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Abstract

Power assignment for wireless ad hoc networks is to assign a power for each wireless node such that the

induced communication graph has some required properties. Recently research efforts have focused on finding the

minimum power assignment to guarantee the connectivity or fault-tolerance of the network. In this paper, we study

a new problem of finding the power assignment such that the induced communication graph is a spanner for the

original communication graph when all nodes have the maximum power. Here, a spanner means that the length of

the shortest path in the induced communication graph is at most a constant times of the length of the shortest path

in the original communication graph. Polynomial time algorithm is given, for any property that can be tested in

polynomial time, to minimize the maximum assigned power. We also give polynomial time approximation method

to minimize the total transmission radius of all nodes. Finally, we proposed two heuristics and conduct extensive

simulations to study their performance when we want to minimize the total assigned power of all nodes. Our

simulations validate our theoretical claims.
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I. I NTRODUCTION

In this paper, we address the problem of finding minimum power assignment in wireless ad

hoc networks such that the induced communication graph is a spanner of the communication

graph when all nodes transmit at their maximum power. In a wireless network, each wireless

node has an omni-directional antenna and a single transmission of a node can be received by

anynode within its vicinity which, we assume, is a disk centered at this node. A wireless node

can receive the signal from another node if it is within the transmission range of the sender.

Otherwise, they communicate through multi-hop wireless links by using intermediate nodes to

relay the message. Generally, nodes in an ad-hoc network are mobile as well, but in this paper

we are primarily concerned with relatively static nodes. Energy conservation is a critical issue

in ad hocwireless network for the node and network life, as the nodes are powered by small

batteries only. Thus research efforts have focused on designing minimum-power-assignment

algorithms for typical network tasks such as broadcast transmission [1], [2], [3], [4], routing [5],

connectivity [6], [7], [8], [9], [10], and fault-tolerance [11], [12], [13].

We consider a setV = {v1, v2, · · · , vn} of n wireless nodes (e.g., students on a campus)

distributed in a two dimensional plane. We assume that the powerwuv needed to support the

communication between two nodesu andv is a monotone increasing function of the Euclidean



distance‖uv‖. In other words,wuv > wxy if ‖uv‖ > ‖xy‖ andwuv = wxy if ‖uv‖ = ‖xy‖. For

example, in the literature it is often assumed thatwuv = c+‖uv‖β, wherec is a positive constant

real number, real numberβ ∈ [2, 5] depends on the transmission environment, and‖uv‖ is the

Euclidean distance between pointsu andv. We also assume that all nodes have omnidirectional

antennas, i.e., if the signal transmitted by a nodeu can be received by a nodev, then it will be

received by all nodesx with ‖ux‖ ≤ ‖uv‖. In addition, we assume that all nodes can adjust the

transmission power dynamically. Specifically, each nodeu has a maximum transmission power

Emax and we assume that it can adjust its power to be exactlywuv to support the communication

to another nodev. Consequently, if all wireless nodes transmit in their maximum power, they

define a wireless network that has a linkuv iff wuv ≤ Emax. This communication graph is also

called unit disk graph (UDG). When nodes adjust their power dynamically, we say that a node

u can reach a nodev in an asymmetriccommunication model if nodeu transmits at a power

at leastwuv. Notice that here, in asymmetric communications, nodev may transmit at a power

less thanwvu and thus cannot reachu. We say that a nodeu can reach a nodev in a symmetric

communication model if both nodesu andv transmit at a power at leastwuv. In this paper, we

only concern about symmetric communication model.

An observation of this model is that the network topology is entirely dependent on the trans-

mission range of each individual node. Links can be added or removed when a node adjusts its

transmission range. Apower assignmentP is an assignment of power settingP(vi) to wireless

nodevi. Given a power assignmentP, we can define an induced direct communication graph
−→
GP in which there is a directed edge−→uv if and only if wuv ≤ P(u). We define the induced

undirected communication graphGP in which there is an edgeuv if and only if wuv ≤ P(u)

andwuv ≤ P(v). We will hereby referGP to as theinduced communication graph. If all

wireless nodes transmit in their maximum powerEmax, the induced communication graph is

called theoriginal communication graph(unit disk graph), which provides information about

all possible topologies, in accordance with characteristics of the wireless environment and node

power constraints. In other words, all possible achievable network topologies are subgraphs of

the original communication graph. On the other hand, given a subgraphG = (V,E) of the

original communication graph, we can also extract a minimum power assignmentPG, where

PG(u) = max{v|uv∈E} wuv, to support the subgraph. We call thisPG an induced power assign-



mentfrom G.

