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Abstract—We study the problem of identifying additive and
static link metrics of a set of interesting links in a communication
network, by using end-to-end cycle-free path measurements
among selected monitors. To uniquely identify the metrics of these
interesting links, three questions should be addressed: monitor
assignment (which nodes should serve as monitors), paths selection
(which cycle-free paths connecting each pair of monitors will
be used), and link metric calculation. Since assigning a node
as a monitor usually requires non-negligible operational cost,
we focus on assigning the minimum number of monitors (i.e.,
optimal monitor assignment) to identify all interesting links. By
modeling the network as a connected graph, we propose Scalpel,
an efficient preferential link tomography approach. Scalpel trims
the original graph by a two-stage graph trimming algorithm
and reuses existing method to assign monitors in the trimmed
graph. We theoretically prove Scalpel has several key properties:
1) the graph trimming algorithm in Scalpel is minimal in the
sense that further trimming the graph cannot reduce the number
of monitors; 2) the obtained assignment is able to identify all
interesting links in the original graph; and 3) an optimal monitor
assignment in the graph after trimming is also an optimal monitor
assignment in the original graph. Extensive simulations based
on both synthetic topologies and real network topologies show
the effectiveness of Scalpel. Compared with state-of-the-art, our
approach reduces the number of monitors by 39.0%∼98.6%
when 50%∼1% of all links are interesting links.

I. INTRODUCTION

Inferring fine-grained network characteristics using aggre-
gated measurements, as known as network tomography [1], is
an effective technique to facilitate various network operations
[2], [3], [4], such as network monitoring, load balance, and
fault diagnosis. In communication networks, a subset of nodes
with monitoring capabilities, i.e., monitors, can initiate and
collect end-to-end measurements of selected cycle-free paths.
Then, by using these end-to-end metrics, network tomography
techniques can decompose them to hop-by-hop link metrics by
solving a system of equations.

In many cases, these link metrics are additive [2], [5]. For
example, delay is a typical additive metric since an end-to-end
path delay is the sum of all link delays, while a multiplicative
metric like packet delivery ratio can be expressed in an
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additive form by applying the log(·) function. In order to
identify additive link metrics, we need to solve a linear system,
where the unknown variables are the link metrics, and the
known constants are the end-to-end path measurements, each
equal to the sum of the corresponding link metrics along
a path [2]. Since these end-to-end path measurements are
conducted among monitors, the monitor assignment (which
nodes should be assigned as monitors) becomes a key problem.
On one hand, the monitor assignment should comply with
certain conditions to enable a sufficient number of linearly
independent measurements. For example, assume v is a node
with degree two in a network and l1, l2 are two links that
incident to v. If node v is not assigned as a monitor, no matter
how to conduct measurement paths among other monitors, we
can only calculate the sum of the link metrics of l1, l2, instead
of their individual link metrics. On the other hand, we usually
want to minimize the number of monitors assigned, since
assigning a node as a monitor usually needs non-negligible
operational cost (e.g., hardware/software, human efforts). Ma
et al. [2] successfully solved the above problem by proposing
the MMP algorithm which identifies all link metrics in the
network by assigning the minimum number of monitors.

Unfortunately, inferring all link metrics may incur a high
overhead and is not necessary in many applications. For
example, in a network from the Rocketfuel project [6], 117 out
of 182 nodes should be assigned as monitors to identify all link
metrics. In practice, network managers are usually interested
in a subset of link metrics, instead of all links in the network.
For example, in the Internet, some links (e.g., problematic links
reported by customers or links located in critical infrastructures
such as hospitals and fire departments) are known to be more
important than other links. In sensor networks [7], [8], [9],
links near the basestation are more important since they usually
carry a large volume of traffic. By identifying those interesting
links (i.e., preferential links), we can significantly reduce the
monitoring overhead.

Given a network topology and a set of interesting links,
how to assign a minimum number of monitors to identify these
interesting link metrics is challenging due to the following two
reasons. First, due to the complex network topology, a monitor
can help identify a link far away from it. This precludes
algorithms like divide-and-conquer. Second, it is difficult to
obtain the dependency between the identifiability of a link and
a particular monitor. Thus, it is difficult to implement a naive
method that removes the monitors on which no interesting
links depend.



As a first step towards addressing the monitor assignment
problem of preferential network tomography, we propose
Scalpel which carefully trims the original network graph
without sacrificing the optimal solution and use existing
method to assign monitors. Although it is difficult to obtain
the dependency between link identifiability and a particular
monitor, we are able to effectively narrow down the search
space by safely trimming unrelated network components. After
graph trimming, Scalpel reuses the MMP algorithm [2] for
monitor assignment. The preferential link tomography problem
studied in this paper generalizes the problem studied in MMP
in which all links are considered as interesting links. It is more
flexible and practical to be able to assign monitors with any
given interesting links. Scalpel has several salient features. The
graph trimming algorithm in Scalpel is minimal in the sense
that further trimming the graph cannot reduce the number of
monitors that should be assigned to identify all interesting
links (formally given by Theorem VI.3). As the correctness of
Scalpel, we can prove that Scalpel can identify all interesting
links in the original graph, including those trimmed links
(formally given by Theorem VI.1). Scalpel also opens the
door for the minimum number of monitor assignment due to
the following property: an optimal monitor assignment in the
graph after trimming is also an optimal monitor assignment in
the original graph (formally given by Theorem VI.2).

We implement Scalpel and evaluate it through extensive
simulations based on both synthetic topologies and real
network topologies. The time complexity of Scalpel is linear
in terms of the number of vertices and links, making it be able
to assign monitors in large scale networks efficiently. Results
show that when 50%∼1% of all links are interesting links,
Scalpel reduces the number of monitors by 42.7%∼98.6% and
39%∼96% in synthetic topologies and real network topologies.

The contributions of this paper are summarized as follows.

• We are the first to identify the preferential link
tomography problem to efficiently infer the metrics
of a set of interesting links.

• We propose Scalpel, an efficient preferential link
tomography approach. Scalpel trims the original graph
by a two-stage graph trimming algorithm and reuses
existing method to assign monitors in the trimmed
graph. We prove that the graph trimming algorithm in
Scalpel is minimal in the sense that further trimming
the graph cannot reduce the number of monitors that
should be assigned to identify all interesting links.
We also prove that the obtained assignment is able
to identify all interesting links in the original graph.

• We prove that an optimal monitor assignment in the
graph after trimming is also an optimal monitor as-
signment in the original graph. This property opens the
door for the minimum number of monitor assignment
based on our graph trimming algorithm.

• We implement and evaluate Scalpel by extensive
simulations. The time complexity of Scalpel is linear
in terms of the number of vertices and links, making it
be able to trim large scale networks efficiently. Results
shows that Scalpel is able to reduce the number of

monitors by 39.0%∼98.6% when 50%∼1% of all
links are interesting links.

The rest of the paper is organized as follows. Section II
discusses the related work. Section III presents the problem
formulation. Section IV gives some graph theory fundamentals
used in this paper. Section V describes Scalpel in detail.
Section VI theoretically analyzes Scalpel and proves its three
important properties. Section VII presents the evaluation of
Scalpel, and finally, Section VIII concludes this paper.

