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Abstract

In SONET/WDM networks, one fiber supports multiple
wavelengths and each wavelength supports several low rate
tributary streams. Traffic grooming is then defined as prop-
erly using SONET Add/Drop Multiplexer (ADM) to elec-
tronically multiplex and demultiplex required tributary traf-
fic patterns with minimal resource cost (wavelengths and
ADMs).

This paper studies the traffic-grooming problem in single
hub SONET/WDM networks and extends existing results.
We analyze the real deployments, generalize their results,
and study the practical special cases. We prove that BLSR/2
would never be more expensive than UPSR under any traf-
fic pattern. We present the exact minimum costs of uniform
traffic in both UPSR and BLSR/2. We also give approxima-
tion algorithms for optimal grooming of non-uniform traffic
after showing that this problem is NP-complete. Finally, we
consider how to select the line speeds if there are two dif-
ferent line speeds available.

Keyword: Traffic grooming, SONET/WDM ring,
UPSR, BLSR/2, single-hub, bin packing.

1 Introduction

Recently as the Internet is booming, and B-ISDN ser-
vices such as eConference, multimedia communication,

VoIP, HDTV, VOD, start to be incentive for customers,
bandwidth requirement grows rapidly. At the low end,
homes are connected to digital world by existing wires. One
trend is to use fast connections such as Cable Modem and
DSL technique to access B-ISDN services. Another com-
ing trend is to use fast wireless connections to connect to the
digital world, rather than to use only one telephony channel.

Naturally, following the trend is the usage of optical
communication technique, which has originally been used
to support the high-end wide area network (WAN) for set-
ting up high-speed MAN feeder networks and LAN ac-
cess networks. In recent years, as the commercial opti-
cal communication standard, SONET/SDH coupling with
WDM (Wavelength Division Multiplexing) technique has
been deployed to provide B-ISDN services for customers.
SONET rings are embedded in WDM rings, and one wave-
length supports one SONET ring if without considering
self-healing mechanism. Figure 1, Figure 2 and Figure 3
give some examples of its deployments.

Along with such an immigration are new engineer-
ing problems of network designing and planning of
SONET/WDM MANs and LANs. Among those new en-
gineering problems, we focus on the traffic-grooming prob-
lem. Notice that, in the long-haul fiber networks, each fiber
needs many repeaters (say, EDFA: Erbium-doped-fiber-
amplifier) and carries larger data volumes, Thus the number
of available wavelengths is a rare resource. However, we
often can assume that we have enough fibers to lighten for



Figure 1. SONET/SDH over WDM, a likely Metropolitan
deployment.

MAN and LAN deployments. In other words, we assume
that wavelengths are sufficient and the terminating devices
dominate the cost in this paper. Indeed, till now the bot-
tleneck of optical communication applications lies on the
O/E and E/O boundaries. Though SONET/SDH ADM pro-
vides proper and cost-efficient multiplexing/demultiplexing
and O-E/E-O conversions for SONET networks, it is still
expensive. So when planning to set up SONET/SDH net-
works in metropolitan and local areas, we will focus on how
to minimize the number of SONET/SDH Add/Drop Multi-
plexers (ADMs).

The minimum ADM cost depends on both the under-
lying network architecture and the traffic pattern. Two
types of SONET self-healing rings have been widely used:
unidirectional path-switched rings (UPSR); two-fiber bi-
directional line-switched rings (BLSR/2). The traffic could
have some regular patterns such as one-to-all and all-to-all,
or any irregular pattern. The traffic demands may be uni-
form (i.e. all traffic have the same amount of demands) or
non-uniform. Each traffic demand itself is given as an inte-
ger number of low speed (tributary) streams. Alternatively,
it can also be represented by its traffic granularity, defined
as the ratio of its demand to the transmission capacity of a
single wavelength. A traffic is said to be a full-wavelength
traffic, a sub-wavelength traffic or a super-wavelength traf-
fic if its traffic granularity is equal to one, less than one, or
greater than one respectively.