Due to the importance of energy efficiency in wireless ad hoc networks, minimum power

assignment for different network issues have been addressed recently. Research efforts have

focused on finding the minimum power assignment so that the induced communication graph has

some ”good” properties in terms of network tasks such as disjoint paths, connectivity or fault-

tolerance. The minimum energy connectivity problem was first studied by Chen and Huang

[6], in which the induced communication graph is strongly connected while the total power

assignment is minimized. This problem has been shown by them to be NP-hard. Recently, this

problem has been heavily studied and many approximation algorithms have been proposed when

the network is modelled by using symmetric links or asymmetric links [7], [8], [9], [10]. Along

this line, several authors [11], [12], [13] considered the minimum total power assignment while

the resulting network isk-strongly connected ork-connected. This problem has been shown to

be NP-hard too. Solving this problem can improve the fault tolerance of the network. In [14],

[15], [8], Clementiet. al also consider the minimum energy connectivity problem while the

induced communication graph have a diameter bounded by a constanth. Other relevant work in

the area of power assignment (or called energy-efficiency) includes energy-efficient broadcasting

and multicasting in wireless networks. The problem, given a source nodes, is to find a minimum

power assignment such that the induced communication graph contains a spanning tree rooted

at s. This problem was proved to be NP-hard. In [1], [2], [3], [4], they presented some heuristic

solutions and gave some theoretical analysis. Recently, Srinivas and Modiano [5] also studied

findingk-disjoint paths for agivenpair of nodes while minimizing the total node power needed

by nodes on thesek-disjoint paths. An excellent survey of some recent theoretical advances and

open problems on energy consumption in ad hoc networks can be found in [16].

In this paper, we consider a new minimum power assignment problem which is not stud-

ied previously. The question that we will study is to find the optimum transmission power of

each individual node such that 1) the induced communication graph is a spanner of the original

communication graph; 2) the total (or the maximum) power of all nodes is minimized. Here, a

subgraphH = (V,E ′) is at-spannerof G = (V,E) if for everyu, v ∈ V , the length (or weight)

of the shortest path between them inH is at mostt times of the length of the shortest path be-

tween them inG. The value oft is called thestretch factoror spanning ratio. If it is bounded



by a constant, we sayH is a spanner ofG. Therefore, if the induced communication graph

is a spanner of the original communication graph, then we guarantee there is a path between

each pair of nodes whose length or power consumption is similar or ”not bad” compared with

the original possible ones when every node uses its maximum power. This will benefit routing

performance on the network topology a lot. Clearly, for this problem, a necessary and sufficient

condition that a solution exists is that the unit disk graph is connected when all nodes transmit

at the maximum powerEmax.

The rest of the paper is organized as follows. In Section II, we present a polynomial time

algorithm to find the power assignment whose maximum is minimized (calledmin-max power

assignmenthereafter) such that the induced communication graph is a spanner. In Section III,

we present anO(1)-approximation algorithm to find the minimum total radius assignment (min-

total radius assignment) such that the induced communication graph is a spanner. In Section IV,

we show that it is NP-hard to find the minimum total power assignment (min-total power assign-

ment) such that the induced communication graph is a spanner. Then we give two simple power

assignment methods for this problem. We present the performances comparison of those two

min-total power assignment algorithms in Section V. We conclude our paper with discussions

of possible future research directions in Section VI.

II. M IN-MAX POWER ASSIGNMENT

The formal definition of minimum maximum power assignment (min-max power assignment)

problem is as follows:

Input: A set ofn wireless nodeV , maximum node powerEmax, and a real constantt0 ≥ 1.

