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Abstract—We propose joint channel sensing, probing, and ac-
cessing schemes for secondary users in cognitive radio networks.
Our method has time and space complexity O(N ·k) for a network
with N channels and k secondary users, while applying classic
methods requires exponential time complexity. We prove that,
even when channel states are selected by adversary (thus non-
stochastic), it results in a total regret uniformly upper bounded by
Θ(

√
TN logN), w.h.p, for communication lasts for T timeslots.

Our protocol can be implemented in a distributed manner due
to the nonstochastic channel assumption. Our experiments show
that our schemes achieve almost optimal throughput compared
with an optimal static strategy, and perform significantly better
than previous methods in many settings.

I. INTRODUCTION

We study dynamic spectrum access in cognitive radio
(CR) networks with primary users (PU) and secondary users
(SU) where the qualities (e.g., the data rate supported) of
different channels often are time dependent, and may differ
significantly across all channels. We investigate a joint sens-
ing/probing/accessing mechanism that will result in (almost)
optimal expected throughput, compared with the optimal fixed-
channel strategy. In our approach, a CR not only senses the
busy/idle status of the channel, but also probes the instanta-
neous quality of the channel using short predefined probing
packets. Based on historical observations, a CR will decide
whether to transmit data over current channel (called ex-
ploitation) or to continue sensing/probing some other channels
(called exploration). Our goal in this work is to design efficient
(using polynomial space and time) and effective (with a small
weak regret, called regret hereafter, i.e., the gap between
the overall throughput by the strategy using some fixed best
channels when knowing all channel quality for the system
lifetime, and the throughput achieved by our scheme) spectrum
usage scheme for multiple users.

Designing better schemes for channel usage has been ex-
tensively studied [5], [10], [21] A number of schemes were
proposed to exploit the dynamic channel qualities, e.g., [18]
assumed a homogeneous distribution of the channel quality.
Recently, several results, e.g., [1], [9], [16], were proposed
by exploring the parallels between the cognitive medium
access and the multi-armed bandit (MAB) problem. These
methods can theoretically guarantee almost optimum regret
under various assumptions. However, these protocols require

either exponential space, or exponential time, or both when
multiple users and/or channels present.

We propose a joint sensing, probing, and accessing scheme
striking for maximizing the expected throughput. We first
consider the system with heterogeneous stochastic channel
availability and qualities. For a network of single SU, we
derive a throughput optimal strategy based on optimal stopping
rule. Optimal centralized method is then proposed for a
network with multiple users. We then consider networks with
nonstochastic channel qualities. We first propose a centralized
scheme, called ϵ-SPA, which runs in polynomial space and
polynomial time O(N · k) for a network of N channels and
k SUs. Our method is inspired by results in [4] and will
adaptively select channels for communication. We theoreti-
cally prove that the total regret is O(

√
TN lnN), when the

system lifetime is T . Since our protocol assumes nonstochastic
channels, each SU can run our ϵ-SPA scheme individually in a
distributed manner, which will also approximate the maximum
throughput in each user’s view. We also discuss how to achieve
better throughput by setting parameters. We conduct extensive
experiments using USRP and sensor networks to study the
performance of our schemes. Our results show that the total
throughput achieved by our SPA scheme is indeed close to the
optimum fixed strategy.

We present the system model in Section II, and our optimal
sensing/probing/accessing (SPA) strategy in Section III. We
report our evaluation results in Section IV, review related work
in Section V, and conclude the work in Section VI.

II. SYSTEM MODEL AND PROBLEM
A. Network and System Model

Consider a set C = {c1, c2, · · · , cN} of N channels. When
a channel ci is used, it is termed as busy, otherwise, it is
termed as idle. Let pI(i) (resp. pB(i)) be the idle (resp. busy)
probability of channel ci. There is a set S = {s1, s2, · · · , sk}
of k secondary users (SU) equipped with a cognitive radio
(CR). Before accessing a channel ci, the su needs to sense the
channel to determine whether it is idle, and if it is idle then
probe ci to determine the estimated data rate, Ru,i,t, that can
be achieved in next timeslot. Here we assume that the data
rate Ru,i,t ∈ [0,M ] could be arbitrary, while previous results
often assumed it is drawn from a given (maybe unknown)
distribution. Here constant M is the maximum data rate for



all channels, Ru,i,t = 0 denoting that the channel ci is busy
at time t. We do not assume Ru,i,t = Rj,i,t for u ̸= j. Denote
Ru,i,t as Ri,t if su is clear from context.

We assume that each radio on CR needs time ts for
sensing the status of a channel and time tp for probing
its quality. The actual time depends on the technology and
device: ts is about 10ms and tp is from 10ms to 133ms
[2]. Let tsp = ts + tp. For a pair of transmitter/receiver, we
assume that the clock is synchronized, and a common random
number generator is shared for determining the sequence of
channels to be sensed/probed/accessed. When a channel is
idle, transmitter/receiver can only access it for at most ta time
continuously so it can detect the return of a PU. In practice,
the value ta is typically 2s. Observe that, although the channel
quality often has a coherence time tc > ta, to avoid the
possible collisions with PUs and other CRs, we assume that
a CR will not recall (reuse) a previously probed channel. We
will extend our mechanisms to the case when recall is allowed.