The minimum ADM problem has been discussed in a
number of recent works [4, 6, 7, 8, 10, 12, 13]. [6] and [8]
studied optimal grooming of arbitrary full-wavelength light-
paths. [4], [12] and [13] provided grooming of uniform 1
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–wavelength traffic. [7] and [10] gave some prelim-
inary results on the traffic groomings in single-hub rings. In
[10], an optimal grooming of uniform one-to-all traffic in
single-hub UPSR rings was presented. Then it can be gen-
eralized to any uniform traffic. It also gave lower and upper
bounds on the ADM cost of uniform all-to-all traffic with-

Figure 2. SONET/SDH access network (LAN) deploy-
ments. Here each ring node will support the telephony and
digital services for one building. Ring nodes are connected
to a hub at center office. Ring nodes will add/drop OC-
3/ OC-12 tributary streams contained in wavelength chan-
nels to ATM switches. Here OC-3 (155Mbps) and OC-12
(622Mbps) are two basic ATM bit rates.

Figure 3. Typical SONET Networks. Here DS-1 is a con-
nection with capacity of 24 linking to PBX of small com-
panies and DS-3 is with capacity of 672 for bigger compa-
nies. TCP/IP is for Intranet such as campus networks and
ATM provides statistical multiplexing for B-ISDN connec-
tions with different QoS (Quality of Service) requirements.



out a hub. In [7], lower and upper bounds on the ADM
cost of uniform all-to-all traffic in both single-hub UPSR
and single-hub BLSR/2 were obtained. The economics of
these two types of rings were then justified by the two lower
bounds. A remark on this justification is that it makes logi-
cal sense only if the lower bounds are sufficiently close the
optimum. In addition, [7] also briefly discussed the crite-
ria for using UPSR vs. BLSR rings and to mix two types of
line speeds on a single SONET/WDM ring. In this paper we
will further the works in [7] and [10] and provide stronger
results.

The paper is structured as follows. In Section 2, we
formulate the traffic grooming problem, after showing that
we need only concentrate on one-to-all simplex traffic. We
prove that BLSR/2 always costs no more than UPSR under
any traffic, and show that the search for an optimal groom-
ing can be confined to a narrow subset of valid groomings,
referred to as canonical groomings. In Section 3, we con-
struct optimal canonical groomings of uniform one-to-all
traffic in both UPSR and BLSR/2 rings and derive the an-
alytic expression of the minimum ADMs. An approximat-
ing scheme for nonuniform traffic request is presented after
showing that this problem is NP-complete. We also discuss
how to select the line speeds if there are two line speeds
available in Section 4. We conclude our paper in Section 5.

2 Problem Formulation and Canonical
Grooming

We consider a single-hub SONET/WDM ring compris-
ing of N + 1 nodes numbered 0; 1; � � � ; N clockwise, with
the hub placed at node 0. The traffic demand and the trans-
mission capacity of each wavelength are in terms of the ba-
sic low-rate (e.g., OC-3) traffic streams. Let g be the trans-
mission capacity of a single wavelength.

We first show that all traffic grooming problems can be
reduced to solving one-to-all simplex traffic grooming. We
establish a reduction from grooming of any duplex traffic to
grooming of one–to-all duplex traffic, and from grooming
of one–to-all duplex traffic to grooming of one-to-all sim-
plex traffic. Thus any optimal grooming of one-to-all sim-
plex leads to an optimal grooming of one-to-all duplex and
an optimal grooming of all-to-all duplex. Therefore, from
then on we concentrate on only one-to-all simplex traffic.

2.1 Reduction to One-to-All Simplex Traffic

Assume that the traffic between any pair of nodes is full-
duplex and the traffic demand between node i and j is rij .
As the traffic stream between any pair of nodes must be
routed through the hub, any traffic pattern can be treated as
a number of duplex requests between the hub and all other

nodes. To be more specific, in the equivalent one-to-all du-
plex traffic, the traffic demand between node i and the hub
is

ri =
X
j 6=i

rij

for all 1 � i � N . Thus it is sufficient for us to consider
only one-to-all duplex traffic.