Notice

that givenV andEmax, it induces the original communication graphUDG.

Output: A power assignmentP = {P(v1),P(v2), · · · ,P(vn)}.
Object: Minimize maxv∈V P(v) and guarantee that the induced graphGP is a t0-spanner of

UDG.

It is obvious that we can solve the min-max power assignment problem in polynomial time

by using a binary search scheme. Notice that since the problem only wants to minimize the

maximum node power, we only need consider the case when all nodes are assigned the same



power, sayP(v). Clearly, we can use binary search among all possible power assignmentsP(v)

to find the minimum.

Algorithm 1: M IN-MAX POWER ASSIGNMENT

1. Building UDG: UsingV andEmax, we first build the unit disk graphUDG, where there is an

edgeuv if and only if wuv ≤ Emax. Then we sort weights of all edgesuv ∈ UDG, and get all

possible node powersw1, w2, · · · , wm, wherew1 < w2 < · · · < wm ≤ Emax andm ≤ n2 is at

most the number of links in UDG.

2. Binary search: Initially i = 1, andki = dm
2
e, set the power of all nodes to beP(v) = wki

.

(a) Building GP : UsingV andP(v), build the induced communication graphGP , where there

is an edgeuv if and only if wuv ≤ P(v).

(b) Computing spanning ratio: Call a shortest path algorithm to compute the spanning ratio

t0 for GP according theUDG.

(c) Select new power P(v): If t ≤ t0 thenki+1 = dki

2
e, otherwiseki+1 = dki + m−ki

2
e. If

ki+1 = ki then quit the loop, else set the power of all nodes to beP(v) = wki+1
andi = i + 1,

goto step 2(a).

Here spanning ratio could be length or power spanning ratio. The correctness of this algorithm

is obvious. The running time of the first step isO(n2 + m log m). Recall that the all-pairs

shortest paths can be found inO(n2 log n + mn), so computing the spanning ratio of given

graphGP costsO(n2 log n + mn). The second binary search step will call the all-pairs shortest

pathslog m = O(log n) times, thus, overall time complexity isO(log n · n · (n log n + m)) =

O(n2 log2 n + mn log n). Therefore, the running time of our algorithm is at mostO(n3 log n).

Notice that here the weight functionwuv can be any weight functions, such as Euclidean

distance of a link or the power needed to support the communication of the link. In addition,

if we change the objective property of the induced graph from spanner to other properties, as

long as the property can be tested in polynomial time, we can solve min-max power assignment

problem in polynomial time. For example, we can find the min-max power assignment while the

induced graph is connected, or hask-disjoint paths. However, some properties cannot be tested

in polynomial time (ifN 6= NP ), e.g., the induced graph isk-connected, and lengths of these

k paths are all bounded by some constant factor of the length of shortest path in the original

communication graph.



III. R ADIUS ASSIGNMENT

In this section we consider problem of finding a transmission radius assignment such that the

induced graph is a spanner and the total assigned radius of all nodes is minimized. We call

it min-total radius assignmentproblem hereafter. There are two differences between min-total

radius assignment and min-max power assignment: 1) the weight function now is the Euclidean

length of the link, i.e.wuv = ‖uv‖; 2) we want to minimize the total assigned radius instead of

the maximum node power of the network. The formal definition of min-total radius assignment

problem is as follows:

Input: A set ofn wireless nodeV , maximum node radiusRmax, and a real constantt0 ≥ 1.

Notice

that givenV andRmax, it induces the original communication graphUDG.

Output: A radius assignmentR = {R(v1),R(v2), · · · ,R(vn)}.
Object: Minimize

∑
v∈V R(v) and guarantee that the induced graphGR is a t0-spanner of

UDG.

This problem seems much harder than min-max power/radius assignment, although it is still

open whether it is a NP-hard problem. In this paper, we will present anO(1)-approximation

algorithm for this problem, in which we first construct a spanner using a method presented in

[17], [18] and then bound the total edge length of the structure using a greedy method in [19].