B. Problem Formulation

The sequential channel sensing/probing/accessing (SPA)
problem is to determine when to sensing/probing/accessing
which channel, without knowing future channel states, for a
pair of cognitive radio nodes so as to improve the throughput.
One difference between MAB [7] and the sequential channel
SPA problem is that, for MAB problem, at every timeslot t,
we will receive a reward and we repeat this for T timeslots;
while for SPA problem, at a timeslot t, we will not have any
gain if we only sense/probe a channel: the actual gain only
happens when a CR transmits data using some channel. To
address this challenge, we call a block of continuous timeslots
spent for sensing/probing a chosen channel as a round. The
immediate following timeslots spent for transmitting data over
a chosen channel are not counted in a round. Instead, we
will treat the total data transmitted in these transmission
timeslots as the gain of the previous sensing/probing round.
The strategy for sensing/probing/accessing is then composed
of many sequential rounds of sensing/probing.

A sensing/probing/accessing strategy χ = ⟨θ(t), σ(t)⟩ by
the pair of CRs will decide its action. At every round t, θ(t) is
the channel index selected, and σ(t) ∈ {0, 1} denotes whether
the CR decides to transmit data using the probed channel cθ(t)
after this round immediately: σ(t) = 1 if they will transmit
using channel cθ(t) and σ(t) = 0 otherwise. For a strategy
χ(t) = ⟨θ(t), σ(t)⟩ by a SU sj , at round t, its gain is gχ(t) =
σ(t) ·Rj,θ(t),t ·Zt · (1− Ploss(t)), where Zt denotes the time
of the actual transmission and Ploss is the probability that the
transmission will be destroyed by the return of PU or some
other SU during the Zt time-frame. We assume that Zt = ta.

Let n be the number of sensing/probing rounds executed
during the system’s lifetime T , which should satisfy the
condition: n · tsp +

∑n
t=1 σ(t) · Zt ≤ T . The first part is

time spent for sensing/probing and the second part is the
time for data transmissions. Then our objective is to design
a strategy that maximizes the expected throughput over the
system lifetime T , i.e., maxχ

∑T
t=1 gχ(t)

T . A channel i with the
highest total throughput,

∑T
t=1 Ri,t, is called the best channel

(or optimal static strategy). The regret ϱ after T rounds of
an online strategy χ is defined as the difference between the
reward sum associated with an optimal static strategy and the
sum of the data rates in T rounds by χ. A strategy whose
average regret per round ϱ/T → 0 with probability 1 when
T → ∞ is a zero-regret strategy. Our objective is design a
strategy χ with small regret.

III. ALMOST OPTIMAL SPA SCHEMES

We first propose two methods when centralized decision is
possible. The first method assumes channels’ statistics follow
some unknown distributions and the number of possible rates
is limited. The strategy is learning then transmitting. A CR
will first collect the channel statistics by sensing/probing all
channels for some rounds, then transmit data based on the
collected information. The second method works for a more
general case when the channel states are nonstochastic. The
strategy is sort of learning when transmitting. The main idea
is as follows. We guess an optimal strategy at the beginning.
With certain probability, we execute the strategy we guessed;
otherwise, we try some new strategies. Based on the feedback,
i.e., the throughput, we adjust our guess dynamically. For both
methods, we first consider the simple case where the network
has only one SU. Then we extend our methods to cases with
k users. We also discuss how to optimize the parameters used
in our methods.

A. OSP SPA for Stochastic Channels

Assume that each channel ci has rates drawn from a set
R = {R1, R2, · · · , Rr} with Rj < Rj+1 for j ∈ [1, r − 1],
following some distributions with mean µi. After learning rate
distributions, we can then use the optimal stopping rule (OSP)
[8] for the single channel. Intuitively, the static optimal strat-
egy should always sense/probe/access a fixed channel that will
maximize the expected throughput pI(i) · µi. Unfortunately,
this may not be always optimal as we will show later.

When we choose a fixed channel ci to sense/probe, the rate
of return, i.e., the achieved data rate for next transmission, is
Ri,hta(1−Ploss)

h·tsp+ta
if we stop at the h-th probing after previous

transmission. To maximize mean rate of return, it is easy
to show that the optimal strategy is as follows (1) keep
sensing/probing the channel ci until the probed data rate Ri,t

at t-th probing after previous transmission is at least λ∗
i

1−Ploss
;

(2) transmit using data rate Ri,t. Here λ∗
i is the solution of∑

X≥
λ∗
i

1−Ploss

Pri (X) (X · (1− Ploss)− λ∗
i ) = λ∗

i tsp/ta (1)

where Pri (X) is the probability that the channel ci will have
rate X (by integrating the availability pI(i) of the channel ci).
Notice that λ∗

i is different from µi.
We then design the best strategy if we have heteroge-

neous channels. We focus on one secondary user su. Let
λ∗
i denote the expected data rate achieved if we stick with

sensing/probing channel ci using the optimal stopping rule (see
Eq. (1)). Without loss of generality, we assume λ∗

i ≥ λ∗
i+1, for

i ∈ [1, N − 1]. Let Y denote any possible mixed strategy, i.e.,



at any time slot t, we can randomly sense/probe a channel
θ(t). Assume that with probability qi it will sense/probe
channel ci, where

∑N
i=1 qi = 1. Let variable Yt denote the

data rate that can be observed at time t and λ∗
Y be the

expected rate of the return by this strategy Y . Then Pr(Yt =
Rj) =

∑N
i=1 qi · Pri (Rj). Notice that it is not necessary

that λ∗
Y =

∑
i qiλ

∗
i . Let λ∗

i (u) be the expected average data
rate a SU su will achieve when it keeps sensing/probing and
accessing the channel i. We show that this mixed strategy is
no better than sticking with the best single channel. Proofs are
omitted due to space limitation.

