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Efficient Strategyproof Multicast in Selfish Networks
Xiang-Yang Li? Weizhao Wang?

Abstract—In this paper, we propose several strategyproof
mechanisms for multicast for both node weighted graphs
and link weighted graphs. A node in node weighted graphs
or a link in link weighted graphs is called an agent. For a
multicast with a source node and a set of receiver nodes,
we assume that they will pay each agent to carry the traffic
from source to receivers. The utility of an agent is its pay-
ment received, minus its cost if it is in the multicast tree.
We assume that the cost of each agent is private and each
agent can manipulate its weight to maximize its utility. A
payment scheme is strategyproof if every agent maximizes
its utility when it reports its cost truthfully. In this paper,
we proposed several strategyproof payment schemes based
on various structures. We prove that each of our payment
schemes is optimum for the corresponding structure used.

I. Introduction

Consider a network G = (V,E) consisting of a node
set V = {v1, v2, · · · , vn} and a set of links E =
{e1, e2, · · · , em}. For node weighted graph, we assume that
each node vi has a fixed cost ci to relay a unit data for other
nodes, which is only known to vi. Then the network is rep-
resented by a node weighted graph G = (V,E, c), where
c = (c1, c2, · · · , cn) is the cost vector of all nodes. For link
weighted graph, we assume that each link ei has a fixed
cost ci to carry a unit transit traffic, and the cost is only
known to ei. Then the network is represented by a link
weighted graph G = (V,E, c), where c = (c1, c2, · · · , cm) is
the cost vector of all links.

In this paper, we study the truthful mechanism design
for multicast. We assume that there is a set of of receivers
Q = {q1, q2, q3, · · · , qk} ⊂ V , and Q\{qi} could get data
from qi, for any 1 ≤ i ≤ k. For simplicity of notations,
we assume that qi = vi, for 1 ≤ i ≤ k. Assume that
each node is willing to pay other nodes or links to carry
the transit traffic incurred by it. In this paper, all nodes
(or links) are assumed to be rational, i.e., they respond to
well-defined incentives and will deviate from the protocol
only if it improves its gain. We want to design payment
schemes for multicast such that every node (or link) has
to report its true cost to maximize its profit. For node
weighted graphs, we propose a payment scheme based on
the spider structure whose total cost is within 2 ln k times
of the optimum. We prove that our payment scheme is
truthful: satisfying both the incentive compatibility (IC)
property and the individual rationality (IR) property.

Organization: The rest of the paper is organized as
follows. In Section II, we review some definitions and pri-
ori arts on truthful mechanism design for multicast. In
Section III, we present the first strategyproof mechanism
for Steiner tree problem (or called multicast). The output
of our mechanism (a tree) has cost within a constant factor
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of the optimum, and the payment is minimum among any
truthful mechanism having this output.

II. Preliminaries and Priori Art

Preliminaries: A standard economic model for ana-
lyzing scenarios in which the agents act according to their
own self-interest is as follows. There are n agents. Each
agent i, for i ∈ {1, · · · , n}, has some private information
ti, called its type. Then the set of n agents define a type
vector t = (t1, t2, · · · , tn), which is called the profile. There
is an output specification that maps each type vector t to
a set of allowed outputs. Agent i’s preferences are given by
a valuation function vi that assigns a real number vi(ti, o)
to each possible output o. Here, we assume that the valu-
ation of an agent does not depend on other agents’ types.
Everything in the scenario is public knowledge except the
type ti, which is a private information to agent i. Each
agent i has a set of strategies Ai that the agent can choose
from.

For each strategy vector a = (a1, · · · , an), i.e., agent i
plays strategy ai ∈ Ai, the mechanism computes an output
o = o(a) and a payment vector p = (p1, · · · , pn), where
pi = pi(a). Here the payment pi is the money given to
each participating agent i if all agents playing under strat-
egy vector a. Agent i’s utility is ui = vi(ti, o) + pi. By
assumption of rationality, agent i always tries to maximize
its utility ui. A mechanism is strategyproof (or called truth-
ful) if the types are part of the strategy space Ai and each
agent maximizes its utility by reporting its type ti as in-
put regardless of what other agents do. The efficiency of
a mechanism is

∑
i vi(o, ti).

Let a−i denote the vector of strategies of all other agents
except i, i.e., a−i = (a1, a2, · · · , ai−1, ai+1, · · · , an). Let
a|ib = (a1, a2, · · · , ai−1, b, ai+1, · · · , an), i.e., each agent
j 6= i uses strategy aj and the agent i uses strategy b. The
following are some natural constraints which any truthful
mechanism must satisfy:
1. Incentive Compatibility (IC): Each agent i max-
imizes its utility if it reveals ti, i.e., vi(ti, o(a|iti)) +
pi(a|iti) ≥ vi(ti, o(a|iai)) + pi(a|iai).
2. Individual Rationality (IR): Every agent i must
have non-negative utility if it reveals ti.
3. Polynomial Time Computability (PC): All com-
putation is done in polynomial time.

Arguably the most important positive result in mech-
anism design is what is usually called the generalized
Vickrey-Clarke-Groves (VCG) mechanism by Vickrey [18],
Clarke [4], and Groves [10]. A direct revelation mechanism
m = (o(t), p(t)) belongs to the VCG family if (1) the out-
put o(t) computed based on the type vector t maximizes
the objective function g(o, t) =

∑
i vi(ti, o), and (2) the
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payment to agent i is

pi(t) =
∑

j 6=i

vj(tj , o(t)) + hi(t−i).

Here hi() is an arbitrary function of t−i. It is proved by
Groves [10] that a VCG mechanism is truthful. Green
and Laffont [8] proved that, under mild assumptions,
VCG mechanisms are the only truthful implementations
for problems with objective function g(o, t) =

∑
i vi(ti, o).