In the following we take a further step of reduction. Let
ADMd (r1; � � � ; rN ) be the minimum ADM cost of a one-
to-all duplex traffic, in which the demand between node i
and the hub is ri for 1 � i � N . Let ADMs (r1; � � � ; rN )

be the minimum ADM cost of a one-to-all simplex traffic,
in which the demand from the hub to node i is ri for 1 �
i � N . Obviously, in either UPSR or BLSR,

ADMd (r1; � � � ; rN ) � ADMs (r1; � � � ; rN ) (1)

as the one-to-all duplex traffic is a superset of one-to-all
simplex traffic. On the other hand, any grooming of the
simplex traffic naturally gives rise to a grooming of the cor-
responding duplex traffic with the same cost in the follow-
ing way. Let w be any wavelength used in the grooming
of the simplex traffic, and let rwi be the portion of the de-
mand from the hub to node i carried in wavelength w. Now
consider the following grooming of the duplex traffic: we
use the same set of wavelengths used in the grooming of the
simplex traffic, each wavelength w carries rwi units of de-
mand from the hub to node i and rwi units of demand from
node i to the hub for all 1 � i � N . It’s easy to see that such
grooming is a valid solution and it uses the same number of
ADMs. Thus

ADMd (r1; � � � ; rN ) � ADMs (r1; � � � ; rN ) : (2)

From Equation 1 and Equation 2, we have

ADMd (r1; � � � ; rN ) = ADMs (r1; � � � ; rN ) :

The following lemma summarizes this reduction.

Lemma 2.1 The minimum ADM cost of any one-to-all du-
plex traffic is same as that of the corresponding one-to-all
simplex traffic.

2.2 Problem Formulation

So from now on, we will only concentrate on the groom-
ing of one-to-all simplex pattern. Thus for single hub
SONET/SDH (over WDM) networks, the traffic grooming
problem has the following formulation.

Instance: Given a single hub SONET/WDM ring compris-
ing of N + 1 nodes, and the hub is placed at node 0.
The traffic request from node i to the hub 0 is ri, for
1 � i � N . Also assume that one wavelength supports
g tributary streams.



Solution: A valid assignment of tributary streams in wave-
lengths to the traffic set.

Objective: Minimize the number of needed ADMs.

Figure 4. The optimal grooming scheme for the given in-
stance. Here for this instance, the communication capacity
requests are: a�e 30 OC-3’s, b�e 20 OC-3’s, c�e 9 OC-
3’s, d � e 17 OC-3’s. Each wavelength channel supports
g = 16 OC-3’s. Assume hub e is a node at some center
office.

For example, assume in Figure 2, four buildings a; b; c; d
need capacity 30 OC-3’s, 20 OC-3’s, 9 OC-3’s, 17 OC-3’s
to connect to the center office node e respectively. Then
the optimal solution is shown in Figure 4 and uses 12
SONET/SDH ADMs (if considering self-healing we have
to double this number).

2.3 UPSR vs. BLSR/2

In [7], the economics of single-hub UPSR and single-
hub BLSR/2 are justified by comparing the lower bounds
on the minimum ADM cost of uniform all-to-all duplex traf-
fic, which is essentially the minimum ADM cost of corre-
sponding uniform one-to-all simplex traffic according to the
reductions made in the previous section. Logically, the con-
clusion drawn from such comparison is reasonable only if
the lower bounds are sufficiently close to the optimum. Fur-
thermore, the conclusion may still not be persuasive by just
considering uniform requests. In this section, we prove that
under any type of traffic, the single-hub BLSR/2 costs no
more than the single-hub UPSR. The argument applies to
any traffic pattern.

Theorem 2.2 Given any set of traffic demands, the single-
hub BLSR/2 costs no more than the single-hub UPSR.

PROOF. Consider any grooming of the given set of de-
mands in UPSR. Let w be any wavelength used in working
ring in the UPSR, and let rwi be the portion of the demand

from the hub to node i carried in wavelength w. Now con-
sider the following grooming in the BLSR/2: each wave-
length w is used in both rings of the BLSR/2, and in each
ring the wavelength w carries rwi =2 units of demand from
the hub to node i for all 1 � i � N . It’s easy to see that such
grooming is a valid solution and it uses the same number of
ADMs as in UPSR. Thus the theorem is true.