Theorem 1: For any mixed strategy Y by a SU su,

λ∗
1(u) ≥ λ∗

Y (u) ≥ λ∗
N (u) (2)

For multiple secondary users, we define a weighted bipartite
graph H over two sets of vertices SUs S and channels C, and
the weight of an edge (su, ci) is λ∗

i (u). Let Π be a maximum
weighted matching in graph H . Then,

Theorem 2: To maximize overall throughput, the best strat-
egy for a user su is to use the optimal stopping method on
channel i if (su, ci) is in the maximum weighted matching Π.
B. SPA for Nonstochastic Channels

Previous channel accessing methods often assume i.i.d.
distributions of channel data rates (e.g., [1], [9], [16], [18]),
or Markovian [19]. Here we design a method whose expected
throughput is almost optimal when the channel qualities may
not have stochastic distributions.

1) Our Protocol Overview: The challenge is that at any
time instance, we do not know whether our current strategy
is good enough or not. Inspired by [4], we use parameter γ
to adjust the fraction of exploration and exploitation. With
probability 1 − γ, we will exploit and just adapt the strategy
used in previous round. Here γ is a relatively small parameter
depending on the number of total rounds n (which is mainly
decided by the lifetime T and our strategy). And exploitation
will promise an almost optimal performance when previously
used strategy is almost optimal. With a probability γ we will
explore new channels, to estimate the rate of each channel
with same probability 1

N . The process of exploring is also
important, which eventually improves our strategy to the
optimal solution. In all our methods, for technical convenience,
all actual data rates are scaled with maximum value 1. The
virtual rates used in our method are used to compute the
channel sensing/probing probability for next round.

2) Protocol for Single Secondary User: Algorithm 1 sum-
marizes our protocol inspired by methods in [4], when there
is only one secondary user. We present this method for the
completeness of presentation and discussion of an efficient
method for multiple users.

To study the performance of our algorithm, we analyze its
regret. For this purpose, we define the accumulated data rate,
denoted as Ri,n, of channel ci, and the accumulated virtual
data rate, denoted as R′

i,n, as follows

Ri,n =
n∑

t=1

Ri,t and R′
i,n =

n∑
t=1

R′
i,t (5)

Algorithm 1 ϵ-SPA Scheme for Single User
Parameters: real number β > 0, 0 < η, γ < 1/2.
Initialization: Set wi,0 = 1 for all 1 ≤ i ≤ N , and W = N .
Divide all data rates by the maximum possible data rate M .

1: At tth round, randomly select a channel θ(t) = ci
according to the following distribution pi,t ∀i ∈ [1, N ]:

pi,t = (1− γ)
wi,t−1

Wt−1
+

γ

N
(3)

2: Sense and probe the channel θ(t), get the scaled data rate
(i.e., in the range [0, 1]), denoted as Rθ(t),t, of channel
θ(t) at time t. Calculate virtual rates R′

i,t, ∀i,

R′
i,t =

{
Ri,t+β
pi,t

if θ(t) = ci
β

pi,t
otherwise.

(4)

3: Update wi,t = wi,t−1e
ηR′

i,t , and Wt =
∑N

i=1 wi,t.
4: Access the channel θ(t) with probability ϵ, i.e., set σ(t) =

1 with probability ϵ.

Lemma 3: For any δ ∈ (0, 1), β ∈ [0, 1) and i ∈ [1, N ], we
have Pr

(
Ri,n > R′

i,n + 1
β ln N

δ

)
≥ δ

N

Define R̂n(ϵ) as the expected total rates that can be achieved
by an ϵ-SPA scheme over n rounds. Theorem 4 bounds the
regret, max1≤i≤N Ri,n − R̂n(1) of Algorithm 1 when ϵ = 1.

Theorem 4: For any δ ∈ (0, 1), when β =

√
ln N

δ

Nn , γ =

2ηN , η =
√

lnN
4nN and n ≥ max{ ln N

δ

N , 4N lnN}, we have

Pr
(
max1≤i≤N Ri,n − R̂n(1) ≤ 6

√
nN lnN

)
≥ 1− δ.