Notice, for VCG mechanism, the output o is required
to maximize the objective function g(o, t). This makes
the mechanism computationally intractable in many cases.
Replacing the optimal output with non-optimal approx-
imation usually leads to untruthful mechanisms. In their
seminal paper on algorithmic mechanism design, Nisan and
Ronen [15] added computational efficiency to the set of con-
cerns that must be addressed in designing truthful mecha-
nisms.

Priori Arts: Routing has been part of the algorithmic
mechanism-design from the beginning. Nisan and Ronen
[15] provided a polynomial-time strategyproof mechanism
for unicast in a centralized computational model for link
weighed graph where each link is an agent. Their mech-
anism is essentially a VCG scheme. Feigenbaum et. al
[6] then addressed the truthful low cost routing for node
weighted graph: each node k incurs a transit cost ck for
each transit packet. For any two nodes i and j of the net-
work, Ti,j is the intensity of the traffic (number of packets)
originating from i and destined for j. Their scheme again is
essentially the VCG mechanism. They gave a distributed
method such that each node i can compute the payment to
any relay node k. The engineering approaches presented in
[2], [13], [3], [1] pay each relay node a nuglet and the source
is charged of h nuglets if there are h relay nodes.

For multicast flow, Feigenbaum et. al [7] considered a
set of users Q resided at the set of nodes V . Additionally,
for each node vi ∈ V , they assumed a fixed path from the
source to it, determined by the multicast routing infras-
tructure. Then for every subset R of receivers, the delivery
tree T (R) is merely the union of the fixed paths from the
source to the nodes containing receivers in R. They also
assumed that each link e has a publicly known cost c(e);
each receiver qi has a privately known valuation wi for the
reception of the data from the source. Based on reported
w′i from each qi, the source node then decides a subset
R of receives to get the data and a charge pi to each re-
ceiver qi, and pays the links on T (R). The welfare ui of
a node qi is xiwi − pi, where xi is indicator function of
whether qi ∈ R. The scheme is said to be efficient if it
maximizes

∑
qi∈Q ui. The scheme is said to be budget bal-

anced if the revenue raised from the receivers covers the
cost of transmission links exactly. It is a classical result
[9] that a strategyproof mechanism satisfying NPT (non-
positive transfer), VP (Voluntary Participation), CS (Con-
sumer Sovereignty) cannot be both efficient and budget bal-
anced. Feigenbaum et. al [7] studied how to share the link
costs among receivers. Feigenbaum et. al [5] showed that
there is no strategyproof multicast cost-sharing mechanism

satisfying NPT, VP, and CS that is both approximately ef-
ficient and approximately budget-balanced. The benefit of
fixing the multicast tree is relatively simple to implement
and it avoids difficulty caused by the NP-hardness of find-
ing optimal multicast tree.

Given a node weighted graph G and k terminals from
G, the node weighted Steiner tree problem is to find a
tree spanning all terminals with minimum cost. It is
well-known [14] that the node weighted Steiner tree can-
not be approximated less than ln k, assuming that NP 6⊆
DTIME[nO(log log n)]. Several methods [14], [11] have been
proposed to approximate the node weighted Steiner tree
within O(ln k).

III. Strategyproof Multicast in Link Weighted
Graph

A. Problem Statement

Consider any link weighted network G = (V,E, c), where
E = {e1, e2, · · · , em} are the set of links, and ci is the
weight of the link ei. The multicast problem is to find a tree
that spanning a given set of nodes Q = {q1, q2, · · · , qk} ⊂
V . For the simplicity of notations, we assume that qi = vi,
for 1 ≤ i ≤ k. We assume that the source node, say q1,
(and/or all receivers) will pay each relay node to carry the
traffic from the source to receivers. Thus, each link is re-
quired to report its cost. The utility of a link is its payment
received, minus its cost if it is selected in the multicast tree.
We assume that the cost of each link is private and each link
can manipulate its reported cost to maximize its utility. A
payment scheme is strategyproof if every link maximizes its
utility when it reports its cost truthfully. In this section,
we propose several strategyproof payment schemes based
on various structures. We prove that each of our payment
schemes is optimum for the corresponding structure used.

Notice that a link may declare a cost other than its actual
cost. Let d = (d1, d2, · · · , dm) be the declared costs, where
m is the number of links in G. Since, for strategyproof
mechanisms, every link ei maximizes its profit when di =
ci, we will simply use ck to denote the reported cost of
node vk if it is clear from the context. If we change the
cost of a link ei ∈ E to c′i, we denote the new graph as
G′ = (V, E, c|ic′i), or simply c|ic′i. If we remove one link ei

from G, we denote the resulting graph as G\ei, or simply
c|i∞. Given a tree T spanning all receivers, the valuation
of a link ei is −ei is it is in T ; otherwise its valuation is 0.

In order for every node qi ∈ Q to broadcast the message
to the other receiving nodes in Q, we first should construct
a multicast tree T spanning all nodes in Q. The summation
of the cost of every link in a graph H ⊆ G is called the
weight of H, denoted as ω(H). Here, a leaf node in T
must be a receiver and it does not incur any cost. It is
well-known (see e.g., [17], [16]) that it is NP-hard to find
the minimum cost multicast tree when given an arbitrary
link weighted graph G. Takahashi and Matsuyama [17]
first gave a polynomial time algorithm that approximates
the minimum cost Steiner tree with approximation ration
2. Then a series of results have been developed to improve
the approximation ratio. The current best result is due to
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Robins and Zelikovsky [16], in which the authors presented
a polynomial time method with approximation ratio 1 +
ln 3
2 .