For completeness of presentation, we review the methods of constructing a bounded degree

spanner with spanning ratiot1. We first divide the unit disk centered at each nodeu into k-equal

sized cones, wherek ≥ π/arcsin 1−1/
√

t1
2

. For each cone apexed at nodeu, we select the shortest

link uv (the link−→uv is directed actually). After processing all nodes, we have a directed graph

calledYaostructure. See Figure 1 (a) for an illustration. For each nodev, for each cone, we

select the shortest incoming link−→uv, and then partition the incoming neighbors locating inside

this cone using the cone partition centered at nodeu. Then select the closest such neighbor (say

w) at each cone apexed atu and add link−→wu. Repeat the above procedure until all neighbors are

processed. See Figure 1 (b) for an illustration. The final structure by ignoring the link direction

is calledYaoSink, which is at1 spanner, and the node degree is bounded by(k + 1)2 − 1.

We then review the greedy method with parameterα to bound the total edge length of at1-

spanner. Consider any sparse spannerG with spanning ratiot1 on a point set. Initialize the final
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Fig. 1. The structures of Yao and YaoSink. (a): The shortest edge in each cone is added as a neighbor ofu for Yao.

(b): The sink structure is built recursively by the centerv.

structureH to be empty. We first add all edges inG with length at mostD/n to H, whereD

is the diameter of the point set. Then we process the remaining edges ofG in the increasing

order of their lengths. An edgeuv ∈ G is added toH if there is no path inH connectingu

andv with length≤ α‖uv‖. Gudmundssonet al. [19] gave a method to perform such query

efficiently by bucketing the remaining edges ofG into log n groups. It is proven that the final

structureH has spanning ratioα · t1 and its total edge length is at mostO(w(EMST )), where

w(EMST ) is the total edge length of Euclidean MST. Generally, for a general weighted graph

G = (V, E,w), letw(G) =
∑

uv∈G wuv, wherewuv is the weight of linkuv. When the weight is

the Euclidean distance, the weight function is omitted hereafter. The weight of a nodeu in the

weighted graphG = (V,E, w) isP(u) = maxuv∈E wuv, and the total node weight of the graph

isP(G) =
∑

u∈V P(u).

Our algorithm to solve the min-total radius assignment problem is then as follows:

Algorithm 2: M IN-TOTAL RADIUS ASSIGNMENT

1. Building UDG: UsingV andRmax, we build the unit disk graph, where there is an edgeuv

if and only if wuv ≤ Rmax.

2. Building spanner: Use the method by [17], [18] to build a
√

t0/t-spannerH of UDG where

t is a positive real constant smaller thant0.

3. Bounding weight: Run the method in [19] to bound the total edge length ofH while the

spanning ratio of the final structure ist0. The parameter of the greedy method isα =
√

t0 · t.
Clearly, the final structure (denoted byG) has spanning ratiot0.

4. Radius assignment: Extract the induced radius assignmentRG, whereRG(u) = max{v|uv∈G} wuv,



to support the subgraph.

The above algorithm has running timeO(n log n) (after UDG is built) since remaining steps

have running time at mostO(n log n) [17], [18], [19]. Obviously, the summation of radii as-

signed to all nodes is at most2w(G), which is at mostO(w(EMST )).

We then show that the lower bound of min-total radius assignment isw(EMST ). Generally,

the total power assignmentP(G) based on any weighted graphG, to guarantee the connectivity,

satisfying the following condition

w(EMST (G)) ≤ P(G).

Notice that the communication graph induced by the power assignmentPG is connected. We

root the treeEMST (G) at an arbitrary node. For any linkuv ∈ EMST (G) whereu is the

parent ofv, we associate linkuv to nodev, and calluv asA(v). The definition is valid since

each node can only have one parent. Clearly,w(EMST (G)) =
∑

u w(A(u)). On the other

hand,P(u) is at least the weight of the linkA(u). Consequently,

w(EMST (G)) =
∑

u

w(A(u)) ≤
∑

u

P(u).

Since the min-total radius assignment produces a communication graph with bounded spanning

ratio, it clearly guarantees the connectivity of the induced communication graph. Thus, we have

the following lemma and theorem.