According to our ϵ-SPA scheme, CR will transmit ϵn times
in expectation during n rounds. It is easy to show E[R̂n(ϵ)] =
ϵE[R̂n(1)], which implies

E[R̂n(ϵ)] ≥ ϵ max
1≤i≤N

E[Ri,n]− 6ϵ
√
nN lnN (6)

Let Rmax be the largest expected data rate among all
channels. We have max1≤i≤N E(Ri,n) = n · Rmax. Assume
ta = αtsp where constant α ≫ 1. Then we have

Theorem 5: The expected throughput of ϵ-SPA is at least

R̂n(ϵ)ta
T

≥
Rmax − 6

√
N lnN

n

1
ϵα

+ 1
=

Rmax − 6

√
(1+αϵ)tspN lnN

T

1 + 1
αϵ

with probability 1− δ, where T = ntsp + ϵnta.
When T is sufficiently large, the expected throughput

achieved is at least Rmax

1+ 1
αϵ

, which is maximized when ϵ = 1.
Clearly, the expected throughput that can be achieved is no
more than Rmaxta

tsp+ta
= Rmax

1+ 1
α

, because each transmission takes
at least tsp + ta time while the expected data rate is no more
than Rmax. Thus, we have

Theorem 6: When T is sufficiently large, our ϵ-SPA scheme
is almost optimal.

3) Multiple Secondary Users: Here we consider the case
when there are k secondary users with a centralized decision.
For our SPA scheme, its main idea is still to explore/exploit
channels. The difference is that our new method needs to select



k channels in each round. Therefore, there are totally
(
N
k

)
different strategies when k ≤ N (here we view each channel
as an arm in the MAB problem, and each SU as a player).
When k ≥ N , each channel should be sensed/probed/accessed.
Then we will view each SU as an arm, and each channel as
a player, thus, there are

(
k
N

)
different strategies when k ≥ N .

The rest of discussions focuses on the case k ≤ N . All our
results can be converted easily when k ≥ N .

Let χj denote the jth strategy which includes a set of k
channels, where 1 ≤ j ≤

(
N
k

)
. Here we still use θ(t) to denote

the set of channels we choose at time t. A simple method to
address multiple users is to modify Algorithm 1 with new
settings: each strategy is a combination of k channels, and
each strategy χ is associated with a weight wχ,t which is
recursively updated as

wχ,t = wχ,t−1

∏
i∈χ eηR

′
i,t ; and Wt =

∑
χ

wχ,t

Then at time t, a strategy χ is chosen with probability

pχ,t = (1− γ)
wχ,t−1

Wt−1
+ γ

∑
S∈C I((χ ∩ S) ̸= ∅)

|C|
. (7)

Here the set C = {{c1, · · · , ck}, {ck+1, · · · , c2k}, · · · , } is
called a covering set of C. Notice C includes strategies such
that each channel appears in at least one of the strategies. So
the size of a covering set is ⌈N/k⌉. This simple implemen-
tation will have the same regret bound as our new method
(to be discussed), but it will have time and space complexity
O(Nk), exponential in number of users, which could be very
expensive if we have a large number of users.

To reduce the complexity, we propose a novel approach
that utilizes the internal structure of our method. We will not
choose a strategy from the strategy set (i.e., any combination
of k channels) directly. In our new method (Algorithm 2),
we make decision on each channel one by one. Assume each
channel ci is still associated with a weight wi,t at time t. And
the weight of a strategy χj is defined as the product of weights
of all channels in that strategy. Let S(p, q, k) denote the set of
all strategies that will choose exactly k channels from subset
{cp, cp+1, · · · , cq}. Define the weight of S(p, q, k) at time
t as Wt(p, q, k) =

∑
∀χj∈S(p,q,k)

∏
ci∈χj

wi,t. For example,
the total weight of all strategies choosing k channels from N
channels is Wt(1, N, k). Here the probability that we choose
channel c1 in our strategy at time t is w1,tWt(2,N,k−1)

Wt(1,N,k) , which
is the total weight of strategies choosing channel c1 over the
total weight of all strategies. Similarly, the probability that
channel c1 is not chosen at time t is Wt(2,N,k)

Wt(1,N,k) .
For channel c2, if channel c1 is chosen, the probability

that channel c2 is in the strategy is w1,tw2,tWt(3,N,k−2)
w1,tWt(2,N,k−1) =

w2,tWt(3,N,k−2)
Wt(2,N,k−1) ; if channel c1 is not chosen, the probabil-

ity that channel c2 is in the strategy is w2,tWt(3,N,k−1)
Wt(2,N,k) .

Thus, for channel ci, if k′ channels has been chosen among
c1, · · · , ci−1, the probability that ci is in the strategy is
wi,tWt(i+1,N,k−k′−1)

Wt(i,N,k−k′) .
For current timeslot, repeat the previous steps for all chan-

nels. We can show that, for this new method,

Algorithm 2 Coordinated ϵ-SPA Scheme for k Users
Parameters: real number β > 0, 0 < η, γ < 1.
Initialization: Set wi,0 = 1 ∀i ∈ [1, N ]; W0(N,N, 1) = 1;
W0(N,N, k′) = 0 ∀k′ ≥ 2; W0(i,N, 1) = N − i+ 1 ∀i ≥ 1.

1: At tth round, initialize θ(t) = ∅, k′ = k, and update
Wt(i,N, k′), ∀i ∈ [1, N ] and ∀k′ ∈ [1, k] as follows.

Wt(i,N, k′) = wi,tWt(i+1, N, k′−1)+Wt(i+1, N, k′−1)

2: for i = 1 to N do
3: With prob. wi,tWt(i+1,N,k′−1)

Wt(i+1,N,k′) , choose channel ci,

θ(t) = θ(t)
∪

ci and k′ = k′ − 1

4: end for
5: Compute pi,t = γ

∑
S∈C I((χ∩S) ̸=∅)

|C| + (1 −
γ)

∑k
k′=0

Wt−1(1,i−1,k′)wi,t−1Wt−1(i+1,N,k−k′−1)

Wt−1(1,N,k)
.