B. VCG Strategyproof Mechanism

Obviously, we can design a strategyproof mechanism us-
ing VCG directly as follows: We first construct the min-
imum cost Steiner tree, denoted by MCST (G), spanning
all receivers Q; the payment to a node vi ∈ MCST (G) is

pi = ω(MCST (G\vi))− ω(MCST (G)) + ci. (1)

Clearly, this scheme is truthful since MCST (G) max-
imizes the valuation of all agents. It is well-known that
VCG mechanism is the most efficient. However, on the
other hand, since it is computational intractable to find
the minimum cost tree MCST (G) spanning all receivers
for an arbitrary node weighted graph G, it will be com-
putational expensive to implement VCG payment scheme
on MCST (G). In the following sections, we propose sev-
eral strategyproof mechanisms that can be implemented in
polynomial time. The payment schemes used in the follow-
ing subsections are different from traditional VCG. This
is in stark contrast with the almost universal use of VCG
scheme for devising strategyproof mechanisms.

C. Strategyproof Mechanism Based on LCPS

C.1 Constructing LCPS

Assume that the source node is q1. For each receiver
qi, we compute the least cost path, denoted by P(q1, qi, d),
from the source to qi under the reported cost profile d. The
union of all least cost paths from the source to receivers is
called least cost path star, denoted by LCPS. Clearly, we
can construct LCPS in time O(n log n + m).

C.2 VCG Mechanism on LCPS Is Not Strategyproof

Intuitively, we would use the VCG payment scheme in
conjunction with the LCPS tree structure as follows

pi = ω(LCPS(G\vi))− ω(LCPS(G)) + ci.

We will show by example that the above payment scheme is
not strategyproof. In other words, if we simply apply VCG
scheme on LCPS, a link may have incentives to lie about its
cost. Figure 1 illustrates such an example where link q0u1

can lie its cost to improve its utility. The payment to link
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Fig. 1. Here the cost of links are c(q0q1) = c(q0q2) = c(q0u1) = M ,
and c(q1u1) = c(q2u1) = ε.

q0u1 is 0 and its utility is also 0 if it reports its cost truth-
fully. The total payment to link q0u1 when q0u1 reported a

cost c3 = M − 2ε is ω(LCPS(c|3∞))− ω(LCPS(c|3c3)) +
c3 = 2M−(M−2ε+2ε)+M−2ε = 2M−2ε and the utility of
link q0u1 becomes u3(c|3c3) = 2M−2ε−(M +ε) = M−3ε,
which is larger than u3(c) = 0, when 0 < ε < M/3.

C.3 Strategyproof Mechanism on LCPS

For each receiver qj , we compute the least cost path from
the source (say q1) to qi, and compute a payment pj

i (d) to
every link ej on the least cost path using the scheme for
unicast: pj

i (c) = xj
idj + ‖P(q1, qi, d|j∞)‖ − ‖P(q1, qi, d)‖.

Here xj
i denotes whether link ej is used in least cost path

from q1 to qi. The total payment to a link ej is then

pj(d) = max
qi∈Q

pj
i (d) (2)

Theorem 1: Payment based on LCPS is truthful and it
is minimum among all truthful payments based on LCPS.
Proof. Clearly, when link ej reports its cost truthfully,
it has non-negative utility, i.e., the payment scheme satis-
fies the IR property. In addition, it also satisfies the IC
property, since every link ej cannot lie about its cost to
increase its payment pj

i (c) based on receiver qi. Thus, it
cannot improve maxqi∈Q pj

i (c) by lying.
We then show that the above payment scheme pays the

minimum among all strategyproof mechanism using LCPS
as output. Assume that there is another payment scheme p̃
that pays less for a link ej in a network G. Let δ = pj− p̃j ,
then δ > 0. Without loss of generality, assume that pj(c) =
pj

i (c). Thus, link ej is on the least cost path P(q1, qi, c)
and ‖P−ej (q1, qi, c)‖−P(q1, qi, c)‖ = pj − cj = uj(c). Then
consider another graph G′ with cost profile c′ = c|j(cj +
uj(c)− δ

2 ). Obviously, link ej is still on the least cost path
to qi in G′ since ‖P−ej (q1, qi, c

′)‖ = ‖P−ej (q1, qi, c)‖ and
‖Pej (q1, qi, c

′)‖ = ‖Pej (q1, qi, c)‖ + uj(c) − δ
2 . Notice that

‖Pej (q1, qi, c)‖ = ‖P(q1, qi, c)‖. Thus, ej ∈ LCPS(G′).
From the IC property, we know that the payment to link ej

in graph G must be the same as in graph G (the payment to
a node vj is independent of its cost as long as the valuation
of ej does not change). Notice that uj(c) = pj − cj =
δ + p̃j − cj . The utility of link ej under payment scheme p̃
becomes p̃j − (cj + uj(c) − δ

2 ) = − δ
2 < 0. In other words,

in graph G′, even link ej reports its true cost, link ej gets
negative utility under payment scheme p̃. This finishes our
proof.

Notice that the payment based on pk(c) = minqi∈Q pk
i (c)

is not truthful since a link may lie its cost upward so it can
discard some low payment from some receiver. In addition,
the payment pk(c) =

∑
qi∈Q pk

i (c) is not truthful either.

D. Strategyproof Mechanism Based on Approximation of
Minimum Cost Steiner Tree

D.1 Approximation Minimum Cost Steiner Tree

In the following we review the method by Takahashi
and Matsuyama [17] that approximates the minimum cost
Steiner tree with approximation ration 2. Remember that
a series of results have been developed to improve the ap-
proximation ratio. The current best approximation ratio
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1 + ln 3
2 is due to Robins and Zelikovsky [16]. The method

by Takahashi and Matsuyama [17] works as follows. First,
we find the receiver, say qi, that is closest to the source,
i.e., the least cost path P(qi, q1, c) has the least cost among
all receivers. We then connect this receiver to the source
using the least cost path between them. We contract this
selected path to one virtual vertex, which will be used as
virtual source node for next round, and remove some edges
if necessary. If there is any other receivers remaining, we
repeat the above step. We call such operation one round :
finding the receiver that is closest to the virtual source
node, finding the shortest path connecting this receiver and
the virtual source, contracting this path to a new virtual
source node. Let Pr be the path found in round r, and tr
be the receivers it connects with the virtual source node.
Given k receivers, the method will terminate in k rounds.
Hereafter, let ST (G) be the final tree constructed using the
method by Takahashi and Matsuyama. They [17] proved
that ω(ST (G)) ≤ 2ω(MCST (G)).