Lemma 1:The optimum radius assignment for min-total radius assignment problem has total

radius at leastw(EMST ).

Theorem 2:Algorithm 2 gives a solution that is within a constant factor of the optimum.

Obviously, we can find a bounded degree subgraph with the same spanning ratio of the com-

munication graph induced by the radius assignment calculated by Algorithm 2. If we want to

find a subgraph of the induced communication graph with some additional properties such as

planar, fault-tolerance, we have to replace the second step of Algorithm 2 by some other span-

ners. For example, Li and Wang [20] gave a method to construct a planar spanner with bounded

degree. Recently, Czumaj and Zhao [22] also proposed ak-vertex fault-tolerant spanner whose

total cost isO(k2 · w(EMST )).



IV. M IN-TOTAL POWER ASSIGNMENT

Finally, we consider the minimum total power assignment (min-total power assignment) prob-

lem which is defined as follows.

Input: A set ofn wireless nodeV , maximum node powerEmax, and a real constantt0 ≥ 1.

GivenV andEmax, it induces the original communication graphUDG. Here, the weight function

of a link uv becomeswuv = ‖uv‖2.

Output: A power assignmentP = {P(v1),P(v2), · · · ,P(vn)}.
Object: Minimize

∑
v∈V P(v) and guarantee that the induced graphGP is a t0-spanner of

UDG.

Clearly, this problem is a NP-hard problem since the minimum energy connectivity prob-

lem is the special case of the minimum total power assignment problem in whicht0 is chosen

sufficiently large. Remember the minimum total power assignment problem for connectivity

is NP-hard [6]. Although there are several constant approximation methods for the minimum

total power assignment problem for connectivity, it is still an open problem whether we can

find a constant approximation algorithm for the minimum total power assignment problem with

bounded spanning ratio. In this paper, we give two simple heuristic algorithms.

Our first approach is a simple greedy heuristic algorithm.

Algorithm 3: GREEDY M IN-TOTAL POWER ASSIGNMENT

1. Building UDG: UsingV andEmax, we first build the unit disk graphUDG.

2. Sorting UDG edges: Sorting edges in UDG according their weights, gete1, e2, · · · , em,

wherewe1 ≤ we2 ≤ · · · ≤ wem ≤ Emax.

3. Greedy method: Initialize G to be an empty graph. Following the increasing order, add an

edgeei = uv to G if and only if no path inG (already added edges) with total power no more

thant0 · ‖uv‖2.

4. Power assignment: Extract the induced power assignmentPG, wherePG(u) = max{v|uv∈G} wuv.

The running time of the first step isO(n2). Sorting the edges takesO(m log m). Recall that

the single source shortest path algorithm can be done inO(n log n + m). The greedy step calls

at mostm times shortest path algorithm, so the cost isO(n2 log n + mn). The last step takes at

mostO(m), thus, the total costs isO(n2 +m log m+n2 log n+mn+m) which isO(n3) when

m = O(n2).



The second method is based onYao graph. The Yao graph[24] with an integer parameter

k ≥ 6, denoted by
−−→
Y Gk(G), is defined as follows. At each nodeu, anyk equally-separated

rays originated atu definek cones. In each cone, choose the shortest edgeuv among all edges

from u, if there is any, and add a directed link−→uv. Ties are broken arbitrarily. The resulting

directed graph is called the Yao graph. See Figure 1 (a) for an illustration. LetY Gk(G) be the

undirected graph by ignoring the direction of each link in
−−→
Y Gk(G). Li et al. [25] proved the

power stretch factor of the Yao graphY Gk(V ) is at most 1
1−(2 sin π

k
)β . They [26] also proposed

to apply the Yao structure on top of the Gabriel graph structure and proved it still has a same

constant bounded power stretch factor 1
1−(2 sin π

k
)β . Then the idea of our second method is to

construct thet0-spanner based on Yao structure. Consider UDG, for each node, we partition the

disk into cones, and select the shortest edge of UDG in each cone. The number of conesk is

chosen so that the power spanning ratio ist0, i.e. 1
1−(2 sin π

k
)2
≤ t0. Thus,k ≥ π/arcsin

√
1−1/t0

2
.