II. RELATED WORK

Knowledge of the internal state of a network (e.g., link
delays) is essential for network monitoring, fault diagnosis,
load balancing and other network operations. In order to
measure the network metrics, different approaches have been
proposed in the literature. The first category includes hop-by-
hop approaches, which use diagnostic tools such as traceroute,
pathchar [10], and Network Characterization Service (NCS)
[11] to measure hop-by-hop link metrics directly. By sending
multiple probes with different time-to-live (TTL) fields,
traceroute can measure the delay of each hop on the probed
path. Pathchar uses a similar approach to measuring hop-
by-hop delays, capacities and loss rates. NCS also reports
available capacity of each hop. These approaches require that
the Internet Control Message Protocol (ICMP) be supported
at all nodes. Further, the above tools send a relatively large
number of probes, introducing non-negligible overhead.

The other category includes end-to-end approaches, which
use end-to-end metrics to infer internal link metrics [3],
[12], [4], [13], [2], [14], as known as network tomography.
These approaches utilize the path information to calculate
link metrics, reducing the number of probes significantly.
They assume the network is controllable, i.e., a monitor
is able to send measurement packets with pre-determined
paths. This controllable network assumption is reasonable
since it is generally supported for networks under common
administration [2]. A key problem is how to assign the
minimum number of monitors so that the operational cost can
be reduced. The basic idea is to build a linear system from
the path measurements and use linear algebraic techniques
to calculate the unknown link metrics [15], [16]. As shown
in [15], the problem is challenging due to the existence of
linearly dependent paths. Several approaches [16], [17], [2]
have been used to calculate the link metrics. When the link
metrics are binary variables (e.g., normal or failed), Chen et al.
give a topology requirement to identify all failed links using
only one monitor measuring cycles. Many approaches focus
on the usual case when the link metrics are arbitrary valued.
When cyclic measurement paths are allowed, Gopalan et al.
[5] give the necessary and sufficient conditions on the network
topology. Since routing along cycles is typically prohibited in
real networks, cycle-free measurement path are preferred. Ma
et al. [2] give the necessary and sufficient conditions on the
network topology when only cycle-free measurement paths are
used. In order to identify all links in a connected network,
Ma et al. also propose an efficient algorithm called MMP
[2] to assign the minimum number of monitors as well as
an efficient path construction algorithm [18]. Different with
[2], we consider a more practical and general case when we



are only interested in a subset of links. Assigning monitors
to identify interesting links faces non-trivial challenges due to
the complex dependency between the link identifiability and
each monitor.

III. PROBLEM FORMULATION

This section gives the formulation of the minimum monitor
assignment problem for identifying a set of interesting links.

A. Network Model and Assumptions

We assume that the network topology is known and does
not change during the measurement period. We model the
network topology as an undirected graph G = (V (G), L(G)),
where V (G) and L(G) are the sets of vertices and links,
respectively. Without loss of generality, we can assume that
graph G is connected, since different connected components
of the network can be monitored separately. We denote the
link that incidents to vertices u and v by uv. We assume the
links are symmetric, i.e, the link metrics of uv and vu are
the same. We further assume that there is no self-loop link in
L(G), and there is at most one link connecting two vertices. A
set I ⊆ L(G) is a set of interesting links. A subset of vertices
in V (G) are assigned as monitors and can initiate/collect end-
to-end measurements for identifying the metrics of links in
I. Since routing along cycles is typically prohibited in real
networks [2], cycle-free measurement paths among monitors
are preferred.

B. Problem Formulation

A monitor mA can initiate a measurement packet to
another monitor mB through a simple path. A simple path
does not contain repeated vertices. We assume that monitors
can control the routing of the measurement packet. Such
routing is generally supported in common networks like single-
ISP networks and captures capabilities of new generation
of networks performing Software-Defined Networking (SDN)
[2]. Monitor mB can obtain the path measurement, which
is the sum of all link metrics along the path P . In order
to simplify the presentation, we use l (or P) to denote
both the link (or path) and its link (or path) metric. γ path
measurements are obtained by sending measurement packets
among monitors. Then we can build a linear system to identify
the interesting links. Let n = |L| be the number of all links in
L, l = (l1, ..., ln)

T be the column vector of all link metrics,
and p = (P1, ...,Pγ)T . The relationship between l and p can
be formulated as the following linear system.

Rl = p, (1)

where R = (Rij) is a γ × n measurement matrix. Rij ∈
{0, 1} denotes whether link lj is in measurement path Pi.
The minimum monitor assignment problem is how to find
the minimum number of monitors such that there exists a
measurement matrix R which makes all interesting link metrics
in l be solvable in the above linear system. If the link metric
can be calculated from the linear system obtained by a monitor
assignment, this link is identifiable by the monitor assignment.
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Fig. 1. A toy example. Two monitors are used to identify link metrics. In
this example, the metrics of two interesting links l3, l6 can be identified by
solving the linear system in the right part. However, the other interesting link
l7 cannot be identified if only these two monitors are assigned.

C. A Toy Example

Figure 1 shows a toy network with five vertices and eight
links (l1 to l8). Among these links, three of them are interesting
links (i.e., I = {l3, l6, l7}). In order to identify the interesting
link metrics, we conduct seven path measurements from m1

to m2. By solving the linear system shown in the figure, we
can identify the link metrics of l3 and l6. However, the link
metric of l7 cannot be identified in this example, no matter
how we conduct path measurements between the two monitors.
In fact, two monitors are not sufficient to identify all the
three interesting links, no matter how we assign monitors in
the network. Given the monitor assignment {m1,m2}, links
l3, l6 are identifiable while link l7 is not identifiable. In the
following sections, we will describe our method Scalpel to
perform efficient preferential link tomography.

IV. FUNDAMENTALS ON MONITOR ASSIGNMENT

We first introduce several concepts in graph theory, which
are used in this paper.
• A graph is connected when there exists at least one

path from any vertex to any other vertex in the graph.
• A graph (or component) is bi-connected when the

graph is still connected after removing one arbitrary
vertex and the links incident to it. It includes at least
two vertices. We also call a graph with one link
and its two endpoints as a bi-connected graph (or
component). Note that partitioning a connected graph
into bi-connected components is a classical graph
theory problem which can be solved in linear time
[19].

• A graph (or component) is tri-connected when the
graph is still connected after removing any two
vertices and the links incident to them. It includes
at least three vertices. A triangle is also treated as a
tri-connected component in this paper. Note that there
exists a classical graph theory algorithm called SPQR-
tree [20] which can partition a bi-connected graph into
a number of tri-connected components and/or circles
in linear time.

• A 1-cut-v for a connected graph G is a vertex whose
removal will disconnect the graph G.

• A pair of 2-cut-vs for a connected graph G are
two vertices that removing one of them does not
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Fig. 2. A sample graph to illustrate some graph theory concepts used in
this paper. The 1-cut-v separates the graph into two bi-connected components.
The two 2-cut-vs separate one bi-connected components into one tri-connected
component and a circle. The link cut-l connects the two 2-cut-vs.

disconnect G, but removing both disconnects G.
• A sep-v is a separating vertex which could be a 1-cut-

v, or a 2-cut-v, or both.
• A cut-l is a link which connects a pair of 2-cut-vs.

Figure 2 shows an example with two bi-connected com-
ponents separated by one 1-cut-v. The left bi-connected
component A is further partitioned into one tri-connected
component and one circle by a pair of 2-cut-vs. The link that
connects to the two 2-cut-vs is a cut-l.

Then we give some important results from existing work
[2], [21].