In Section 3.1, we will quantize the exact cost difference
if the given traffic is uniform.

2.4 Canonical Grooming

In [10], it claimed that the search of optimal grooming of
uniform traffic in UPSR can be confined to those canonical
groomings defined by us later. We give a formal proof of the
claim and generalize this property to arbitrary traffic pattern
with arbitrary traffic demands in both UPSR and BLSR/2.

Given a set of demands fr1; � � � ; rNg in a UPSR and the
wavelength capacity g, a grooming is said to be a canonical
grooming if at each node 1 � i � N , its demand is carried

in
l
ri
g

m
wavelengths, among which

j
ri
g

k
wavelengths each

carries g units of demands to node i, and the remaining one,
if there is any, carries ri mod g units of demands to node i.

Given a set of demands fr1; � � � ; rNg in a BLSR/2 and
the wavelength capacity g, a grooming is said to be a canon-
ical grooming if at each node 1 � i � N , its demand

is carried in
l
ri
g

2

m
=

l
2ri
g

m
wavelengths (counting each

wavelength used in both directions as two), among whichj
ri
g

2

k
=

j
2ri
g

k
wavelengths each carries g

2
units of demands

to node i, and the remaining one, if there is any, carries
ri mod

g

2
units of demands to node i.

The next lemma states that when looking for optimal
traffic grooming, we can pay attention to only these canon-
ical groomings.

Lemma 2.3 Given any set of demands in UPSR or BLSR/2,
there is a canonical grooming with minimum ADM cost.

PROOF. We prove the lemma by transforming any given
optimal grooming into a canonical grooming with the same
cost in a number of steps. The procedure at each step is as
follows. Suppose that the current optimal grooming is not
canonical. Then at some node i, two portion of its demands,
0 < f2 � f1 < g, are carried in two wavelengths w1 and
w2 respectively. We consider two cases.

Case 1: f1 + f2 � g. We use an unused wavelength
to carry the two portion of demands f1 and f2 instead of
using w1 and w2. Then in the new wavelength two ADMs
are used to carry these f1 + f2 portion. But the two ADMs
used at node i in the wavelengths w1 and w2 are removed.
So the ADM cost does not increase.



Case 2: f1 + f2 > g. We swap all traffic except f1
carried in wavelengthw1 with the g�f1 portion within f2 in
wavelength w2. In the resulting grooming, wavelength w1

carries the full g units of demands to node i, and wavelength
w2 carries f1+f2�g units of demands to node i. The total
ADM cost remains the same.

Notice that the number of wavelengths carrying portion
traffic of node i is decreased by 1 in both cases. It’s easy
to see that one canonical grooming can be reached after a
finite number of such procedures. The resulting canonical
grooming has the minimum ADM cost and thus is optimal.

In the next section, we will apply Lemma 2.3 to find
the minimum ADM cost of uniform traffic and non-uniform
traffic by designing optimal or suboptimal canonical groom-
ings.

3 Practical Solutions

3.1 Uniform Traffic Grooming

In this section, we present the optimal canonical groom-
ing of uniform traffic in both single-hub UPSR and single-
hub BLSR/2. We assume that the traffic demand from each
node to the hub is r.

We first consider the optimal grooming of uniform traffic
in single-hub UPSR.