Notice, in Yao graph the cone partition does not need to be aligned. Therefore, we can choose

a rotation for each node such that the maximum chosen incident link is the smallest. Obviously,

there are onlydu different rotations that may produce different power assignment at nodeu, du

is the degree of the nodeu in UDG.

Algorithm 4: YAO-BASED M IN-TOTAL POWER ASSIGNMENT

1. Building UDG: UsingV andEmax, we first build the unit disk graphUDG.

2. Building Yao graph: Setk ≥ π/arcsin

√
1−1/t0

2
, apply Y Gk on UDG. For each nodeu,

assume that it hasdu edgesuv1, uv2, · · · , uvdu in UDG. Then for each edgeuvi, we can assign

a cone partitionCi (one of the cones started at linkuvi). We test Yao structure ofu for all the

du cone partitionsCi, and select the one whose maximum chosen link incident is the smallest.

Then the union of the Yao structures of all nodes forms a graphG.

3. Power assignment: Extract the induced power assignmentPG, wherePG(u) = max{v|uv∈G} wuv.

The running time of the first step and last are the same with those of the previous algorithm.

The total time of building one Yao graph takesO(m). In our algorithm, we build at mostdu

Yao structures at nodeu, so totally at mostmaxu(du) Yao graph. Therefore, the cost is at

mostO(mn). Then, the total costs of Yao-based algorithm isO(mn), which isO(n3) when

m = O(n2). It seems that running time of this second algorithm is similar with the first one.

However, this algorithm is much faster than the first one practically , and more importantly it



can be performed in a localized way. Remember for each node to building one Yao structure, it

only takes at mostO(du). So at each node, buildingdu Yao structures takes at mostO(d2
u). And

since this algorithm can be done locally, it is quite suitable for wireless ad hoc networks.

Originally, we was planning using a subgraph of UDG called Gabriel graph to save some

computation in our algorithms. Letdisk(u, v) be the disk with diameteruv. Then, theGabriel

graph[23] GG contains an edgeuv from UDG if and only if disk(u, v) contains no other nodes

w ∈ V . In [25], Li et. al proved Gabriel graph is a power spanner and its power stretch factor

is one. Therefore, we first conjectured that it is enough to only consider the power assignment

induced from subgraphs of the Gabriel graph instead of considering all possible subgraphs of

UDG. However, we construct a counter example to disprove the following conjecture.

Conjecture 3:The optimum power assignment is induced from some connected subgraphH

of GG.

DISPROOF. Assume that we have six wireless nodes and they are distributed as in Figure 2 (a).

And when all nodes transmit at their maximum power, the communication graph (the unit disk

graph) is shown in Figure 2 (a). Notice that||xu|| = |yv|| > ||uv|| > ||wz|| > ||uw|| = ||vz||.
Since nodew andz are inside thedisk(u, v), from the definition of GG, we knowuv are removed

in GG. Figure 2 (b) shows the Gabriel graph GG. The power assignment induced from GG

will be P(u) = P(v) = P(x) = P(y) = ||xu||2 andP(w) = P(z) = ||wz||2. Therefore,

the total power assignment isPGG = 4||xu||2 + 2||wz||2. However, in the optimum power

assignment shown in Figure 2 (c), since the power at nodeu needs to coverx, it is strong

enough to connectu to v. Thus, linkwz is removed in the optimum power assignment OPT.

The power assignment induced from OPT will beP(u) = P(v) = P(x) = P(y) = ||xu||2 and

P(w) = P(z) = ||uw||2. Clearly, the total power assignmentPOPT = 4||xu||2 +2||uw||2 is less

than the one induced from GG. Also it is easy to see there are no connected subgraphsH of GG

that can induce the optimum power assignment, since for this special case we cannot remove

any edge in GG while still keep it connected.