Theorem IV.1. If G is a tri-connected graph, all of its link
metrics are identifiable by assigning any three monitors.

Corollary IV.2. If T is a tri-connected component, all of its
link metrics are identifiable by assigning any three vertices
in the original graph G as monitors, when the three vertices
v1, v2, v3 satisfy one of the following conditions. 1) v1, v2, v3
are in T ; 2) two of them are in T (not sep-v) and one is not
in T ; 3) one of them is in T (not sep-v), two vertices vi, vj
are not in T but in the same bi-connected component as T .

Definition IV.1. For a tri-connected graph G (or component)
and two vertices v1, v2 in it, its interior links are defined as
links that do not incident to either of the two vertices; and its
exterior links are defined as links that incident only one vertex
(v1 or v2).

Theorem IV.3. For a tri-connected component T with two
monitors assigned in it (or two sep-vs which connect to two
monitors through two paths without repeated vertices outside
T , or one monitor in T and one such sep-v), all its interior
links are identifiable and all its exterior link is unidentifiable.

Figure 3 shows a typical tri-connected component T and
two vertices m1,m2 which connects to v1, v2 through two
paths. Theorem IV.1 says if we assign three monitors in T
(e.g., v1, v2,m3), all links in T are identifiable. Corollary
IV.2 says if we assign m1,m2,m3 as monitors, all links in
T are still identifiable. Link l2 is an interior link w.r.t. vertices
v2,m3. Link l1, l3, l4 and l5 are exterior links w.r.t. vertices
v2,m3. Theorem IV.3 says if we assign two monitors v2,m3,
the interior links (i.e. l2) can be identified and the exterior links
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Fig. 3. A typical tri-connected graph to illustrate several results from previous
works. l2 is an interior link w.r.t. vertices v2,m3. And l2 can be identified
by two monitors {v2,m3} or {m2,m3}.

(i.e. l1, l3, l4, l5) cannot be identified. Note that l6 is not an
exterior link since it incidents both of the two vertices v2,m3.
Another example is that if we assign m2,m3 as two monitors,
the interior links (i.e. l2) can still be identified and the exterior
links (i.e. l1, l3, l4, l5) cannot be identified.

V. SCALPEL

In this section, we describe the proposed Scalpel algorithm
in detail. First, Scalpel trims the original graph into a trimmed
graph. Then Scalpel assigns monitors in the trimmed graph.
Figure 4 shows the overview of Scalpel. Scalpel trims the
original graph G in two stages. The first stage trims some
bi-connected components in G and outputs a intermediate
trimmed graph Gt1 . The second stage trims some SPQR
components (i.e., tri-connected components or circles) in the
graph Gt1 and outputs a trimmed graph Gt and a set of helper
vertices H. H is a subset of V (G − Gt). Detailed information
about choosing these helper vertices will be given in Section
V.C. Based on the trimmed graph Gt, Scalpel assigns monitors
to identify interesting links in the original graph G.

A. Definitions

Before describing Scalpel in detail, we first give the
definitions of a monitor assignment and an optimal monitor
assignment formally.

Definition V.1. A monitor assignment M(Gx) is a subset
of vertex set V (Gx), in which each vertex is assigned as a
monitor. Here, Gx represents any graph, such as the original
graph G and the trimmed graph Gt.

In particular, M(Gt ∪ H) is a set of vertices in V (Gt) ∪ H
which are assigned as monitors. Figure 5 gives an example.
The dotted part of the graph is trimmed and the solid part is
the trimmed graph Gt. A helper vertex v7 is in the dotted part.
A monitor assignment M(Gt ∪H) is {v4, v7}. Since we want
to assign minimum number of monitors, we have the following
definition about optimal monitor assignment.

Definition V.2. An optimal monitor assignment M∗(Gx) is a
monitor assignment M(Gx), in which the number of monitors
is minimum for identifying all the interesting links in the
original graph G.

It is worth noting that an optimal monitor assignmentM∗(Gx)
is able to identify all interesting links in the original graph
G, instead of the graph Gx. According to this definition,
we have the following two optimal monitor assignments: 1)
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Fig. 5. An example that illustrates a monitor assignment M(Gt ∪ H) =
{v4, v7}. In order to identify the four interesting links (l1, l3, l6, l7), assigning
v4 and v7 as monitors are optimal.

optimal monitor assignment M∗(Gt ∪ H) in V (Gt) ∪ H (i.e.,
vertices in the trimmed graph Gt and the helper vertices
set H) , and 2) the optimal monitor assignment M∗(G) in
V (G). The difference between M∗(Gt ∪ H) and M∗(G) is
that the former can only assign vertices in V (Gt) ∪ H as
monitors and the latter can assign vertices in V (G) as monitors.
Since (V (Gt) ∪ H) ⊆ V (G), M∗(G) has more choices as
monitors. In Figure 5, V (Gt) ∪ H = {v1, v2, v3, v4, v7} and
V (G) = {v1, v2, ..., v7}. Assigning v4 and v7 as monitors is
able to identify all the interesting links in I (= {l1, l3, l6, l7})
in the original graph. In this example, {v4, v7} is both an
optimal monitor assignment M∗(G) in V (G) and an optimal
assignment M∗(Gt ∪ H) in V (Gt) ∪ H. Note that these two
kinds of optimal monitor assignments are not unique. That is,
different assignments which are able to identify all interesting
links may have the same number of monitors, which are also
optimal.

B. Trimming Bi-connected Components

The first stage graph trimming iteratively trims bi-
connected components with no interesting links. Algorithm 1
gives the first stage graph trimming algorithm. The input of
this algorithm is a connected graph G = {V (G), L(G)} and a
set I ⊆ L(G) of interesting links. Scalpel first partitions the
graph G into bi-connected components (line 1). Then Scalpel
inserts all bi-connected components with no interesting
links into a queue (line 2∼5). Then Scalpel iteratively trims
bi-connected components which only have one 1-cut-v and
have no interesting links (line 6∼13). The first stage graph
trimming only needs to traverse the graph once. Further,
partitioning a connected graph into bi-connected components
can be done in linear time [19]. Therefore, the time complexity
of the first stage graph trimming is O(|V (G)|+ |L(G)|).

Figure 6 shows an example. Five bi-connected components
(B1 to B5) are separated by four 1-cut-vs (v1 to v4). We assume
that only bi-connected component B4 and B5 have interesting

Algorithm 1 First Stage Graph Trimming
Input: A connected graph G, a set I of interesting links

Output: The trimmed graph Gt1
1: partition G into bi-connected components B1, B2, ...
2: Let Queue be a queue for bi-connected components
3: for each bi-connected component Bi do
4: if {l|l ∈ Bi, l ∈ I}=∅ and Bi has one 1-cut-v then
5: Quene.enqueue(Bi)
6: while Queue.notEmpty() do
7: B ← Queue.dequeue()
8: Let Bn be a neighbor bi-connected component of B
9: delete B except the 1-cut-v

10: if the 1-cut-v is only in Bn then
11: mark the 1-cut-v as not a cut vertex
12: if {l|l ∈ Bn, l ∈ I}=∅ and Bn has one 1-cut-v then
13: Queue.enqueue(Bn)
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Fig. 6. An example to illustrate the first stage of graph trimming. Bi-
connected components B1 and B2 without interesting links are trimmed in
this stage.

links. In this case, Algorithm 1 will first insert B1 to the queue.
Then B1 is trimmed and B2 is inserted to the queue. Then B2
is trimmed. Since B3 has two 1-cut-vs after v2 is marked as
not a cut vertex, B3 is not inserted into the queue. Finally,
the solid part of the graph is left after the first stage graph
trimming.