First, let us consider r mod g = 0. Then the optimal
canonical grooming is unique in the sense that each wave-
length carry g units of demands exclusively to some node.
Thus each node contributes 2 � r

g
= 2r

g
ADMs: half at the

node itself and half at the hub. So the total ADM cost in the
working fiber is N � 2r

g
= 2Nr

g
. The total ADM cost is then

4Nr
g

if protection fiber is also considered.
Now we assume that r mod g > 0. In any canonical

grooming, at each node there are r � r mod g portion of

demands carried in
j
r
g

k
wavelengths exclusively. These

demands use 2N
j
r
g

k
ADMs in the working fiber. In any

optimal grooming, the remaining demands at each node, re-
ferred to as residue demands, must use a minimum ADM
cost. This can be achieved in the same way as in [10]. We

partition the N nodes into

�
N

b
g

rmodg c

�
groups of at mostj

g

rmodg

k
nodes. The residue demands of nodes in each

group are carried in a single wavelength. These residue de-

mands totally requireN+

�
N

b
g

rmodgc

�
ADMs in the working

fiber. Thus the total ADMs used in the working fiber is

N

�
r

g

�
+N

�
r

g

�
+

2
666

Nj
g

rmodg

k
3
777 :

Let

F (g; r;N) =

8
>>><
>>>:

2Nr
g

If r mod g = 0;

N
l
r
g

m
+N

j
r
g

k
+

2
666

Nj
g

rmodg

k
3
777

otherwise.

Then the minimum ADM cost in the working fiber is
F (g; r;N), and the total ADM cost is 2F (g; r;N):

Similarly, the minimum ADM cost in BLSR/2 is
F ( g

2
; r;N). The optimum canonical grooming can be con-

structed in the similar way.
The next theorem summarizes the above discussions.

Theorem 3.1 The minimum ADM costs of uniform traffic
demand with rate r in UPSR and BLSR/2 are 2F (g; r;N)

and F ( g
2
; r;N) respectively.

In Section 2.3, we have proved the BLSR/2 always costs
no more than UPSR under any traffic patten. When the traf-
fic is uniform, this can be verified by the inequality

F (
g

2
; r;N) � 2F (g; r;N):

Notice that the cost difference of UPSR and BLSR/2 is
2F (g; r;N)� F ( g

2
; r;N) for uniform traffic.

3.2 Non-uniform Traffic Grooming

3.2.1 General Approach

It was proved in [10] that the optimal grooming of non-
uniform sub-wavelength traffic grooming for UPSR is NP-
complete. By applying Lemma 2.3, we can prove that the
optimal grooming of arbitrary non-uniform traffic is NP-
complete in both UPSR and BLSR/2. The reduction is also
made from the well-known bin-packing problem.

Lemma 3.2 Bin Packing problem reduces to single hub
traffic grooming problem.

PROOF. Due to the canonical lemma, assume each request
ri requires ri mod g tributary streams lying in one frac-
tional wavelength and all other tributary streams lying inj
ri
g

k
wavelengths exclusively. Each wavelength supports g

tributary streams. So we have to solve a bin packing prob-
lem: to pack N objects into as few as possible bins, where
the i-th object requires capacity of ri mod g and the bin
size is g. The inverse reduction also holds.

In the next, we present approximation algorithms to
groom non-uniform traffic for UPSR. Given a traffic de-
mands r1; � � � ; rN , a canonical grooming is constructed as
follows. At each node i, we carry ri � ri mod g portion

of demands in
j
ri
g

k
wavelengths exclusively. And we use a

bin-packing approximation algorithm to groom all residue
demands ri mod g, for 1 � i � N .



Then we analyze the performance of the bin packing
method as follows. Let Opt be the minimum ADM cost.
We divide the total ADM cost to two portions: the first por-
tion is the cost of ADMs shared by more than one node at
the hub; the second portion, denoted by Cbase, is the total
cost of rest of ADMs (i.e., devoted to exactly one node at
the hub or used at each node). It is simple to show that

Cbase =

NX
i=1

�
ri

g

�
+

NX
i=1

�
ri

g

�
:

Then the minimum ADM cost at the hub required by the
residue demands is Opt�Cbase. Consider any approxima-
tion algorithmA for the bin-packing problem. Assume that
A has approximation ratio �. Then the ADM cost at the hub
required by the resulting grooming of the residue demands
is at most � (Opt� Cbase), if we apply A to groom the
residue demands. So the total ADM cost of the grooming
constructed in this way is

Cbase + � (Opt� Cbase) = � �Opt� (�� 1)Cbase:

Then the approximation ratio of this scheme is

� � Opt� (�� 1)Cbase

Opt
= �� (�� 1)

Cbase

Opt
:

Notice that the number of ADMs used at the hub is at most
the total ADMs used at all non-hub nodes. Hence, we have
Cbase � Opt � Cbase. So the number of ADMs used by
the above scheme is within �+1

2
factor of the optimum. The

following theorem summarizes the above analysis.