6: Sense and probe all channels in θ(t), get the scaled data
rates. Calculate virtual rates R′

i,t, ∀i ∈ [1, N ]:

R′
i,t =

{
Ri,t+β
pi,t

if ci ∈ θ(t)
β

pi,t
oththerwise.

7: Update the weights, ∀i, wi,t = wi,t−1e
ηR′

i,t .
8: Access all channels in θ(t) with probability ϵ, i.e., set

σ(t) = 1 with probability ϵ.

Lemma 7: Exactly k channels will be chosen. The time
and space complexity at each timeslot is O(k · N) and the
probability that a strategy χ will be chosen is pχ,t.

For regret analysis, similarly, we define{
Rχj ,n =

∑n
t=1 Rχj ,t =

∑n
t=1

∑
ci∈χj

Ri,t

R′
χj ,n =

∑n
t=1 R

′
χj ,t =

∑n
t=1

∑
ci∈χj

R′
i,t

(8)

Lemma 3 still holds and we have following theorem.

Theorem 8: For δ ∈ (0, 1), β =

√
ln kN

δ

Nn , γ = 2ηN , η =√
lnN
4nkN and n ≥ max{k ln N

δ

N , 4N
k lnN}, we have

Pr
(
max
χj

Rχj ,n − R̂n(1) ≤ 6k
√
nN lnN

)
≥ 1− δ (9)

Let Rk
max be the largest total expected data rates of k

channels among all channels. Similar to Theorem 6, we have
Theorem 9: When T is sufficiently large, our ϵ-SPA scheme

for k users is almost optimal.
C. Further Discussions on SPA

1) Exploit Channel Coherence: Here we consider the affect
of channel coherence time. Within the coherence time tc we
assume the data rate does not change with high probability.
Recalling a previously sensed/probed channel is possible when
tc is long enough. Assume that tc ≥ m(tsp+ϵta)+ta for some
integer m ≥ 1. Then we can recall m previously sensed/probed
channels whose data rates are assumed to remain same.

Our method with recall is similar to our ϵ-SPA scheme.
The difference is as follows. At each round t, we randomly
select a channel θ(t), sense and probe it. At same time, we



“virtually” sense and probe the last m − 1 channels we just
sensed and probed, i.e., channels θ(t− 1), · · · , θ(t−m+ 1).
Here “virtually” means we don’t really sense and probe them.
We update the weights just as if we sensed and probed them.
Thus, in each round, we sense and probe m channels, and
choose the best one with probability ϵ. Then,

Theorem 10: When β =

√
ln N

δ

Nnm , γ = 2ηN , η =
√

lnN
4nmN

and nm ≥ max{ ln N
δ

N , 4N lnN}, the regret of our algorithm
1-SPA with m channel recall satisfies
Pr
(
max1≤i≤N Ri,n − R̂n(1) ≤ 6

√
nN lnN

m

)
≥ 1− δ.

Proof: The proof is similar to that of Theorem 4. We
can consider each round as a m virtual sub-rounds, where the
(jm + k)th sub-round, for 1 ≤ j ≤ n, 0 ≤ k ≤ m − 1, is
mapped to the (j + m − k)th round in the problem without
recall. Then the access probability of each sub-round is 1/m
for our 1-SPA scheme and we have n ·m sub-rounds totally.
By replacing ϵ with 1

m , and n with nm in Eq. (6), we have

Pr
(
E[R̂nm(1)] ≥ 1

m
max1≤i≤N E[Ri,nm]− 6

√
nN lnN

m

)
≥ 1 −

δ. The theorem then follows from E[R̂n(1)] = E[R̂nm(1)],
and max1≤i≤N E[Ri,n] =

1
m max1≤i≤N E[Ri,nm].

Similarly with a proper parameter setting we have

Pr
(
E[R̂n(ϵ)] ≥ ϵmax1≤i≤N E[Ri,n]− 6ϵ

√
nN lnN

m

)
≥ 1−δ for

our ϵ-SPA scheme. Comparing with Eq. (6), allowing recall
improves the convergence speed of our method.

2) Impact of sensing time: Notice that we don’t consider
the false alarm probability of sensing in previous analysis.
Since we consider energy detector for channel sensing, the
false alarm probability [14] is approximated by Pfa(ts) =
Q(( ϵ0

σ2
u
− 1)

√
tsfs), where ϵ0

σ2
u

is the decision threshold for
sensing, fs is the channel bandwidth, and Q() is the Q-
function for the tail probability of the standard normal dis-
tribution. Consider the false alarm probability, we have

Lemma 11: With probability 1−δ, the expected throughput
of ϵ-SPA scheme (Algorithm 1) is at least(

Rmax − 6

√
(1 + αϵ0)tspN lnN

(1− Pfa)T

)
/

(
1 +

1

αϵ0

)
The proof is similar to that of Theorem 10. For each

round, we sense and probe channel successfully 1 − Pfa in
expectation. Replacing m with 1−Pfa, we get the above result.
Here Pfa is a function of ts, and α = ta

ts+tp
. Treating ts as

a variable, we can compute the optimal ts which maximizes
the expected throughput by numerical analysis.