D.2 VCG Mechanism on Approximating Minimum Cost
Steiner Tree Is Not Strategyproof

Given a tree ST (G) approximating the minimum cost
Steiner tree, a natural payment would be to pay each node
based on VCG scheme, i.e., the payment to a node vi ∈
ST (G) is

pi = ω(ST (G\vi))− ω(ST (G)) + ci.

We will show by example that this payment scheme does
not satisfy IR property, i.e., it is possible that some node
has negative utility. Figure 2 illustrates such an example

1

u

v viv k

0

Fig. 2. Here nodes vi, 1 ≤ i ≤ k are receivers; the cost of each link
u0vi is 1+ ε, where ε is a sufficiently small positive real number. The
cost of each link vivi+1 is 2.

with node v1 being the source node. It is not difficulty
to show that, in the first round, link v1v2 is selected to
connect terminals v1 and v2 with cost 2; in round r, we
will select link vrvr+1 to connect to vr with cost 2. Thus,
the tree ST (G) will be just the path v1v2 · · · vk, whose cost
is

∑k−1
i=1 c(vivi+1) = 2(k − 1).

When link e1 = v1v2 is not used, it is easy to see that
the final tree ST (G\e1) will only use node u0 to connect
all receivers with total cost k(1 + ε). Thus, the utility
of link e1 = v1v2 is ω(ST (G\e1)) − ω(ST (G)) = k(1 +
ε) − 2(k − 1) = kε − k + 2, which is negative when ε <
k−2

k . Thus, the payment to link v1v2 does not satisfy the
incentive rationality property.

D.3 Strategyproof Mechanism on Approximation of Mini-
mum Cost Steiner Tree

We now describe in this subsection a strategyproof mech-
anism (without using VCG) based on the tree ST (G). In-
stead of paying the node based on the final structure, we
will pay the node based on each round. Let wr(d) be the
cost of the path Pr selected in the rth round if the cost
profile is d.

Before we present out payment scheme, we first study
the conditions that a link ei will be selected in some round.
Assume that the cost of all links (except link ei) are fixed.
First, if the link ei is selected in round 1 when it reports
a cost di, then clearly it will be selected in round 1 when
it reports a cost d′i < di. Thus, there is a cut off value,
denoted by c1

i , such that when link ei reports a cost d′i < c1
i ,

ei is always selected in round 1; when link ei reports a cost
d′i > c1

i , ei is always not selected in round 1; when link
ei reports a cost d′i = c1

i , it is unknown whether ei will
be selected in round 1 (this depends on the way how ties
are broken among different paths). Here c1

i could be 0 or
∞. This further implies that if link e1 is selected in round
2, it must report a cost d′i ≥ c1

i . Similarly, we know that
there is also a cut off value c2

i ≥ c1
i such that when link ei

reports a cost c1
i < d′i < c2

i , ei is always selected in round
2. We thus can conclude that there are a sequence of real
non-negative numbers

0 = c0
i ≤ c1

i ≤ c2
i ≤ · · · ≤ cr

i ≤ · · · ≤ ck−1
i ≤ ck

i = ∞
such that when link ei reports a cost cr−1

i < d′i < cr
i , ei is

guaranteed to be selected in round 1 ≤ r ≤ k. Here a link
selected in round k means that this link is not in ST (G).

We then study whether the existence of a link ei con-
tributes to the shortest path found in round r. When
cr−1
i = cr

i , it means that link ei is not guaranteed to be
selected in round r (the only case it being selected is ei

reports cost cr
i and the shortest path using ei wins through

tie-breaking). When cr−1
i < cr

i , link ei can always let
itself be selected in round r by declaring a cost di with
cr−1
i < di < cr

i . In other words, the existence of link ei

contributes to the found shortest path Pr in round r. Then
we pay link ei for this contribution in round r as

pi
r = cr−1

i + wr(c|i∞)− wr(c|icr−1
i ).

If link ei is selected in the structure ST (G), the payment
to the link ei is

pi = max
r

pi
r = max

r

(
cr−1
i + wr(c|i∞)− wr(c|icr−1

i )
)
. (3)

If link ei is not selected in the structure ST (G), the pay-
ment to ei is then 0.

Theorem 2: The payment function based on Equation
(3) satisfies the IR and IC properties.
Proof. We first show that the payment scheme satisfies
the individual rationality property. If link ei is selected in
round r when it reports its true cost ci. We then know
that cr−1

i ≤ ci ≤ cr
i . Note that pi

r = cr−1
i + wr(c|i∞) −

wr(c|icr−1
i ). It is easy to see that the shortest path Pr(c)
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selected in round r under cost profile c is the same as the
shortest path Pr(c|icr−1

i ) selected in round r under cost
profile c|icr−1

i . Thus, we have wr(c|icr−1
i ) = wr(c) − ci +

cr−1
i . It implies that the utility of link ei is pi

r − ci =
wr(c|i∞)− wr(c), which is obviously non-negative. When
link ei is not selected in any round, then its payment is 0
and its utility is also 0.

We then show that the payment scheme satisfies the in-
centive compatibility property. We first consider the case
that link ei is selected in structure ST (G) if it reports
its cost truthfully. Clearly, when it lies down its cost, it
will still be selected, thus, its valuation does not change.
Clearly, the payment pi to link ei does not change also.
Then its utility remains the same. When link ei lies up its
cost, if link ei is not selected anymore, link ei will have 0
utility instead of non-negative utility if it reported truth-
fully. If link ei is still selected, the utility remains the same.