C. Trimming SPQR components

The second stage graph trimming trims some tri-connected
components or circles (i.e., SPQR components) for each bi-
connected component. Different with the first stage graph
trimming, the SPQR components trimmed in this second stage
may include some special interesting links. This links are
interior links w.r.t. the two sep-vs s1, s2 in a tri-connected
component T . As defined by Definition IV.1 in Section IV,
these interior links do not incident to either of the two sep-vs.
We use int(T , s1, s2) to denote the set of interior links in T
w.r.t. the two sep-vs s1, s2. Accordingly, we use ext(T , s1, s2)
to denote the set of exterior links which incident one sep-
v. Theorem IV.3 in Section IV says if we assign s1, s2 as
monitors, all links in int(T , s1, s2) are identifiable and all links
in ext(T , s1, s2) are not identifiable.

Algorithm 2 gives the second graph trimming algorithm.
The input is the trimmed graph Gt1 after the first graph
trimming stage and the interesting link set I. The output is
the trimmed graph Gt, and a helper vertex set H. Each help
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Fig. 7. An example used to help describe Algorithm 2, the second stage
graph trimming. The dotted part in the graph is trimmed in this stage.

vertex v is associated with a link l in Gt. We use h(l) = v (or
l = h−1(v) since it is a one-to-one mapping) to denote this
association. Since this algorithm is quite complicated, we use
an example shown in Figure 7 to help describe the algorithm.
The second stage trimming algorithm works as follows.

Line 1∼6: for each bi-connected component in Gt1 , Scalpel
first partitions it into a number SPQR components, then inserts
all SPQR components with only two sep-vs s1, s2 into a queue.
In Figure 7, a bi-connected component Gt1 is partitioned into
four SPQR components: T1, T2, T3 and T4. Then these four
components are inserted into the queue.

Line 7∼13: for each circle T in the queue, Scalpel checks
whether there are interesting links in L(T )−s1s2 (line 10). If
there is no such interesting links, Scalpel chooses a vertex (not
s1, s2) as a helper vertex for link s1s2. Then Scalpel deletes T
except s1, s2. In Figure 7, the SPQR component T4 is deleted
since it does not include any interesting link except the cut-
l l2. Then v8 is chosen as a helper vertex for the cut-l l2
(h(l2) = v8).

Line 14∼23: for each tri-connected component T without
any interesting exterior links (line 14), there are three cases
before deleting T . 1) If there exists a helper vertex h(l) of a
link l in L(T ) and no interesting link incidents to the helper
vertex, Scalpel associates the cut-l s1s2 with the helper vertex
h(l) (line 14∼16). 2) If there exists a vertex v in V (T ) −
{s1, s2} and no interesting link incidents to v, add v as a helper
vertex and associates the cut-l s1s2 with v (line 17∼19). 3)
If neither of the previous two cases holds, choose a vertex
v in V (T ) − {s1, s2} as a helper vertex and associates the
cut-l s1s2 with v (line 20∼22). After adding the helper vertex
associated with the cut-l s1s2, Scalpel deletes T except s1, s2.
In Figure 7, two tri-connected components T1, T2 are deleted
in two iterations since there are no interesting exterior links. In
the first iteration, tri-connected component T1 meets the third
case. Then v3 is chosen as a helper vertex that associates the
cut-l v2v4. In the second iteration, tri-connected component T2
meets the first case. Then v5 is chosen as a helper vertex that
associates the cut-l v4v6. Note that the helper vertex v3 that
associates with link v2v4 is deleted when v2v4 is deleted along
with the tri-connected component T2.

Line 24∼29: if an SPQR component T is deleted,
its neighboring SPQR components need some additional

Algorithm 2 Second Stage Graph Trimming
Input: A graph Gt1 , a set I of interesting links

Output: Trimmed graph Gt2 (i.e., Gt), helper vertex set H
1: for each bi-connected component Bi do
2: partition Bi into SPQR components T1,T2,...
3: Let Queue be a queue for SPQR components
4: for each SPQR components Tj do
5: if Tj has only two sep-v s1, s2 then
6: Queue.enqueue(Tj)
7: while Queue.notEmpty() do
8: T ← Queue.dequeue()
9: if T is a circle then

10: if (L(T )− s1s2) ∩ I = ∅ then
11: H = H ∪ {v}, v ∈ (V (T )− {s1, s2})
12: h(s1s2) = v
13: delete T except s1s2
14: else if ext(T , s1, s2) ∩ I = ∅ then
15: if ∃h(l) ∈ H, l ∈ L(T ), h(l) ∩ V (I) = ∅ then
16: h(s1s2) = h(l)
17: else if ∃v∈(V (T )−{s1,s2}), L(v)∩I=∅ then
18: H = H ∪ {v}
19: h(s1s2) = v
20: else
21: H = H ∪ {v}, v ∈ (V (T )− {s1, s2})
22: h(s1s2) = v

23: delete T except s1s2
24: if T is deleted then
25: for each Tn, |V (T ) ∩ V (Tn)| > 0 do
26: if s ∈ {s1, s2} are only in Tn then
27: mark s as not 2-cut-v
28: if Tn has two sep-v then
29: Queue.enqueue(Tn)

operations for the next iteration. Specifically, it is possible
that some SPQR components have two 2-cut-vs (i.e., meets the
condition in line 28) after the deletion of the SPQR component
T . Therefore, these SPQR components need to be inserted to
the queue. In Figure 7, before the deletion of T1, T2 is not
in the queue since it has three 2-cut-vs v2, v4, v6. After T1 is
deleted, T2 is inserted into the queue, since it has two 2-cut-vs
v4, v6.

The second stage graph trimming needs to partition each
bi-connected component into SPQR components and traverse
a number of SPQR components (line 5, 28 in Algorithm 2).
Since the SPQR partition can be done in linear time [20],
the time complexity of the second stage graph trimming is
O(|V (Gt1)| + |L(Gt1)|), where Gt1 is the graph after the first
stage graph trimming. Since the time complexity of the first
stage graph trimming is also linear (Section V.B), the time
complexity of the two-stage graph trimming is linear in terms
of the number of vertices and links.

D. Monitor Assignment

After the two-stage graph trimming, Scalpel has a trimmed
graph Gt and a set of helper vertices H. Based on the trimmed
graph Gt, Scalpel assign monitors in Gt to identify interesting
links in Gt. We will prove that if a monitor assignmentM(Gt)



can identify all links in Gt, it can also identify interesting links
in G (Theorem VI.1). This property of Scalpel enables us to
assign monitors in the trimmed graph, which is usually much
smaller than the original graph when there are a small number
of interesting links. In the current implementation, Scalpel
reuses an existing method called MMP to assign monitors in
Gt. MMP is able to assign the minimum number of monitors in
a graph to identify all links. According to the above property,
this assignment is able to identify the interesting links in the
original graph G.