3) Impact of probing time and others: The step of probing
is not necessary in our problem. The reason why we need to
probe the channel is that we want to make sure the data rate is
good enough. This is important when the qualities of the chan-
nels are not good. On the other hand, when the qualities of the
channels are good enough, a sense/access scheme may achieve
better throughput since there is no probing overhead. Our ϵ-
SPA scheme also can be extended to a simplified ϵ-SA scheme
without probing steps. In ϵ-SA scheme, we can only get the
observation on the data rate after each successful transmission

and ACK. In other word, in n rounds, ϵn data rates will be ob-
served in expectation by the ϵ-SA scheme. Replacing m with
ϵ in Theorem 10, we can show that the expected throughput

of ϵ-SA scheme is
(
Rmax − 6

√
(1+α′ϵ)tsN lnN

ϵT

)
/
(
1 + 1

α′ϵ

)
,

where α′ = ta
ts

. Let t∗p be the probing time which sat-

isfies (Rmax − 6
√

(1+α′ϵ)tsN lnN
ϵT )/(1 + 1

α′ϵ ) = (Rmax −

6

√
(1+αϵ)(ts+t∗p)N lnN

T )/(1+ 1
αϵ ). When tp ≤ t∗p, we will use

ϵ-SPA; when tp ≥ t∗p, we will use ϵ-SA.
The transmission may be destroyed by the return of PUs.

Thus with the knowledge of pI we can optimize ta to
maximize the expected throughput. By numerical analysis, we
can also find ϵ that maximizes the expected throughput.

D. Decentralized Protocol With Multiple Users

It is challenging to design optimal decentralized protocol
without using a common control channel (CCC). Since the
energy-detection cannot differentiate spectrum usage of PUs
and SUs, the view of each SU is also affected by other
SUs. The channels quality and availability are thus dynamic
and nonstochastic. Notice that the protocol ϵ-SPA developed
previously applies to a more general observation model as long
as SUs have the common set of k best channels and each of
these channels has the same mean across players.

Our method is to let each user in the network run the ϵ-
SPA method based on their own view. Eventually, each user
will almost maximize its own throughput when others do not
change their strategies. We expect to prove that the regret of
each user is upper-bounded in this nonstochastic setting. This
could be proved by applying an approach similar to the TDFS
scheme [16]. We leave the detailed analysis as a future work.

IV. PERFORMANCE STUDY BY EXPERIMENTS

A. Testbed Implementation and Results

We build a cognitive radio system which is composed of
20 sensor nodes and 6 USRP devices and conduct extensive
experiment studies on the performance of our system. The
maximum transmission speed for each sensor node is 250kbps.
Using this software programmable platform by USRP, we can
adaptively select the channel and transmission power. We use
these USRPs as cognitive nodes and use the other sensor nodes
as primary users. More importantly, we can also monitor and
diagnose the wireless network using USRPs. There are 16
channels (from channel 11 to 26) available for the primary user
network, and in each channel, the transmission bandwidth of
the primary users is 2MHz, while the bandwidth of USRPs is
500kHz. We use the software suit built upon GNU radio, and
add our SPA model into the model. There are two additional
modules for running the SPA algorithm efficiently.

1) Overall Design, Workflow, and Parameters: We assume
that all the secondary users will agree upon a common control
channel (CCC). In our testing, we use channel 26 as the CCC.
If the sender wants to initiate a communication, it will send
a packet INIT PKT to the receiver using CCC and then start
the SPA process. The INIT PKT also contains a seed that will
be used to generate the sequence of random channel numbers
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Fig. 1. Energy and time threshold for channel sensing.

used by SPA. The receiver will wait for the communication
request from the sender. It will start the SPA process after it
received the packet INIT PKT.

Channel Sensing: We use the energy threshold method to
detect whether a given channel is busy or idle. We revise
this method (e.g., performing signal smooth and filtering) such
that it works well under the unique characteristics of sensor
networks. The channel is considered to be busy if the energy
level of the signal is above a certain threshold. Fig. 1(a)
shows the different success probability using different energy
threshold for detecting the busy/idle status of a channel in our
testing.

For this experiment, using 25dB may be the best choice.
The success probability also depends on the duration we
examine a channel. From Fig. 1 (b), we find that when we
exam a channel for about 15ms, the success probability is
already good enough. We choose 200ms in experiments for
better accuracy.

Channel Probing: If the sender determines that the channel
is idle using channel sensing method described previously,
it then starts probing the channel quality and uses a timer,
PT, for probing time. Timer PT starts with the maximum
value Probing time. The sender will send Probe num of
probing packets when PT is reduced to Probing time −
switch delay. Here we use a delay, switch delay, to avoid
the negative impact caused by the processing delay of USRP.
The receiver could send back the ACKs for the probing
packets. Such feedback messages can be collected for the
SNR and PRR (packet reception ratio) information. Before
the expiration of the timer PT, when PT is reduced to a value
update delay+switch delay, the sender updates the channel
observations based on the probing results. Here update delay
is the delay for the SPA algorithm to update its internal
parameters. This could be negligible for USRP node, but not
for sensor nodes when our algorithm runs in sensor nodes.
They decide whether to access some channel or continue
sensing/probing other channels.

