constructs a tree whose weight is at most8 times the weight of the minimal cost differentiated
service treeT opt.
PROOF. For notational convenience, we useT and B to denote the tree and bandwidth allocation vector output
by Algorithm 3. Remember thatTi is the tree found in theith iteration by applying Algorithm 1. Without loss of
generality, we assume that there arel iterations in Algorithm 3.R1, R2, · · · , Rl is a partition of receiver setR, and
we useRmax

i (respectivelyRmin
i ) to denote the maximum (respectively minimal) bandwidth demand in the receiver set

Ri.
Notice that every link inT opt(R1) should be able to supply a bandwidth larger thanRmin

1 , then

ω(T1, B) ≤ ·ω(T1, 〈Rmax
1 〉)

≤ 2Rmax
1 · ω(Tmin(R1, a), 〈1〉)

≤ 2Rmax
1 · ω(T opt(R1), 〈1〉)

= 2Rmax
1 ·

X
ei∈T opt(R1)

ai ≤ 4Rmin
1 ·

X
ei∈T opt(R1)

ai

= 4ω(T opt(R1), 〈Rmin
1 )〉) ≤ 4ω(T opt(R1), B

opt)

For setR2, we have

ω(T2, B) ≤ ω(T2, 〈Rmax
2 〉)

≤ 2Rmax
2 · ω(Tmin(R2, a), 〈1〉)

≤ 2Rmax
2 · ω(T opt(R2), 〈1〉)

≤ 2Rmax
2 · ω(T opt(R1 ∪R2), 〈1〉)

≤ 2Rmax
2 · [ω(T opt(R1), 〈1〉) + ω(T opt(R2)− T opt(R1), 〈1〉)]

= 2Rmax
2 ·

X
ei∈T opt(R1)

ai + 4
X

ei∈T opt(R2)−T opt(R1)

ai ·Rmin
2

≤ 2Rmin
1 ·

X
ei∈T opt(R1)

ai + 4
X

ei∈T opt(R2)−T opt(R1)

ai ·Rmin
2

= 2ω(T opt(R1), 〈Rmin
1 〉) + 4ω(T opt(R2)− T opt(R1), 〈Rmin

2 〉)
≤ 2ω(T opt(R1), B

opt) + 4ω(T opt(R2)− T opt(R1), B
opt)

Similarly, for any setRi (1 ≤ i ≤ l) we have

ω(Ti, B) ≤ 4

iX
j=1

1

2i−j
ω(T opt(Rj)−

j−1[
k=1

T opt(Rk), Bopt)

Summing the inequalities fori from 1 to l, we obtain

ω(T, B) = ω(

l[
i=1

Ti, B) ≤
lX

i=1

ω(Ti, B)

≤
lX

i=1

4

iX
j=1

1

2i−j
ω(〈T opt(Rj)−

j−1[
k=1

T opt(Rk), Bopt)

= 4

lX
i=1

[ω(〈T opt(Ri)−
i−1[
j=1

T opt(Rj), B
opt) ·

l−iX
k=0

2−k]

= 8

lX
i=1

[ω(〈T opt(Ri)−
i−1[
j=1

T opt(Rj), B
opt)]

= 8ω(T opt(

l[
i=1

Ri), B
opt)) = 8ω(T opt(R), Bopt))

This finishes our proof.
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Lemma 3. Algorithm 2 defines a truthful payment scheme.

PROOF. Hereafter, we always fixa−i, i.e., we are interested only inai. To simplify our notation, we denotebi(A, ai)
asbi(ai). Notice that whenei reveals its true coefficientai, its utility is

ui(ai) = Pi(ai)− ai · bi(ai) = κi(ai)− ai · bi(ai) =
∫ xp+1

ai

bi(y)dy +
m∑

j=p+1

∫ xj+1

xj

bi(y)dy

Remember thatbi(y) is non-negative. Thusui(ai) ≥ 0, which implies that payment scheme 2 satisfies IR. To prove
that payment scheme 2 satisfies IC, we prove it by cases.

Case 1:Nodei lies its cost upward toai. In this case, we assumexp′ < ai ≤ xp′+1. Sinceai < ai, p ≤ p′. The
utility of nodei becomes

ui(ai) = pi(ai)− ai · bi(ai) = ξ(ai)− ai · bi(ai) =
∫ xp′+1

ai

bi(y)dy +
m∑

j=p′+1

∫ xj+1

xj

bi(y)dy + ai · bi(ai)− ai · bi(ai)

There are two subcases here. Ifp < p′ then

ui(ai) =
∫ xp+1

ai

bi(y)dy +
m∑

j=p+1

∫ xj+1

xj

bi(y)dy

=
∫ xp+1

ai

bi(y)dy +
p′−1∑

j=p+1

∫ xj+1

xj

bi(y)dy +
∫ ai

xp′
bi(y)dy +

∫ xp′+1

ai

bi(y)dy +
m∑

j=p′+1

∫ xj+1

xj

bi(y)dy

≥ bi(ai) · [(xp+1 − ai) + (
p′−1∑

j=p+1

(xj+1 − xj)) + (ai − xp′)] +
∫ xp′+1

ai

bi(y)dy +
m∑

j=p′+1

∫ xj+1

xj

bi(y)dy

= bi(ai) · (ai − ai) +
∫ xp+1

ai

bi(y)dy +
m∑

j=p′+1

∫ xj+1

xj

bi(y)dy = ui(ai)