Theorem 3.3 Using an�-approximation bin-packing algo-
rithm to groom the residue demands, the ADM cost by the
canonical grooming is within �+1

2
factor of the optimum.

There are a number of bin packing approximation al-
gorithms developed [3]. The off-line First-Fit-Decreasing
(FFD) bin packing method first sorts the input objects in the
decreasing order, and then assigns the bins sequentially for
objects. The assigned bin is the first bin that still can fit the
current object. It gives a 11

9
approximation for the minimal

number of bins used [3]. In turn it gives a 10
9

approximation
non-uniform traffic grooming algorithm as following. First
we sort the residual demands ri mod g at all non-hub nodes
decreasingly, and assign it to the first ADM with sufficient
spare capacity.

3.2.2 Special Cases

For real world application, the number of tributary streams
one wavelength can support is limited by SONET protocol.
For example, besides SONET historically supports T1, E1,
T3 and other streams, now in ISDN networks it is generally

used to support OC-12 (ATM base rate 622Mbps) and OC-
3 (ATM base rate 155 Mbps) by wavelength channels with
speed OC-48 and OC-192. Thus one OC-48 can support 4
OC-12’s (i.e., g = 4) and 16 OC-3’s (i.e., g = 16). One
OC-192 supports 16 OC-12’s (i.e., g = 16) and 64 OC-3’s
(i.e., g = 64).

Now we study how to groom non-uniform traffic when
the traffic demands at each node is integer. Let di =

ri mod g be the residual demand at node i, where ri is in-
teger traffic demand at node i. So for several specific g’s,
we consider how to solve the integer bin packing problem
exactly. At following paragraphs we give the optimal solu-
tions for g = 2; 4; 8 and the proof of optimality is omitted.
We also find that some solutions are very similar (but not
totally the same) with that given by the FFD scheme, which
suggests that FFD is really a good heuristic for SONET traf-
fic grooming problem. Recall that we had proved that FFD
gives a grooming whose cost is no more than 10

9
factor of

the optimum.

The Case g = 2: We consider a bin packing problem
where each bin has capacity g = 2 and each object has
volume 1. Assume we have k nodes with residual 1, then
we exactly need

�
k
2

�
ADMs.

The Case g = 4: In this case, we have residue di 2

f1; 2; 3g. Assume we have n1 nodes with residue 1, n2
nodes with residue 2, n3 nodes with residue 3 among all
nodes. The following steps give an optimal solution:

1. First we need n3 ADMs for those nodes with residue
di = 3. We also can use these ADMs to carry the
traffic of min(n1; n3) nodes whose residue is 1.

2. Now we need
�
n2
2

�
ADMs for those nodes with

residue 2. We may also fill at most 2 nodes with
residue 1 if n2 is odd and there is any nodes with
residue 1 and remaining unfilled.

3. Now if n1 > n3 + 2(n2%2), we needl
n1�n3�2(n2%2)

4

m
ADM’s for remaining nodes

with residue 1.

Consequently, we need exactly

n =

(
n3 +

�
n2
2

�
; if n1 � n3 + 2(n2%2)

n3 +
�
n2
2

�
+

l
n1�n3�2(n2%2)

4

m
; otherwise

ADMs to groom the residual traffic.

The Case g = 8. Now the residue di 2 f1; 2; 3; 4; 5; 6; 7g
and assume that we have n1 1’s, n2 2’s,...,n7 7’s. The fol-
lowing steps give an optimal solution:



1. First it is obvious that the nodes with residue more
than 4 can not share ADMs among them. Therefore,
we need n7 ADMs for those nodes with residue 7,
n6 ADMs for those nodes with residue 6, n5 ADMs
for those nodes with residue 5. Also

�
n4
2

�
ADMs are

needed for those nodes with residue 4. Assume the set
of ADMs used above are denoted by A7; A6; A5; A4

respectively.