For the receiver, it also starts a timer PT with starting value
Probing time, when it knows that the sender/receiver starts
the probing phase. It will send an ACK packet to the sender
when PT is reduced to time prob RT + update delay +
switch delay. Here prob RT is the round-trip delay for
the probing packet. In our experiments, we set prob RT
to be a reasonable value that can also cover the errors of
clock synchronization between the sender and the receiver,

TABLE I
PARAMETER VALUES FOR IMPLEMENTATIONS

Parameters Values Parameters Values
Sensing time 200ms Probing time 800ms
Accessing time 2000ms Running time 100s to 600s
switch delay 50ms proc delay 3ms
update delay 50ms Packet interval 10ms
probe num 50 probe RT 200ms

the clock shifting of the sender and receiver. A proper choice
of this parameter can let the sender receive the ACK packet
in time. It also updates its own SPA internal parameters.
Then it will decide to either access some channel or continue
sensing/probing other channels based on SPA method using
the common random number generator as the sender.

If the sender or the receiver determines the channel is busy,
they will start another round of sensing/probing after delay of
probing time.

Parameters: Table I summarizes some parameters used for
our experiments. These parameters are selected according to
the performance of the working USRP system, and to improve
the stability of the system.

Channel Accessing: During the channel accessing period,
the sender will send data packets to the receiver using the
maximum data rate under the current channel condition. Trans-
mission of two consecutive packets are separated by a delay
proc delay. This delay is introduced to avoid the packet-drops
by the receiver when the receiver has a processing speed lower
than that of the sender.

Coding and modulation effects: We made extensive tests
on multiple coding and modulation combinations over dif-
ferent SNRs. The interferences are from the external and
internal. The external interferences are generated by the
sensor nodes, where packet transmissions occurred periodi-
cally around the USRP nodes. The internal “interferences”
are generated by the power control ability on the USRP
mother board. With different levels of the output gain at the
transmitter side, the SNR value changes accordingly. We can
use different combination tests for the optimal transmission
rate. As shown in Fig. 2 (a), we adjust the transmission
power to different levels and achieve the mapping table of
SNR and transmission power. We then conduct extensive
experimental study to investigate the SNR-PER relationship.
Fig. 2(c) illustrates the relationship between SNR and the
PER. In our experiments, we have 8 different combinations
of modulation and coding rate: (BPSK, 1/2), (BPSK, 3/4),
(QPSK, 1/2), (QPSK, 3/4), (16-QAM, 1/2), (16-QAM, 3/4),
(64-QAM, 1/2), (64-QAM, 3/4). The corresponding data rates
(units kbps) are 150, 225, 300, 450, 600, 900, 1200, and
1350 respectively. We implement this based on rawOFDM (see
http://people.csail.mit.edu/szym/rawofdm/README.html).

We applied two different approaches to build heterogeneous
channel qualities: (1) adjust the transmission power of the
transmitter (We use RFX2400 daughter board in the experi-
ment, which does not allow us to change output gain, therefore
we adjust the amplitude of transmission signal to change
power) (2) using a separate wireless sensor network that will
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transmit the collected data where the data arrival follows a
Poisson distribution with arrival rate λ0. Fig. 2 shows the
impact of different amplifications on SNR and PER. Fig. 3
shows the impact of different data arrival rate on the SNR and
PRR. Fig. 4 shows the impact of different number of users on
the SNR and PRR.

2) Experimental Results: In our experiment, we use 6
USRPs (numbered 1 to 6) to form 3 pairs, denoted as (1,2),
(3,4), (5,6), of sender/receiver as secondary users. We first
measure the energy level on different channels when the SPA
is applied (this is also used for idle/busy detection). Fig. 5
plots the energy level at different time instances for a link.

Impact of Synchronization: Due to different processing
abilities and asynchronous clocks by the sender and the
receiver, they may have different views on the current system
status, which could greatly impact the throughput of the
system and the delay of accessing the channels. In our testbed
implementation, we introduced several delay mechanisms by
the sender and receiver, such as switch delay, proc delay,
and update delay to address this notoriously challenging
issue. Unfortunately, these delay mechanisms will reduce the
ideal achievable maximum throughput and increase the ideal
minimum accessing-delay (time duration between two con-
secutive successful transmissions) to some extent. Accessing-
delay is called delay hereafter. To study the impact of time
synchronization on the throughput and delay, we conduct two
separate experiments (1) the first experiment will connect each
pair of the communicating USRPs to a computer, which we
assume that time synchronization error is negligible; (2) the
second experiment will let each pair of the communicating
USRPs to connect to two separate computers, which we
assume that the synchronization error is not negligible. Fig. 6
shows our experimental results of the impact of synchro-
nization error on the throughput and delay. The throughput
drops significantly and the delay increases significantly after
300s when synchronization errors exist. On the other hand,
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the throughput and delay remain stable when synchronization
error is negligible.

Impact of different channel qualities: We then study
the impact of different channel qualities on the performance.
Recall that two different approaches are used in controlling
the channel qualities: adjusting the signal amplitude, or the
number of primary users already using some channels.