V. EXPERIMENTS

Since we do not give the theoretical performance analysis for our min-total power assignment

heuristics, we conducted extensive simulations of both min-total power assignment methods. In
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Fig. 2. A counter-example for Conjecture 3. (a): the unit disk graph. (b): the Gariel graph. (c): the induced

communication graph from the optimum power assignment

our experiments, we randomly generate a setV of n wireless nodes and itsUDG(V ), and test

the connectivity ofUDG(V ). If it is connected, we apply these two min-total power assignment

methods and also the MST-based method to assign power for each node. Then we compare the

total power of the final power assignments.

In the first simulation, we generate100 random wireless nodes in a10×10 square; the spanner

parametert0 = 2; and the maximum power is set2.5. We generate100 vertex setsV (each with

100 vertices) and then apply the min-total power assignment methods for each of these100

vertex sets. The average and the maximum are computed over all these100 vertex sets. Figure

3 gives an example of the original communication graph and different induced communication

graphs by different min-total power assignment methods. It is clear that Yao-based method keeps

more links than others. Table I compares the performances of our methods with the performance

of the power assignment based on MST. Remember that, it is already known [6], [7], [8] that

the power assignment based on MST is within twice of the optimum power assignment for

connectivity only. In this paper, we are interested in power assignment such that the induced

communication graph is a spanner and we also proved in Section III that the optimum min-total

power assignment has a lower boundw(MST (UDG)). From Table I, we found that the total

power assignment by greedy-based and Yao-based methods are within small constant factor of

w(MST (UDG)). Also both the power assignment methods save many energy comparing with

UDG (i.e. every node uses the maximum transmission power). Notice that the spanning ratio

of the communication graph induced from the power assignment induced from MST is large

(almost 16 in the worst case) while the communication graph induced by our power assignment

methods has spanning ratios less than2.

We then vary the number of nodes in the region from50 to 300. The transmission range of



TABLE I

TOTAL ASSIGNED POWER AND SPANNING RATIOS OF GRAPHS INDUCED BY DIFFERENT MIN-TOTAL POWER

ASSIGNMENT METHODS.

MST GREEDY YAO

Avg Total-Power (P(G)) 78.92 106.72 366.21

Avg P(G)/P(UDG) 0.126 0.170 0.585

Avg P(G)/P(MST ) 1.00 1.352 4.65

MaxP(G)/P(MST ) 1.00 1.650 5.53

Avg Spanning Ratio 1.424 1.060 1.000

Max Spanning Ratio 14.84 1.999 1.097

each node is still set as2.5. We plotted the performances of all structures in Figure 4.

Finally, we fix the number of nodes in the region as100 and grow the transmission range of

each node from2.0 to 5.0. We plotted the performances of all structures in Figure 5.

All the results show that the spanning ratios of communication graphs induced by our greedy-

based and Yao-based power assignment methods are satisfied with the input requirement while

the one by MST-based method maybe large. Moreover, the total power assignments by our

new methods are within small constant factor ofw(MST (UDG)), even though we do not have

theoretical results for its approximation ratios. Yao-based method keeps more links and spends

more power, however it is easy to perform and can be run locally. In summary, both of our new

min-total power assignment heuristics are suitable for power assignment tasks for wireless ad

hoc networks.

VI. CONCLUSION

In this paper, we studied the power assignment such that the induced communication graph

is a spanner for the original communication graph when all nodes have the maximum power.

Polynomial time algorithm was given, for any property that can be tested in polynomial time, to

minimize the maximum assigned power. We also gave polynomial time approximation method

to minimize the total transmission radius of all nodes. We gave two heuristics and conducted

extensive simulations to study their performance when we want to minimize the total assigned



power of all nodes. Our simulations validated our theoretical claims. We would like to know if

the min-total radius assignment is NP-hard and to design approximation algorithms for min-total

power assignment problem.
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Fig. 3. Different induced communication graphs under the different power assignments from the same original

communication graph.
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Fig. 4. Results when the number of nodes in the networks are different (from50 to 300). Here the transmission

range is set as2.5.
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Fig. 5. Results when the transmission range are different (from2.0 to 5.0). Here the number of nodes is100.