We then consider the case that link ei is not selected
when it reports its true cost. Clearly, link ei can only
improve its utility by lying down its cost, say di, so it is
selected in some round. Notice that in any round r, if the
link ei report a cost larger than cr

i , link ei is not selected.
It means that path Pr(c|i∞) has the less cost then any
path containing link ei from some receiver to the virtual
source node. Thus, wr(c|i∞) ≤ wr(c|icr

i ) = wr(c|icr−1
i ) +

cr
i − cr−1

i . Then the payment pi to a link ei in ST (G) is at
most max1≤r≤k−1

(
cr
i − cr−1

i

)
, which is no more than ck−1

i .
Since link ei is not selected in ST (G) when its cost is ci, it
means ci ≥ ck−1

i . Then, lying down its cost to di ≤ ck−1
i ,

link ei has utility pi(c|di ) − ci ≤ ck−1
i − ci ≤ 0. Thus, link

ei cannot improve its utility by lying down its cost.

Theorem 3: The payment function based on Equation 3
is optimum among all truthful payments based on structure
ST (G).
Proof. We prove this by contradiction. Assume that there
is a truthful payment scheme p̃ that pays less to link ei for
a cost profile c when the communication graph is G.

Obviously ei is selected in ST (G) since our scheme pays
0 to links not selected, and we cannot pay negative to these
links from the individual rationality property.. Assume
that p̃i = pi − δ for some δ > 0. Let r be the round such
that pi

r = pi in our payment scheme. In other words, we
have pi = cr−1

i +wr(c|i∞)−wr(c|icr−1
i ). We then consider

a graph G′ in which the actual cost of link ei is di = pi− δ
2 .

Obviously, di = p̃i + δ > 0, and

di = cr−1
i + wr(c|i∞)− wr(c|icr−1

i )− δ

2
. (4)

We first show that link ei is also selected in the tree
ST (G′). Assume that link ei is not selected before we
start round r. Then, in round r, among all paths using
ei connecting some receivers to the virtual source, path
Pr(c|icr−1

i ) has the least cost. Notice that the definition of
the sequence cr

i , 1 ≤ r ≤ k, ensures that ei does appear
at round r when its cost is cr−1

i ) (if it did not appear in
previous round). Thus, the cost of path Π = Pr(c|icr−1

i )
(which containing ei) is no more than the cost of path

Pr(c|i∞). Let’s consider the path Π = Pr(c|icr−1
i ). If re-

placing the cost of link ei with di, its total cost becomes
wr(c|icr−1

i ) − cr−1
i + di, which is equal to wr(c|i∞) − δ

2
from Equation (4). In addition, the total cost of any path
containing ei will have the same amount of increment of
cost, i.e., di − cr−1

i . Thus, the path Π is still the least cost
path to connect some receivers to the virtual source node.
Consequently, link ei will be selected in round r when the
cost profile is c|idi.

Since the valuation of link ei is the same when it has cost
ci or cost di, the payment p̃i to link ei should be the same
(otherwise, link ei could lie its cost depending which case
pays higher). Thus, the payment p̃i(c|idi) = p̃i(c) = pi(c)−
δ. Then the utility of link ei, when the actual cost profile
is c|idi, is p̃i(c|idi)− di = pi(c)− δ− (pi − δ

2 ) = − δ
2 , which

is negative. This clearly violates the individual rationality
property.

IV. Strategyproof Multicast in Node Weighted
Graph

A. Problem Statement

Consider any node weighted network G = (V, E, c),
where ci is the weight of node vi. Usually we need to com-
municate among a group of nodes Q = {q1, q2, · · · , qk} ⊂ V
instead of a pair of nodes, which is known as multicast
problem. For the simplicity of notations, we assume that
qi = vi, for 1 ≤ i ≤ k. We assume that the source node,
say q1, (and/or all receivers) will pay each relay node to
carry the traffic from the source to receivers. Thus each
node is required to report its cost. The utility of a node is
its payment received, minus its cost if it is in the multicast
tree. We assume that the cost of each node is private and
each node can manipulate its reported cost to maximize its
utility. A payment scheme is strategyproof if every node
maximizes its utility when it reports its cost truthfully.
In this section, we propose several strategyproof payment
schemes based on various structures. We prove that each
of our payment schemes is optimum for the corresponding
structure used.

Notice that the nodes may declare cost other than c. Let
d = (d1, d2, · · · , dn) be the declared costs. Since, for strat-
egyproof mechanisms, every node vi maximizes its profit
when di = ci, we will simply use ck to denote the reported
cost of node vk if it is clear from the context. If we change
the cost of a node vi ∈ V to c′i, we denote the new graph as
G′ = (V, E, c|ic′i), or simply c|ic′i. If we remove one vertex
vi and all its incident links from G, we denote the resulting
graph as G\vi, or simply c|i∞.

In order for every node qi ∈ Q to broadcast the message
to the other receiving nodes in Q, we first should construct
a multicast tree T spanning all nodes in Q. The summation
of cost of every node in T is called the weight of the tree T ,
denoted as ω(T ). Here, a leaf node in T must be a receiver
and it does not incur any cost. It is well-known (see e.g.,
[12]) that it is NP-hard to find the minimum cost multicast
tree when given an arbitrary node weighted graph G, and it
is at least as hard to approximate as the set cover problem.
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Guha and Khuller [12] showed that it can be approximated
within O(ln k), where k is the number of receivers.