For the first approach, we apply three different groups
of amplifications, denoted as bad, mediate, and good. The
amplifications of 15 channels are as follows: (1) Bad: all
channels use amplification 500, (2) Mediate: [500, 500, 500,
500, 500, 1000, 1000, 1000, 1000, 1000, 2000, 2000, 2000,
2000, 2000]; (3) Good: all channels use amplification 2000.
Fig. 7 shows our experimental results of the impact of different
channel qualities on the throughput and delay. There is a
significant throughput and delay dropoff for the case “Bad”,
compared with cases “Good” and “Mediate”.

For the second approach, we will adjust the number of
primary users (sensor nodes in our experiment) in each of the
15 channels 11, 12, · · · , 25. Note that channel 26 is reserved as
CCC. Fig. 8 shows the experimental results of the number of
existing primary users on the throughput and delay. Here the
number of primary users for each channel ∈ [11, 25] is set as
follows: [3,3,3,3,3,1,1,1,1,1,0,0,0,0,0]. We found that SUs can
still achieve good throughput and delay when there is at most
one PU, while the throughput drops significantly in channels
with 3 PUs.

Adaptivity of SPA system: We then study whether the
SPA system can adjust its strategy when the channel qualities
change dramatically after a certain time duration, such that
the historical channel observation will have negative impact
on the performance. We conduct the following experiment.
In the first 300s, the amplification of each channel is as
follows: [500,500,500, 500, 500, 1000, 1000, 1000, 1000,
1000, 2000, 2000, 2000, 2000, 2000]. After the system is
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run for 300s, we change the amplification of each channel
as follows: [2000, 2000, 2000, 2000, 2000, 1000, 1000, 1000,
1000, 1000, 500, 500, 500, 500, 500]. In other words, good
channels will become bad and bad channels will become good.
Fig. 9 demonstrates that our SPA scheme can quickly adapt
to the new environment.

Impact of channel status sensing threshold: We then
study the impact of different channel status sensing thresholds
on the final achievable throughput and delay. Recall that all
previous experimental results assume that the energy threshold
for channel status sensing is set as 25dB. Fig. 10 shows that
our choice of energy-detection thresholds is indeed the best
for all links.
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V. RELATED WORK

There is a rich body of results for allocating spectrum
channels. Li et al. [12], [13] designed efficient and truth-
ful mechanisms for various dynamic spectrum assignment
problems. Zhou et al. [26] proposed a truthful and efficient
dynamic spectrum auction system to serve many small players.
Several results [20], [27] designed truthful double spectrum
auctions with provable performance. All these results are based
on offline models. For the online models, Xu et al. [22]–[25]
studied online spectrum allocation and truthful mechanisms
when secondary users could bid arbitrarily.

Many results have been developed for dynamic spectrum
access in cognitive radio networks. Huang et al. [10] pre-
sented a threshold-based sensing-transmission structure that
is optimal under a technical constraint to maximize the SU’s
utility. Xu and Liu [21] proposed an optimal transmitting,
sensing, and sleeping structure. However, all these works
ignored different data rates across all channels and over a
time period. Recently several results were presented by using
the connections between channel access and the multi-armed
bandits problem. Shu and Krunz [18] proposed a throughput-
efficient sensing/probing/access scheme with sensing errors.
The difference with our work is that they assume stochastic



homogeneous channels while we consider nonstochastic chan-
nels. Gai et al. [9] used a combinatorial MAB formulation
to address the multi-user channel allocation. Their method
is centralized and assumes i.i.d. stochastic channels. Anand-
kumar et al. [1] designed distributed policy for learning and
allocation and it achieves logarithmic growth of regret. It also
assumes i.i.d. stochastic channels and cooperation among users
in distributed implementation. Liu et al. [15], [16] presented
a novel distributed learning in MAB problem with multiple
players when the reward is i.i.d. from some distribution. The
time and space requirement is exponential in the number of
users. Proutiere et al. [17] presented a decentralized channel
access protocol using learning approach. Recently, Tekin and
Liu [19] modeled each channel as a restless Markov chain.
They presented an algorithm using a sample-mean based index
policy, and showed that under mild conditions this algorithm
achieves logarithmic regret uniformly over time.

Our problem is related to classical MAB problem [7].
When the awards are i.i.d. according to an unknown law with
unknown expectation, several protocols [11] can achieve the
optimum logarithmic regret asymptotically. When the awards
of actions are chosen by adversary, logarithmic regret cannot
be achieved. For example, when the results of all N possible
actions at each round are known, the regret per round can be
bounded by O(

√
lnN/n) [3]. When only the result of the

action that the decision maker performs is known, the best
possible regret per round is bounded by Θ(

√
N ln(Nn/δ)/n)

with probability at least 1−δ [4]. Cesa-Bianchi et al. [6] shows
that the regret per round is Θ(

√
lnN/m) where m queries are

allowed during n rounds.

VI. CONCLUSIONS

We proposed efficient channel accessing methods for op-
timizing the throughput achieved by secondary users. Our
methods have negligible regret even the channel data rates and
channel availabilities are given by an adversary. Our methods
can be extended to deal with several settings not specifically
discussed here. For example, when the idle probabilities of
all channels are low, sometimes it is better for the secondary
user not to always sense/probe/access channels. To reflect
such choices, we can introduce a third action, idle, by a
secondary user. Some interesting future work is to study the
Nash equilibriums of the system when multiple users exist and
design distributed protocol with optimal regret.
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