Based on the output of graph trimming (the trimmed graph
Gt and the helper vertices set H), we will prove that an optimal
monitor assignment M∗(Gt ∪H) in V (Gt) ∪H has the same
number of monitors as an optimal monitor assignmentM∗(G)
in V (G) (Theorem VI.2). In other words, on optimal monitor
assignmentM∗(Gt∪H) is also an optimal monitor assignment
M∗(G). This property opens the door for designing optimal
monitor assignment algorithm based on the trimmed graph Gt
and the helper vertices set H.

VI. THEORETICAL ANALYSIS

In this section, we theoretically analyze Scalpel. In
particular, we prove the following three theorems which
describe the three important properties of Scalpel formally.

Theorem VI.1. If a monitor assignment M(Gt) in V (Gt)
is able to identify all links in Gt, it is also able to identify
all interesting links in the original graph G, including the
interesting links been trimmed.

Since Scalpel reuses existing method to assignment monitors
in Gt to identify all links in it. According to this theorem,
the obtained assignment by Scalpel is able to identify all
interesting links in the original graph, including those trimmed
links.

Theorem VI.2. An optimal monitor assignment M∗(Gt ∪H)
and an optimal monitor assignment M∗(G) have the same
number of monitors.

Theorem VI.2 says that an optimal monitor assignment in the
graph after trimming is also an optimal monitor assignment in
the original graph.

Theorem VI.3. The graph trimming algorithm in Scalpel
is minimal in the sense that if we further trim one SPQR
component T from Gt and assign monitors in Gt−T to identify
all interesting links, the number of monitors cannot be reduced.

A. Proof of Theorem VI.1

PROOF. In the first stage graph trimming, every bi-connected
component been trimmed does not include any interesting
links. Therefore, we can focus on the interesting links been
trimmed in the second stage.

In the second stage graph trimming, a number of SPQR
components (circles or tri-connected components) are trimmed.
According to line 9∼13 in Algorithm 2, a circle is only
trimmed when there is no interesting link in it, except the link
s1s2 connecting two sep-vs. Since the link s1s2 is not trimmed
along with the circle (line 13), there are no interesting link in

circles been trimmed. Then there is only one case left, which
is the interesting links in the tri-connected components been
trimmed. According to line 14∼23, it is possible that a tri-
connected component with some interesting links are trimmed,
when these interesting links are all interior links w.r.t. the two
sep-vs s1, s2. We then prove that these interior interesting links
in the tri-connected components been trimmed are identifiable
when the condition given in the theorem holds.

Consider a bi-connected component B and one tri-
connected component T been trimmed in B. In the monitor
assignment M(Gt), there are at least two 1-cut-vs/monitors
in B (otherwise no link in B is identifiable). Let two such
vertices (i.e., 1-cut-vs or monitors) be v1, v2. Since B is
a bi-connected component, we can find to paths without
repeated vertices from these two vertices to s1 and s2,
respectively. According to Theorem IV.3, all interior links in
T are identifiable if we can find two paths without repeated
vertices from s1, s2 to any two monitors. If vi is a monitor, it
meets the condition of Theorem IV.3. The other case is that
vi is a 1-cut-v, which separates the graph Gt into two parts,
Gta (which includes T ) and Gtb. In this case, we prove the
following claim by contradiction: we can always find a path
in Gtb from the 1-cut-v vi to a monitor.

Assume there is no monitor assigned in Gtb, then no cycle-
free measurement path includes links in Gtb. Therefore, no
links in Gtb can be identified, which contradicts the assumption
of Theorem VI.1 that the assignmentM(Gt) is able to identify
all links in Gt. Therefore, the monitor assignment M(Gt)
includes at least one monitor assigned in Gtb. Since Gtb is a
connected graph component, we can always find a path from
the 1-cut-v vi to a monitor.

Therefore, all conditions of Theorem IV.3 are satisfied,
which proves that all interesting links in T are identifiable
by monitor assignment M(Gt).

B. Proof of Theorem VI.2

In order to prove Theorem VI.2, we need to first prove the
following two theorems.

Theorem VI.4. For any connected graph G, the following
inequality always holds.

|M∗(Gt ∪H)| ≥ |M∗(G)|. (2)

where |M| is the number of monitors in the monitor
assignment M.

Theorem VI.5. For any connected graph G, the following
inequality always holds.

|M∗(Gt ∪H)| ≤ |M∗(G)|. (3)

PROOF OF THEOREM VI.2. Combining inequalities 2 and 3
directly gives the following result.

|M∗(Gt ∪H)| = |M∗(G)|. (4)

Therefore, Theorem VI.2 holds.

Then, we prove Theorem VI.4 and Theorem VI.5.



1) Proof of Theorem VI.4:

PROOF. M∗(Gt ∪ H) and M∗(G) are both an optimal
monitor assignment for identifying all interesting links in G.
The difference is that M∗(G) has more vertices as monitor
candidates. Therefore, a solution of M∗(Gt ∪ H) is always
a solution of M∗(G). Conversely, a solution of M∗(G) may
not be a solution of M∗(Gt ∪H), since M∗(G) may include
vertices in V (G) but not in V (Gt) ∪ H. Therefore, M∗(G)
always includes less monitors thanM∗(Gt∪H), or includes the
same number of monitors. Therefore, Theorem VI.4 holds.

Theorem VI.4 is quite intuitive, since a larger feasible
region (i.e., more monitor candidates) enables a better solution
(i.e., less monitors at optimal).

2) Proof of Theorem VI.5: Compared with Theorem VI.4,
Theorem VI.5 is counter-intuitive. In order to prove this
theorem, we need to go through the two-stage graph trimming
algorithm. For the first stage graph trimming, we first prove
the following theorem.

Theorem VI.6. Let Vs be a set of vertices which separate a
connected graph G into two connected sub-graphs Ga, Gb. For
each monitor assignment M(G) which is able to identify all
interesting links in Ga, the following claim always holds. If we
keep the monitor assignment in Ga unchanged and change the
monitor assignment in Gb into assigning all vertices in Vs as
monitors, the new monitor assignment is still able to identify
all interesting links in Ga.

PROOF OF THEOREM VI.6. As described in Section III, we
can formulate the link metric identification by the following
linear system.

Rl = p, (5)

where R is the measurement matrix, l is a column vector
of all links and p is a column vector of all metrics of
measurement paths. Since graph G is separated into two
connected sub-graphs Ga, Gb, we reorganize the link vector
l into (lIa, l

x
a , l

I
b , l

x
b )
T , where the four parts are interesting links

in Ga, not interesting links in Ga, interesting links in Gb and
not interesting links in Gb. The measurement matrix R and
the vector p are also reorganized accordingly. Then the linear
system becomes the following.

(RIa, R
x
a, R

I
b , R

x
b )(l

I
a, l

x
a , l

I
b , l

x
b )
T = (pIa, p

x
a, p

I
b , p

x
b )
T . (6)

For a monitor assignment M(G) which is able to identify
all interesting links in Ga, its linear system has the following
property. Let P be an invertible row transformation matrix that
makes P · (RIa, Rxa, RIb , Rxb ) be the reduced row echelon form.
Then the coefficient matrix will be the following form.

P · (RIa, Rxa, RIb , Rxb ) =

I 0 0 0
0 ... ... ...
0 ... ... ...
0 ... ... ...

 (7)

In the above reduced row echelon form, “I” is an identity
matrix and “...” can be any sub-matrix.

Now, we change the monitor assignment in Gb into
assigning all vertices in Vs as monitors. Then all measurement

paths with vertices in Vs will be changed accordingly. The
measurement matrix becomes R’=(RIa, R

x
a, 0, 0). Then we

multiply the same row transformation matrix P by R’.