2. For ADMs from A7, we can only fill nodes with
residue 1 and can fill at most min(n1; n7) such nodes.
Update n1  max(0; n1 � n7), i.e., the number of
nodes with residue 1 and remain unfilled.

3. For ADMs from A6, if we have n1 > 0, we can only
select nodes with residue 1 or 2 to share ADMs with
those nodes having residue 6. We prefer to select nodes
with residue 2 first since the nodes with residue 1 give
the most freedom for future filling. Therefore, we se-
lect min(n6; n2) nodes with residue 2 and fill into
ADMs from A6. If there are ADMs from A6 remain-
ing unfilled (i.e., n6 > n2), nodes with residue 1, if
there is any, are used to share those ADMs. In other
words, we select another min(2(n6 � n2); n1) nodes
with residue 1 and fill into ADMs from A6 if there is
any. Update n2 and n1 accordingly.

4. Then consider ADMs from A5. We may select nodes
with residue 1, 2 or 3 to share ADMs that have been
used by one node with residue 5. For each such ADM,
there are many ways to select nodes with residue less
than 4 to share it. We select nodes in the following or-
der: first is node with residue 3; then pair of nodes with
residue 1 and 2; followed by only nodes with residue
2; finally are nodes with residue 1. Update the number
n1; n2; n3 accordingly.

5. We then study how to groom nodes with residue 4. Di-
vide all nodes with residue 4 into pairs and assign each
pair an ADM. We may need an extra ADM if n4 is odd.
Therefore, we only need solve the remainder instance:
n1 nodes with residue 1, n2 nodes with residue 2, n3
nodes with residue 3, and a possible half-full ADM if
originally n4 is odd.

6. For these remainder instance, we use the idea of FFD
to solve it. Divide all nodes with residue 3 into

�
n3
2

�
pairs. Then carry the traffic of each pair by an ADM.
Assume the set of ADM used at this step is A3.

7. Fill as many as possible nodes with residue 2 into
ADMs of A3 and maybe an non-full ADM from A4

if there is one. Update the number n2 accordingly.

8. For these remaining nodes with residue 2, we use
�
n2
4

�
ADMs, each of which carries the traffic of 4 nodes with

residue 2. Notice that we need an extra ADM if 4 - n2.
After this step, all ADMs can not be shared by nodes
with residue 2.

9. Fill as many as possible nodes with residue 1 into
ADMs that are not full. Update the number n1 accord-
ingly.

10. For those remaining nodes with residue 1, we use
�
n1
8

�
ADMs to carry their traffic.

Observe that the basic schemes of all above methods are
same as the FFD method: Order the residue in decreasing
order and assume that all ADMs are lined sequentially; as-
sign each node an ADM with the largest spare capacity.

4 Select Speeds with Two Line Speeds Avail-
able

In the previous discussions, we assume that all SONET
rings have the same line speed. However, if we allow the
SONET rings to have different line speeds, we have to par-
tition the traffic from each node into the SONET rings of
different line speeds. After the partition, the traffic groom-
ing algorithms developed in the previous sections can be ap-
plied to the rings of any particular line speed. Thus a solu-
tion has two components, the partition of the traffic, and the
groomings of the traffic in rings of each speed. Both com-
ponents affect the overall cost. So efficient algorithms or
criteria should be developed to find traffic partitions which
may lead to the minimum ADM cost. This section is in-
tended to address this problem. In [9], the authors studied it
by more detailed analysis.