B. VCG Strategyproof Mechanism

Obviously, we can design a strategyproof mechanism us-
ing VCG directly as follows: We first construct the min-
imum cost Steiner tree, denoted by MCST (G), spanning
all receivers Q; the payment to a node vi ∈ MCST (G) is

pi = ω(MCST (G\vi))− ω(MCST (G)) + ci. (5)

Clearly, this scheme is truthful since MCST (G) max-
imizes the valuation of all agents. It is well-known that
VCG mechanism is the most efficient. However, on the
other hand, since it is computational intractable to find
the minimum cost tree MCST (G) for an arbitrary node
weighted graph G, it will be computational expensive to
implement VCG payment scheme on MCST (G). In the
following sections, we propose several strategyproof mech-
anisms that can be implemented in polynomial time. The
payment schemes used in the following subsections are dif-
ferent from traditional VCG. This is in stark contrast with
the almost universal use of VCG scheme for devising strat-
egyproof mechanisms.

C. Strategyproof Mechanism Based on LCPS

C.1 Constructing LCPS

Assume that the source node is q1. For each receiver
qi, we compute the least cost path, denoted by P(q1, qi, d),
from the source to qi under the reported cost d. The union
of all least cost paths from source to receivers is called least
cost path star, denoted by LCPS. Clearly, we can construct
LCPS in time O(n log n + m).

C.2 VCG Mechanism on LCPS Is Not Strategyproof

Intuitively, we would use the VCG payment scheme in
conjunction with the LCPS tree structure as follows

pi = ω(LCPS(G\vi))− ω(LCPS(G)) + ci.

We will show by example that the above payment scheme is
not strategyproof. In other words, if we simply apply VCG
scheme on LCPS, a node may have incentives to lie about
its cost. Figure 3 illustrates such an example where node v3

can lie its cost to improve its utility. The payment to node
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M M
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(a) Graph G (b) LCPS (c) LCPS with lie
Fig. 3. Here the cost of nodes are c1 = c2 = M and c3 = M + ε.

v3 is 0 and its utility is also 0 if it reports its cost truthfully.
The total payment to node v3 when v3 reported a cost
c3 = M − ε is ω(LCPS(c|3∞)) − ω(LCPS(c|3c3)) + c3 =
2M − (M − ε) + M − ε = 2M and the utility of node v3

becomes u3(c|3c3) = 2M−(M +ε) = M−ε, which is larger
than u3(c) = 0.

C.3 Strategyproof Mechanism on LCPS

For each receiver qj , we compute the least cost path from
the source (say q1) to qi, and compute a payment pj

i (d) to
every node vk on the least cost path using the scheme for
unicast: pj

i (c) = xj
idj + ‖P(q1, qi, d|j∞)‖ − ‖P(q1, qi, d)‖.

Here xj
i denotes whether node vj is used in least cost path

from q1 to qi. The total payment to a node vj is then

pj(d) = max
qi∈Q

pj
i (d) (6)

Theorem 4: Payment based on LCPS is truthful and it
is minimum among all truthful payments based on LCPS.
Proof. Clearly, when node vj reports its cost truthfully,
it has non-negative utility, i.e., the payment scheme satis-
fies the IR property. In addition, it also satisfies the IC
property, since every node vj cannot lie about its cost to
increase its payment pj

i (c) based on receiver qi. Thus, it
cannot improve maxqi∈Q pj

i (c) by lying.
We then show that the above payment scheme pays

the minimum among all strategyproof mechanism using
LCPS as output. Assume that there is another payment
scheme p̃ that pays less for a node vj in a network G. Let
δ = pj − p̃j , then δ > 0. Without loss of generality, as-
sume that pj(c) = pj

i (c). Thus, vj is on the least cost path
P(q1, qi, c) and ‖P−vj (q1, qi, c)‖ − P(q1, qi, c)‖ = pj − cj =
uj(c). Then consider another graph G′ with cost profile
c′ = c|j(cj+uj(c)− δ

2 ). Obviously, vj is still on the least cost
path to qi in G′ since ‖P−vj (q1, qi, c

′)‖ = ‖P−vj (q1, qi, c)‖
and ‖Pvj (q1, qi, c

′)‖ = ‖P(q1, qi, c)‖ + uj(c) − δ
2 . Thus,

vj ∈ LCPS(G′). From the IC property, we know that
the payment to node vj in graph G must be the same
as in graph G (the payment to a node vj is indepen-
dent of its cost as long as the valuation of vj does not
change). Notice that uj(c) = pj − cj = δ + p̃j − cj .
The utility of node vj under payment scheme p̃ becomes
p̃j − (cj + uj(c) − δ

2 ) = − δ
2 < 0. In other words, in graph

G′, even node vj reports its true cost, node vj gets negative
utility under payment scheme p̃. This finishes our proof.

Notice that the payment based on pk(c) = minqi∈Q pk
i (c)

is not truthful since a node may lie its cost upward so it can
discard some low payment from some receiver. In addition,
the payment pk(c) =

∑
qi∈Q pk

i (c) is not truthful either.

D. Strategyproof Mechanism Based on RMST

D.1 Constructing RMST

Our method constructing a cost efficient spanning tree
works as follows. First, we calculate the pairwise shortest
path P(qi, qj , G) between any two receiver nodes qi, qj ∈
Q. Then construct a complete edge weighted graph
K(G,Q, w) using Q as its vertices, where edge qiqj corre-
sponds to P(qi, qj , G), and its weight w(qiqj) is the cost
of P(qi, qj , G), i.e., w(qiqj) = ‖P(qi, qj , G)‖. Remem-
ber that the total weight of a least cost path P(qi, qj , G)
does not include the cost of two end-points qi and qj .
We then construct the minimum spanning tree (MST) on
K(G,Q, w) and denote it as RMST (G). The RMST (G)
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is calculated based on the reported cost profile. If we
construct RMST on a graph G removed of node vk, we
denote the resulting MST as RMST (G\vk). Obviously,
RMST (G\vk) = RMST (G|k∞).