If p = p′ then

ui(ai) =
∫ xp+1

ai

bi(y)dy +
m∑

j=p+1

∫ xj+1

xj

bi(y)dy =
∫ xp′+1

ai

bi(y)dy +
m∑

j=p′+1

∫ xj+1

xj

bi(y)dy

= ui(ai)− (ai − ai) · bi(ai) +
∫ ai

ai

bi(y)dy ≥ ui(ai)− (ai − ai) · bi(ai) + (ai − ai) · bi(ai) = ui(ai)

Thus, linkei have no incentive to lie its coefficient upward.
Case 2:Link ei lies its coefficient downward toai. In this case, we assumexp′ < ai ≤ xp′+1. Sinceai > ai,

p ≥ p′. The utility of nodei becomesui(ai) = bi(ai) · (ai − ai) +
∫ xp′+1

ai
bi(y)dy +

∑m
j=p′+1

∫ xj+1

xj
bi(y)dy.

There are two subcases here also. Ifp > p′ then

ui(ai) = bi(ai) · (ai − ai) +
∫ xp′+1

ai

bi(y)dy +
p−1∑

j=p′+1

∫ xj+1

xj

bi(y)dy +
∫ ai

xp

bi(y)dy +
∫ xp+1

ai

bi(y)dy +
m∑

j=p+1

∫ xj+1

xj

bi(y)dy

≤ bi(ai) · (ai − ai) +
∫ xp′+1

ai

bi(ai)dy +
p−1∑

j=p′+1

∫ xj+1

xj

bi(ai)dy +
∫ ai

xp

bi(ai)dy + ui(ai)

= bi(ai) · (ai − ai) + bi(ai) · (ai − ai) + ui(ai) = ui(ai)

If p = p′ then

ui(ai) = bi(ai) · (ai − ai) +
∫ xp′+1

ai

bi(y)dy +
m∑

j=p′+1

∫ xj+1

xj

bi(y)dy

= bi(ai) · (ai − ai) +
∫ ai

ai

bi(y)dy + ui(ai) ≤ bi(ai) · (ai − ai) +
∫ ai

ai

bi(ai)dy + ui(ai) = ui(ai)
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This proves that nodei does not have incentive to lie downward. Thus, the payment scheme 2 satisfies IC. Therefore,
the payment scheme 2 is truthful.

Theorem2 Given an algorithmA satisfying MNP, the payment scheme defined by Algorithm 2 is theonlynormalized
truthful scheme.
PROOF. In inequality 1, substitutex for ai1 andx+δ for ai2 we obtain(x+δ)(bi(x)−bi(x+δ)) ≥ Pi(x)−Pi(x+δ) ≥
x(bi(x)− bi(x + δ)). Whenbi(x) is continuous atx, we can setδ → 0 and obtain

(x + δ) · d(−bi(x)) ≥ d(−Pi(x)) ≥ x · d(−bi(x)) (3)

From equation 3, ifx is continuous in(l, u), then we obtain

−pi(x)|ul = pi(l)− pi(u) =
∫ u

l

xd(−bi(x)) = −
∫ u

l

xd(bi(x)) = −[xbi(x)|ul −
∫ u

l

bi(x)dx] = l · bi(l)− u · bi(u) +
∫ u

l

bi(x)dx

Setl = xj andu = xj+1 (1 ≤ j ≤ q), we obtain

Pi(xj)− Pi(xj+1) = xj · bi(xj)− xj+1 · bi(xj+1) +
∫ xj+1

xj

bi(x)dx

Assumexp ≤ ai < xp+1, then summingj from p + 1 to q we obtain

Pi(xp+1) = Pi(xp+1)−Pi(xq+1) =
q∑

j=p+1

pi(xj)− pi(xj+1)

=
q∑

j=p+1

[xj · bi(xj)− xj+1 · bi(xj+1)] +
q∑

j=p+1

∫ xj+1

xj

bi(x)dx = xp+1 · bi(xp+1) +
q∑

j=p+1

∫ xj+1

xj

bi(x)dx

Let l = ai andu = xp+1, we havePi(ai)−Pi(xp+1) = ai ·bi(ai)−xp+1 · bi(xp+1)+
∫ xp+1

ci
bi(y)dy. Combining

the above two equations we obtain

Pi(ai) = xp+1 · bi(xp+1) +
q∑

j=p+1

∫ xj+1

xj

bi(x)dx + ai · bi(ai)− xp+1 · bi(xp+1) +
∫ xp+1

ai

bi(x)dx

= ai · bi(ai) +
∫ xp+1

ai

bi(y)dy +
q∑

j=p+1

∫ xj+1

xj

bi(x)dx

This finishes our proof.