P · (RIa, Rxa, 0, 0) =

I 0 0 0
0 ... 0 0
0 ... 0 0
0 ... 0 0

 (8)

Therefore, the interesting links in Ga are still identifiable after
changing the monitor assignment.

Now we are ready to give the following theorem which
describes how the first stage trimming affects the optimal
monitor assignment.

Theorem VI.7. An optimal monitor assignment M∗(Gt1) is
also an optimal monitor assignment M∗(G).

PROOF OF THEOREM VI.7. Without loss of generality, we
assume Gt1 is the trimmed graph after trimming a single bi-
connected component B from G. If we can prove the theorem
in this case, applying it recursively proves the theorem in a
general case. According to Algorithm 1, the difference between
Gt1 and G is that G has one bi-connected component B without
any interesting links. Gt1 connects to B by a single 1-cut-v.

Then we prove the theorem by contradiction. Assume
the monitor assignment M∗(Gt1) is not an optimal monitor
assignmentM∗(G). Then there exists an assignmentM(G) 6⊆
M∗(Gt1) which has less monitors than M∗(Gt1) and can
identify all interesting links. Therefore, this M(G) includes
one or more monitors in B (not v since v ∈ V (Gt1 )), and
includes less than |M∗(Gt1)| − 1 monitors in Gt1 . Now we
assign the 1-cut-v as a monitor instead of the monitors in B.
Let this new assignment be M′(G). According to Theorem
VI.6, all interesting links in Gt1 are still identifiable. Since
there are no interesting link in B, this new monitor assignment
M′(G) can identify all links in G. Further, all monitors in
M′(G) are in Gt1 , soM′(G) is a monitor assignmentM(Gt1).
Note that the new assignmentM′(G) =M(Gt1) has less than
|M∗(Gt1)| − 1+ 1 = |M∗(Gt1)| monitors. This contradicts to
that M∗(Gt1) is optimal in V (Gt1).

Figure 8 shows an example of the above proof. A bi-
connected component B is trimmed since it does not has any
interesting links. v is the 1-cut-v separating Gt1 and B. The
optimal monitor assignment M∗(Gt1) includes four monitors
v1, v2, v3, v4. Then we prove Theorem VI.7 by contradiction.
Assume {v1, v2, v3, v4} is not an optimal monitor assignment
M∗(G). Then there exists an assignment M(G) 6⊆ M∗(Gt1)
which has three or less monitors and is able to identify
all interesting links. Let this assignment be {v1, v2, v6}.
Now consider a monitor assignment M′(G) = {v1, v2, v}.
According to Theorem VI.6, this assignment is also able
to identify all interesting links in Gt1 . Since there is no
interesting links in B, assignment {v1, v2, v} is able to
identify all interesting links in G. Further, m1,m2, v are all in
Gt1 , assignment {v1, v2, v} is an optimal monitor assignment
M∗(Gt1). This contradicts that {v1, v2, v3, v4} is an optimal
monitor assignment M∗(Gt1) since it has one more monitors
than {v1, v2, v}.
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Fig. 8. An example that helps illustrate the proof of Theorem VI.7.

For the second stage, we first give the following theorem.

Theorem VI.8. Let v1, v2 be a pair of 2-cut-vs which separate
a connected graph G into two connected sub-graphs Ga and Gb.
For each monitor assignment M(G) which is able to identify
all interesting links in Ga andM(G) includes a single monitor
m in V (Gb) − {v1, v2}, the following claim always holds. If
we keep the monitor assignment in Ga unchanged and change
the monitor assignment in Gb into assigning another vertex in
V (Gb)−{v1, v2,m} as a monitor, the new monitor assignment
is still able to identify all interesting links in Ga.

Due to the space limit, we omit the detailed proof of the
above theorem. The proof of this theorem can be found in
the technical report of this work [22].

Based on Theorem VI.8, we can prove the following
theorem which describes how the second stage graph trimming
affects the number of monitors in an optimal monitor
assignment.

Theorem VI.9. For any connected graph G, the following
inequality always holds.

|M∗(Gt ∪H)| ≤ |M∗(Gt1)|. (9)

PROOF OF THEOREM VI.9. Without loss of generality, we
assume the second stage trimming only trims one single SPQR
component T . If the theorem holds in this case, applying it
iteratively proves the theorem in a general case.

We start from an optimal monitor assignment M∗(Gt1)
in the graph after the first stage trimming. If the monitor
assignment M∗(Gt1) does not include any monitors in T ,
M∗(Gt1) = M∗(Gt ∪ H), and the theorem holds. Now we
consider the case that M∗(Gt1) includes monitors assigned
in T . Let the two 2-cut-vs be v1, v2 and the set of these
monitors be MT = M(T − {v1, v2}). Now we modify the
optimal monitor assignment M∗(Gt1) into a new assignment
M′ according to the following rules. If there is one single
monitor m in MT , we assign the help vertex h(v1v2) that
associates with the cut-l v1v2 as a monitor instead of m. If
there are two or more monitors in MT , we assign v1, v2 as
two monitors instead of any monitors in MT . Note that this
modification reduces monitors or keeps the same number of
monitors (|M′| ≤ |M∗(Gt1)|). Then we will discuss these two
cases.

According to Theorem VI.8, assigning h(v1v2) as a
monitor instead of any vertex in T is still able to identify all

interesting links in Gt. When T is circle, there is no interesting
links in L(T ) − v1v2 (line 10 in Algorithm 2), which means
the new assignment is able to identify all interesting links in
G. When T is a tri-connected component, it is possible that T
includes a number of interesting interior links in int(T , v1, v2).
Line 15∼19 of Algorithm 2 assure that Scalpel will give
priority to choose a vertex without any interesting link that
incidents to it as a helper vertex. This means if the old monitor
choice in T , together with other monitors in Gt, can identify all
interesting links in T , replacing it by the helper vertex is still
able to identify all interesting links in T . Therefore, assigning
h(v1v2) as a monitor instead of any vertex in T is still able
to identify all interesting links in the original G.

According to Theorem VI.6, assigning v1, v2 as two
monitors instead of any vertices in T is still able to identify all
interesting links in Gt. When T is circle, there is no interesting
links in L(T ) − v1v2 (line 10 in Algorithm 2), which means
the new assignment is able to identify all interesting links in G.
When T is a tri-connected component with interesting interior
links, all these interesting interior links can be identified
by assigning v1, v2 as monitors (Theorem IV.3). Therefore,
assigning v1, v2 as two monitors instead of any vertices in T
is still able to identify all interesting links in the original graph
G.

Therefore, no matter how may monitors in T , the new
assignment M′ is still able to identify all interesting links
in G. Since all monitors in M′ are in V (Gt) ∪ H, it is
an monitor assignment M(Gt ∪ H) which can identify all
interesting links in G. Therefore, |M′| ≥ |M∗(Gt∪H)|. Since
|M′| ≤ |M∗(Gt1)|, |M∗(Gt ∪H)| ≤ |M∗(Gt1)|. This proves
the theorem.

Proof of Theorem VI.5. Combining the results of Theorem
VI.7 and Theorem VI.9, we can prove Theorem VI.5.