D.2 VCG Mechanism on RMST Is Not Strategyproof

Figure 3 also illustrates such an example where node v3

can lie its cost to improve its utility when output is RMST
structure. The payment to node v3 is 0 and its utility is also
0 if it reports its cost truthfully. The total payment to node
v3 when v3 reported a cost c3 = M−ε is ω(RMST (c|3∞))−
ω(RMST (c|3c3)) + c3 = 2M − (M − ε) + M − ε = 2M and
the utility of node v3 becomes u3(c|3c3) = 2M − (M + ε) =
M − ε, which is larger than u3(c) = 0.

D.3 Strategyproof Mechanism on RMST

Given a spanning tree T , and a pair of nodes p and
q on T , clearly there is a unique path connecting them
on T . We denote such path as ΠT (p, q), and the edge
with the maximum length on this path as LE(p, q, T ).
For simplicity, we use LE(p, q, c) (or LE(p, q, G)) to de-
note LE(p, q, RMST (G)) and use LE(p, q, c|kdk) to denote
LE(p, q,RMST (G|kdk)).

Based on the structure RMST (G), we then design a
truthful mechanism for calculating the payment to relay
nodes on RMST (G) as follows. For every node vk ∈ V \Q
in G, first calculate RMST (G) and RMST (G|k∞) accord-
ing to the nodes’ declared costs vector c. For any edge
e = qiqj ∈ RMST (G) and any node vk ∈ P(qi, qj , G), we
define the payment to node vk based on the virtual link
qiqj as

pk
ij(c) = ‖LE(qi, qj , c|k∞)‖ − ‖P(qi, qj , c)‖+ ck. (7)

Here ‖Π‖ denotes the total cost of a path Π. If a node vk

is not on P(qi, qj , G), then the payment pk
ij(c) to node vk

based on the virtual link qiqj is 0. If the path P(qi, qj , G)
is not used in RMST (G), then the payment to any node
on path P(qi, qj , G) based on edge qiqj is also 0. The final
payment to node vk based on RMST (G) is

pk(c) = max
qiqj∈RMST (G)

pk
ij(c).

In citeWL03-STOC, we present an efficient method
to compute the payment in time min{O(k2n log n +
k2m), O(n2 log n + mn)}. The following result was also
proved in [19].

Theorem 5: The payment scheme is truthful and this
payment scheme pays each node minimum among all truth-
ful mechanisms using RMST.

E. Strategyproof Mechanism Based on Spider

E.1 Constructing Spider

However, the structures LCPs and RMST could have
cost Θ(k) times the optimum cost, i.e., it is not efficient.
In the following we review the method by Klein and Ravi
[14] (improved by Guha and Khuller [11] later) that con-
structs a structure that can approximate the optimum

cost within 2 ln k. Remember that the best known lower
bound on the approximation ratio is ln k, assuming that
NP 6⊆ DTIME[nO(log log n)]. Their method is based on a
structure called spider. A spider is defined as a tree having
at most one node of degree more than two. Such a node (if
one exists) is called the center of the spider. The cost of a
spider is the sum of the weights of the nodes in the spider.
The ratio of a spider is the ratio of its cost to the number
of its terminals (or receivers in this paper). Contracting a
spider is the operation of contracting all the nodes of the
spider to form one virtual vertex. If we contract a spider
S in a graph G, making the contracted vertex into a ter-
minal, and the cost of the new virtual terminal is 0. The
method by Klein and Ravi [14] repeatedly contracts the spi-
der with minimum ratio. At the first round, all receivers
are terminals with cost 0. Their method finds the spider
that connects some terminals with the minimum ratio and
then contracts it. We call such operation one round : find-
ing the minimum ratio spider and then contracting it. Let
Sr be the spider found in round r, and tr be the num-
ber of terminals it connects. Here each virtual terminal
is counted as 1 although it often contains many receivers.
Then ωr = ω(Sr)/tr is the ratio of that spider. Given k
receivers, the method will terminate in less than k rounds.
Hereafter, let ST (G) be the final tree constructed using the
spiders.

E.2 VCG Mechanism on Spider Is Not Strategyproof

Again, we may want to pay nodes based on VCG scheme,
i.e., the payment to a node vi ∈ ST (G) is

pi = ω(ST (G\vi))− ω(ST (G)) + ci.

We show by example that the payment scheme does not
satisfy IR property: it is possible that some node has neg-
ative utility. Figure 4 illustrates such an example. It is not

1

u

v

u iu
k−1u

v

1

iv k

0

Fig. 4. Here nodes vi, 1 ≤ i ≤ k are receivers; the cost of node u0

is 1. the cost of each node ui is 2
k+1−i

− ε, where ε is a sufficiently

small positive number.

difficulty to show that, in the first round, node u1 is se-
lected to connect terminals v1 and v2 with cost ratio 1

k − ε
2

(while all other spiders have cost ratio at least 1
k ). Then

nodes u1, v1 and v2 form a virtual terminal. At the be-
ginning of round r, we have a virtual terminal, denoted
by Vr formed by nodes ui, 1 ≤ i ≤ r − 1, and receivers
vi, 1 ≤ i ≤ r; all other receivers vi, r < i ≤ k are the
remaining terminals. It is easy to show that we will select
node ur at round r to connect Vr and vr+1 with cost ra-
tio 1

k+1−r − ε
2 . Thus, the total cost of the tree ST (G) is∑k−1

i=1 ( 2
k+1−i − ε) = 2H(k)− 2− (k − 1)ε.
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When node u1 is not used, it is easy to see that the
final tree ST (G\u1) will only use node u0 to connect all
receivers with cost ratio 1

k when 1
k−1 − ε

2 > 1
k . Notice that

this condition can be trivially satisfied by letting ε = 1
k2 .