To simplify the problem, we assume that there are only
two line speeds g1 and g2 with g2 = 4g1 as did in [7]. We
also adopt the same cost model used in [7]: the cost of an
ADM of speed g1 is 1, and the cost of an ADM of speed g2
is 2:5. Assume the demand between node i and the hub is ri
for 1 � i � n. Then any traffic partition can be represented
by a n-dimensional vector

f = (f1; � � � ; fn)

where 0 � fi � ri is the amount of the traffic between
node i and the hub placed to a low-speed ring. For any traf-
fic partition, we can groom the traffic carried in low-speed
rings and the traffic carried in high-speed rings separately.
A simple approach presented in [7] is that for each traffic
demand with value r, assign fi = rmod g2. The perfor-
mance of this approach comparing to the optimal assign-
ment was not discussed in [7]. In this section, more general
solutions will be developed and their optimality is proven in
[9].

For uniform traffic demands, we provide optimal traffic
partition and grooming, which is summarized in Tab. 1. For



Range of all r’s (f1; f2; � � � ; fn)

(0; 1 1
2
] fi = r;8i

(1 1
2
; 2];n = 2k fi = 0;8i

(1 1
2
; 2];n = 2k + 1 fi = 0;8i 6= j; fj = r

(2; 2 1
2
] f2i�1 = 0; f2i = 2r � 4

(2 1
2
; 4] fi = 0;8i

Table 1. Selecting line speeds for traffic
grooming for UPSR.

non-uniform traffic demands, optimal or suboptimal solu-
tions have been developed depending on the range of all de-
mands. If all demands are at most 1:5, then all of them are
carried in low-speed rings. If all traffic demands are greater
than 1:5 but less than 2, then with even n, all of them are
carried in high-speed rings and the total cost of ADMs in the
working ring only is 3:75n; with odd n, all of them except
an arbitrary one are carried in high-speed rings and the total
cost of ADMs in the working ring only is 3:75n+1:5. Such
costs remain the same as long as all demands are greater
than 1:5 but less than 2. If all traffic demands are greater
than 2:5, all of them are carried in high-speed rings and the
total cost of ADMs in the working ring only is 5n. Such
cost also remain the same as long as all demands are greater
than 2.5. When all traffic demands are greater than 2 but
less than 2.5, the solution is a little complicated. We first
pair up the n nodes. If n is odd, some node is stand-alone
and its whole traffic is carried in a high-speed ring. For each
pair of nodes i and j, we use a high-speed ring to carry the
whole traffic from node i and the remaining capacity is used
to carry the traffic from node j. For detail of the optimality
proof, the reader is referred to [9].

If node i has demand ri > g2 then from the canonical

grooming, we know that
j
ri
g2

k
g2 traffic will be carried byj

ri
g2

k
high speed rings exclusively. Hence, in the above dis-

cussions, we only consider the case when ri � g2 for node
i. The above argument is restricted to UPSR. However, it
can be extended to BLSR as well. For uniform traffic de-
mands, we summarize optimal traffic partition and groom-
ing in Tab. 2. For more detail of the analysis and proof, the
reader is referred to [9].

5 Conclusions

In this paper we consider how to groom both uniform and
non-uniform traffic to minimize the number of ADMs in the
single-hub UPSR and BLSR/2. We give optimal grooming
of uniform traffic. The optimal grooming of non-uniform
is shown to be NP-complete, hence we present a 10

9
ap-

proximation algorithm. When the traffic demands is integer
number of basic low rate, we give the optimal solution for

Range of all r’s (f1; f2; � � � ; fn)

(0; 3
4
] fi = r;8i

( 3
4
; 1];n = 2k fi = 0;8i

( 3
4
; 1];n = 2k + 1 fi = 0;8i 6= j; fj = r

(1; 1 1
4
] f2i�1 = 0; f2i = 2r � 2

(1 1
4
; 2] fi = 0;8i

Table 2. Selecting line speeds for traffic
grooming for BLSR.

non-uniform traffic grooming of single hub ring network for
some practical cases. We also study the optimal mixture of
a number of different line speeds to minimize the overall
cost with two different line speeds available. In this paper,
we specifically study the two line speeds case with cost ratio
2:5. For uniform traffic demands, we give the optimal traf-
fic partition and grooming for both UPSR and BLSR. Near
optimal solutions are also given for non-uniform traffic de-
mands for both UPSR and BLSR.
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