PROOF. Theorem VI.7 says that an optimal monitor assign-
ment M∗(Gt1) is one optimal monitor assignment M∗(G).
Therefore, the following equation holds.

|M∗(Gt1)| = |M∗(G)|. (10)

Combing the above equation with the result of Theorem VI.9,
the following inequality holds.

|M∗(Gt ∪H)| ≤ |M∗(G)|. (11)

This proves the theorem.

C. Proof of Theorem VI.3

PROOF. WhenT has no sep-v, which means Gt = T . In this
case, trimming T will cause that no monitor will be assigned,
and no interesting link can be identified. When T has one
sep-v, which means it is the only component left in the bi-
connected component B that includes T . Then all interesting
links in B will not be identifiable since it only has one sep-
v and no monitor is assigned in it (similar to the proof of
Theorem VI.1). There are two more cases of T : T has two
sep-vs or more than two sep-vs.

1) When T has two sep-vs (s1, s2), there are further two
cases: T is a circle or tri-connected component. 1.1) When



TABLE I. MAIN RESULTS OF SCALPEL IN DIFFERENT NETWORKS WITH DIFFERENT NUMBER OF INTERESTING LINKS.

Network |V(G)| |L(G)| 
1% 5% 10% 50% 

|trim-B| |trim-T| |trim-B| |trim-T| |trim-B| |trim-T| |trim-B| |trim-T| 

BA 300 596 0/1 139/142 0/1 125.8/142 0/1 110.4/142 0/1 34/142 

ER 297 668 18.8/20 28/29 18.8/20 24.8/29 16.8/20 22.8/29 10/20 6/29 

RG 296 840 13.2/17 25/31.4 11/17 20.6/34 9.8/17 13.6/34.6 4/17 2.4/35.6 

dK-1009 1009 3773 167/170 97.8/101 160.6/170 89.3/101 152.6/170 81.6/101 80.1/170 23.5/101 

dK-2485 2485 9402 599/607 190.4/195 574.8/607 172.5/195 547.4/607 154.5/195 299.9/607 48/195 

dK-3018 3018 11275 492.3/499 289.3/298 474.3/499 261.6/298 449.3/499 243.3/298 253.3/499 69.6/298 

dK-5072 5072 19367 1267.6/1282 381.3/391 1213/1282 349.3/391 1151/1282 316/391 627/1282 88/391 

AS1221 318 758 138.5/142 42.3/46.6 130.2/142 40.9/52.9 122/142 35.4/53 58.8/142 9.7/53 

AS1239 604 2268 101.7/104 58.7/61.2 96.9/104 53.5/62.3 92.3/104 47.6/61.75 49.9/104 13.7/63.8 

AS1755 172 381 26.7/28 34/35.2 24.8/28 30.7/35.6 23.4/28 26.1/35.55 12.4/28 7.8/36.8 

AS3257 240 404 104.1/107 42.1/46 98.8/107 31.2/46.6 92.5/107 27.2/47.25 45.4/107 6.8/48.85 

AS3356 624 5299 28.8/30 55.9/58 28/30 50.9/58 26.1/30 45.7/58 14.5/30 14.4/58 

AS3967 201 434 36.6/38 45.2/47.7 34.7/38 41.2/48.5 32.7/38 34.6/48.45 16.9/38 11.1/51 

AS6461 182 296 84.3/87 36.1/37.4 81.3/87 30.8/38.2 74.3/87 28.4/39.25 40.1/87 8/41 

AS7018 631 2078 56.3/58 152.7/158 54.2/58 139.3/158 50.8/58 121.8/158 27.1/58 36.4/157.95

 
 
AS1221  318  758  138.5/142 42.3/46.6 130.2/142 40.9/52.9  122/142  35.4/53  58.8/142  9.7/53 
AS1239  604  2268  101.7/104 58.7/61.2 96.9/104  53.5/62.3  92.3/104  47.6/61.75  49.9/104  13.7/63.8 
AS1755  172  381  26.7/28  34/35.2  24.8/28  30.7/35.6  23.4/28  26.1/35.55  12.4/28  7.8/36.8 
AS3257  240  404  104.1/107 42.1/46  98.8/107  31.2/46.6  92.5/107  27.2/47.25  45.4/107  6.8/48.85 
AS3356  624  5299  28.8/30  55.9/58  28/30  50.9/58  26.1/30  45.7/58  14.5/30  14.4/58 
AS3967  201  434  36.6/38  45.2/47.7 34.7/38  41.2/48.5  32.7/38  34.6/48.45  16.9/38  11.1/51 

T is a circle, there must be at least one link l (not s1s2) in
T is an interesting link (line 10 and 13 in Algorithm 2). If
T is trimmed, the link l cannot be identified no matter how
we assign monitors in Gt − T . The reason is that the link l
has at least one endpoint v whose degree is two and is not
a monitor. 1.2) When T is a tri-connected component, there
must be an exterior link l in T is an interesting link (line 14
and 23 in Algorithm 2). According to Theorem VI.6 monitors
outside T are equivalent to assigning s1, s2 as two monitors
for identifying link l. Further, according to Theorem IV.3, the
exterior link l cannot be identified by two monitors s1, s2 in
T . Therefore, if T is trimmed, the link l cannot be identified
no matter how we assign monitors in Gt − T .

2) When T has more than two sep-vs, Scalpel will not
assign any monitors in T even if it is not trimmed. The reason
is that Scalpel uses MMP to assign monitors in Gt and MMP
will ignore SPQR components with more than two sep-vs [2].
Therefore, trimming T cannot reduce the number of monitors
directly. Then we discuss the monitor assignment in Gt − T
after trimming T . There are two cases. 2.1) Gt − T is still a
connected graph. In this case, Scalpel will assign exactly the
same monitors no matter whether T is trimmed. 2.2) Gt − T
is not a connected graph. In this case, Scalpel needs to use
MMP separately in each connected component. Compared with
graph Gt, there are less possible measurement paths in Gt−T .
Therefore, at least the same number of monitors should be
assigned.

Based on the above analysis, if we further trim one SPQR
component T from Gt, the number of monitors cannot be
reduce if we need to identify all interesting links.

VII. EVALUATION

We evaluate Scalpel through extensive simulations on both
synthetic network topologies and real network topologies. In
this section, we will first give the evaluation methodology,
including the evaluation metrics and detailed description of
the topologies used. Then, we will show the graph trimming
results and monitor assignment results of Scalpel.

A. Methodology

The first metric is the effectiveness of graph trimming. The
first stage graph trimming of Scalpel trims a number of bi-
connected components and the second stage graph trimming
of Scalpel trims a number of SPQR components. Therefore,
we report the number of bi-connected components and SPQR
components which are trimmed when there are different
number of interesting links. Then, we compare the monitor
assignment results of Scalpel with MMP. The metrics used are
the number of monitor assigned and the execution time.

For each network topology, we randomly choose different
number of links as interesting links: 1%, 5%, 10%, 50%
and 100% of all links in the original network. We ran each
simulation 10 times and report the average values. We use
both synthetic topologies and real network topologies.