Thus, the utility of node u1 is p1−c(u1) = ω(ST (G\u1))−
ω(ST (G)) = −2H(k)+3+(k−1)ε, which is negative when
k ≥ 8, and ε = 1/k2.

E.3 Strategyproof Mechanism on Spiders

We now describe in this subsection a strategyproof mech-
anism (without using VCG) based on the tree constructed
using spiders. Instead of paying the node based on the final
structure, we will pay the node based on each round. Let
ωr(d) be the cost of the spider Sr selected in the rth round
if the cost profile is d. Let tr(d) be the number of the ter-
minals connected by the spider Sr if the cost profile is d.
Then ωr(d)

tr(d) is the ratio of the spider Sr. Let Si
r(d) be the

spider in round r containing node vi and has the minimum
ratio among all spiders containing node vi. Let ωi

r(d) be
the cost of the spider Si

r(d). Let tir(d) be the number of the
terminals connected by the spider Si

r(d). Let S−i
r (d) be the

spider in round r without node vi and has the minimum
ratio among all spiders without node vi. Let ω−i

r (d) be the
cost of the spider S−i

r (d). Let t−i
r (d) be the number of the

terminals connected by the spider S−i
r (d).

We first show that, in a round r, if node vi is selected
to the spider structure under cost profile c, then node vi is
still selected in the spider structure under cost profile c|idi.
Here the spider under cost profile c|idi could be different
from the spider under cost profile c in round r. Obviously,
we have ωi

r(c)
ti
r(c) <

ω−i
r (c)

t−i
r (c)

. Then, for spider Si
r(c), if we re-

place the cost ci of node vi by di < ci, the cost of Si
r(c)

becomes ωi
r(c) − ci + di < ωi

r(c). Thus, the spider Si
r(c)

still has less ratio than the spider S−i
r (c), which is the same

as S−i
r (c|idi). Our claim then holds since Si

r(c|idi) has ra-
tio at most the ratio of Si

r(c). It implies that we have a
sequence of real numbers

0 = B0
i ≤ B1

i ≤ · · · ≤ Br−1
i ≤ Br

i ≤ · · · ≤ Bk−1
i ≤ ∞.

such that if the cost ci of node vi satisfies Br−1
i < ci < Bir,

then node vi is guaranteed to be selected in round r.
Assume that, when node vi has cost ci ∈ (Br−1

i , Br
i ), the

spider Si
r(c) selected has t terminals. When the cost of vi

is di < ci, it is easy to show that the spider Si
r(c|idi) could

not have more terminals than Si
r(c), i.e., tir(c|idi) ≤ tir(c)

when di < ci.
Note that, in round r, the number of total terminals is at

most k− r +1. We now further refine the range [Br−1
i , Br

i ]
using numbers

Br−1
i = Br,1

i ≤ Br,2
i ≤ · · · ≤ Br,k+1−r

i = Br
i

such that, when the cost of node vi is in range
(Br,t−1

i , Br,t
i ), the spider Sr(c) has exactly t terminals, i.e.,

tir(c) = t. Notice that spider Sr(c) always contains node vi

in this case, i.e., Si
r(c) is same as Sr(c).

We then define the payment to node vi as follows. If
node vi is selected in some round, when its cost is ci, then
its payment is

pi = max
1≤r≤k−1,

max
2≤t≤k−1−r

pi
r,t, (8)

where

pi
r,t =

t

t−i
r (c)

ω−i
r (c)− ωi

r(c|iBr,t−1
i ) + Br,t−1

i .

When node vi is not selected in any round, then the pay-
ment to node vi is 0.

Theorem 6: The payment function based on Equation
(8) satisfies the IR and IC properties.
Proof. First of all, we show that the utility of each
node vi is non-negative. When node vi is not selected,
its utility is clearly 0. When node vi is selected in round
r, and assume that the selected spider has t terminals,
i.e., ci ∈ [Br,t−1

i , Br,t
i ]. Note that pi

r,t = t
t−i
r (c)

ω−i
r (c) −

ωi
r(c|iBr,t−1

i ) + Br,t−1
i . Thus,

pi
r,t − ci

=
t

t−i
r (c)

ω−i
r (c)− ωi

r(c|iBr,t−1
i ) + Br,t−1

i − ci

= t ·
(

ω−i
r (c)

t−i
r (c)

− ωi
r(c|iBr,t−1

i )−Br,t−1
i + ci

t

)

≥ 0

We then prove that no node can increase its utility by
lying its cost. It is easy to show that, when node vi is
selected originally with cost ci, node vi cannot improve its
utility by lying its cost. We only have to show that, when
node vi is not selected originally, node vi cannot lie down
its cost so it is selected to improve its utility. Since node
vi is not selected with cost ci, we have, for any r,

ω−i
r (c)

t−i
r (c)

<
ωi

r(c)
tir(c)

.

We now show that
pi

r,t ≤ ci.

It is equivalent to prove that, for any feasible t and any
feasible round r,

t

t−i
r (c)

ω−i
r (c)− ωi

r(c|iBr,t−1
i ) + Br,t−1

i − ci ≤ 0.

Assume that this is not true, i.e.,

ω−i
r (c)

t−i
r (c)

>
ωi

r(c|iBr,t−1
i )−Br,t−1

i + ci

t
.

This means that the spider Si
r(c|iBr,t−1

i ) with t terminals
when node vi has cost ci has smaller ratio than spider
S−i

r (c). Consequently, node vi is guaranteed to be selected
in round r if it is not selected before round r when its cost
is ci (the spider could be Si

r(c|iBr,t−1
i ) or some other spider
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containing node vi. This is a contradiction to the fact the
vi is not selected in any round when its cost is ci. This
finishes the proof.

Theorem 7: The payment function based on Equation 8
is optimum among all payments based on Spider structure.

Proof is omitted here due to space limit.
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