1) Synthetic topologies. We consider four widely
used synthetic topologies. Barabási-Albert (BA) graph.
A Barabási-Albert (BA) graph is generated by the
following steps. We begin with a small connected graph
({v1, v2, v3, v4}, {v1v2, v1v3, v1v4}) and add new nodes
sequentially. For each new node, we connect it to two
existing nodes. The probability of connecting a node w is
proportional to the node degree of w. Erdös-Rényi (ER)
graph. An Erdös-Rényi (ER) graph is a simple random graph
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Fig. 9. Monitor assignment results of Scalpel. For each topology, we repeat each simulation 10 times and plot the results.

generated by connecting each pair of nodes with a fixed
probability. In our simulations, this probability is set to be
0.015. Random Geometric (RG) graph. A Random Geometric
(RG) graph is generated by first randomly deploying nodes
in a unit square area and then connecting nodes when their
distance is no larger than a threshold. In our simulations, we
set the threshold to 0.08. dK-graph [23]. dK-graph models the
degree distribution of a network and generate topologies with
similar degree distribution. Then dK-graph generates network
topologies with similar degree distribution but different scales.
We use a real network topology as input and use dK-graph
tool to generate larger graphs.

2) Autonomous system topologies. We also use real
network topologies from the Rocketfuel [6] project to evaluate
Scalpel. The topologies used are the autonomous system
(AS) topologies, which represent IP-level connections between
backbone/gateway routers of ASes from major Internet Service
Providers (ISPs) (i.e., AT&T) around the world [2]. Each AS
in Rocketfuel corresponds to an ISP.

B. Results

1) Effectiveness of Graph Trimming: Table I reports the
graph trimming results of all topologies, including seven
synthetic topologies and eight AS topologies. The first column
is the topologies name. The second column and third column
are the number of vertices and links in each topology. The
other columns are the results in four different settings with
different percentages of interesting links. |trim-B| denotes the
number of bi-connected components which are trimmed in
the first graph trimming stage. |trim-T | denotes the number
of SPQR components which are trimmed in the second stage
graph trimming. We also show the the number of bi-connected
components in the original graph, as well as the number of
SPQR components in the graph after the first stage graph
trimming. For example, the 125.8/142 entry of the first row
means that when 5% of the links are interesting links, there

TABLE II. # OF MONITORS AND EXEC TIME COMPARED WITH MMP.

Network
1% 5% 10% 50% 

|M| time |M| time |M| time |M| time 

AS1221 -0.96 +0.045 -0.88 +0.083 -0.82 +0.085 -0.34 +0.072 

AS1239 -0.95 +0.033 -0.89 +0.06 -0.83 +0.047 -0.37 +0.078 

AS1755 -0.89 +0.062 -0.77 +0.062 -0.69 +0.057 -0.29 +0.028 

AS3257 -0.93 +0.09 -0.81 +0.054 -0.74 +0.05 -0.31 +0.045 

AS3356 -0.9 +0.004 -0.82 +0.017 -0.75 +0.003 -0.29 +0.009 

AS3967 -0.93 +0.041 -0.84 +0.037 -0.75 +0.053 -0.3 +0.045 

AS6461 -0.94 +0.063 -0.87 +0.081 -0.8 +0.063 -0.39 +0.046 

AS7018 -0.95 +0.045 -0.88 +0.051 -0.79 +0.047 -0.29 +0.053 

 

 

Network 
1% 5% 10% 50% 

|M| time |M| time |M| time |M| time 

 

1221  +0.045  ‐0.96  +0.083  ‐0.88  +0.085  ‐0.82  +0.072  ‐0.34 

1239  +0.033  ‐0.95  +0.06  ‐0.89  +0.047  ‐0.83  +0.078  ‐0.37 

1755  +0.062  ‐0.89  +0.062  ‐0.77  +0.057  ‐0.69  +0.028  ‐0.29 

3257  +0.09  ‐0.93  +0.054  ‐0.81  +0.05  ‐0.74  +0.045  ‐0.31 

3356  +0.004  ‐0.9  +0.017  ‐0.82  +0.003  ‐0.75  +0.009  ‐0.29 

3967  +0.041  ‐0.93  +0.037  ‐0.84  +0.053  ‐0.75  +0.045  ‐0.3 

6461  +0.063  ‐0.94  +0.081  ‐0.87  +0.063  ‐0.8  +0.046  ‐0.39 

7018  +0.045  ‐0.95  +0.051  ‐0.88  +0.047  ‐0.79  +0.053  ‐0.29 
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are 142 SPQR components (on average) after the first trimming
stage and 125.8 (on average) of them are trimmed by the
second trimming stage.

From Table I, we first observe that when there are only a
small number of interesting links (e.g., 1%), most of the bi-
connected components and the SPQR components are trimmed
by Scalpel. For example, when 1% links are interesting links
in the dK-5072 topology, 1267.6 out of 1282 (on average) bi-
connected components in the original graph are trimmed by the
first trimming stage. Then, 381.3 out of 391 (on average) SPQR
components in the graph are trimmed by the second trimming
stage. Second, when the number of interesting links increases,
the number of trimmed components decreases. There is also
a special topology in the first row, which is a bi-connected
component. In this case, the first trimming stage cannot trim
any bi-connected component but the second trimming stage
can still trim a large number of SPQR components.

2) Monitor Assignment: Then we show the monitor as-
signment results. Figure 9 shows the results in the eight AS
topologies. The x-axis is the percentage of interesting links in
all links, and the y-axis is the number of monitors assigned.



The blue horizontal line indicates the number of all vertices
in each topology. We set the percentage of interesting links to
1%, 5%, 10%, 20%, ..., 100%. From Figure 9, we can see that
when only 1% links are interesting links, only a small number
of vertices are assigned as monitors. When more links are
interesting links, more monitors should be assigned. Note that
using MMP directly in the original graph to assign monitors
is equivalent to the case when all links are interesting links.
Therefore, using Scalpel assign monitors in the trimmed graph
reduces the number of monitors than using MMP directly in the
original graph. Table II shows the monitor reduction ratios in
different networks with different settings. In the AS topologies,
Scalpel is able to reduce up to 96% of the monitors compared
with MMP. The table also shows that Scalpel needs similar
execution time in various networks compared with MMP.

Figure 10(a) shows the number of monitors assigned in
the three random topologies (i.e., BA, ER, RG) when there
are different number of interesting links. As expected, less
monitors are assigned when there are less interesting links.
Although these random graphs have similar number of vertices
(i.e., 300, 297, 296), they require different number of monitors.
The main reason is that the BA graph has less links than the
other two random graphs. Since a dense network can enable
more measurement paths to identify interesting links, it usually
requires less monitors than a sparse network. Figure 10(b)
shows the number of monitors assigned in the four topologies
generated by the dK-graph tool [23]. When there are more
interesting links, more monitors are required to be assigned.

VIII. CONCLUSION

In this paper, we propose Scalpel, an efficient preferential
link tomography approach. We theoretically prove that the
graph trimming algorithm in Scalpel is minimal and the ob-
tained assignment by Scalpel is able to identify all interesting
links in the original graph. Extensive simulations based on
both synthetic topologies and real network topologies show the
effectiveness of Scalpel. Compared with state-of-the-art, our
approach reduces the number of monitors by 39.0%∼98.6%
when 50%∼1% of all links are interesting links.

There are multiple dimensions to explore in the future
work. First, we would like to investigate how to design an
optimal monitor assignment algorithm so that the number of
assigned monitors can be minimized. It is possible since our
graph trimming algorithm guarantees that an optimal monitor
assignment in the graph after trimming is also an optimal
monitor assignment in the original graph. Second, we would
like to investigate how to select measurement paths to facilitate
the identification of link metrics.
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