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ABSTRACT
Backbone has been used extensively in various aspects (e.g., rout-
ing, route maintenance, broadcast, scheduling) for wireless ad hoc
or sensor networks recently. Previous methods are mostly designed
to minimize the size of the backbone. However, in many applica-
tions, it is desirable to construct a backbone with smallcostwhen
each wireless node has a cost of being in the backbone. In this pa-
per, we first show that previous methods specifically designed to
minimize the backbone size may produce a backbone with large
cost. We then propose an efficient distributed method to construct
a weighted backbone with low cost. We prove that the total cost
of the constructed backbone is within a small constant factor of the
optimum for homogeneous networks when either the nodes’ costs
are smooth or the network density is bounded. The total number of
messages of our method isO(n) when the geometry information
of each wireless node is known; the total number of messages is
O(m) otherwise for a network ofn devices andm communication
links. We also show that the constructed backbone is efficient for
unicast routing: the total cost (or hop) of the least cost (or hop) path
connecting any two nodes using backbone is no more than3 times
of the least cost (or hop) path in the original communication graph.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Network topology,
Wireless communication; G.2.2 [Graph Theory]: Network prob-
lems, Graph algorithms.

General Terms
Algorithms, Design, Performance, Theory.

Keywords
Combinatorics, connected dominating set, clustering, localized al-
gorithm, wireless ad hoc networks.

1. INTRODUCTION
Wireless networks draw lots of attentions in recent years due to

its potential applications in various areas. Many routing protocols
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have been proposed for wireless ad hoc networks recently. The
simplest routing method is to flood the message, which not only
wastes the rare resources of wireless nodes, but also diminishes the
throughput of the network. One way to avoid flooding is to let each
node communicate with only a selected subset of its neighbors [13,
15, 29, 30], or to use a hierarchical structure like Internet, e.g.,
connected dominating set (CDS) based routings [22, 41, 49, 48,
36].

Efficient distributed algorithms for constructing connected dom-
inating sets in ad hoc wireless networks were well studied [4, 7, 6,
9, 20, 22, 49, 43]. The notion of cluster organization has been used
for wireless ad hoc networks since their early appearance. Baker
et al. [7, 6] introduced a fully distributed linked cluster architec-
ture mainly for hierarchical routing and demonstrated its adaptivity
to the network connectivity changes. The notion of the cluster has
been revisited by Gerlaet al. [25, 37] for multimedia communi-
cations with the emphasis on the allocation of resources, namely,
bandwidth and channel, to support the multimedia traffic in an ad
hoc environment. In [24], Gao,et al. proposed a randomized al-
gorithm for maintaining the discrete mobile centers, i.e., dominat-
ing sets. They showed that it approximatesminimum dominating
set (MDS) within O(1) with very high probability. Recently, Al-
zoubi, et al. [4, 45] proposed a method to approximateminimum
connected dominating set(MCDS) within 8 whose message com-
plexity is O(n log n) and time complexity isO(n) for wireless
networks modeled by unit disk graphs. Alzoubi [2, 3] continued
to propose a localized method approximating the MCDS within a
constant time using a linear number of messages. Existing cluster-
ing methods first choose some nodes to act as coordinators of the
clustering process, i.e., clusterhead. Then a cluster is formed by
associating the clusterhead with some (or all) of its neighbors. Pre-
vious methods differ on the criterion for the selection of the cluster-
head, which is either based on the lowest (or highest) ID among all
unassigned nodes [6, 37], or based on the maximum node degree
[25], or based on some generic weight [9] (the node with the largest
weight will be chosen as clusterhead). In [47, 1], Wang and Li pro-
posed to build the local Delaunay graph on top of an approximated
MCDS for efficient routing. Recently, Kuhn and Wattenhofer [33]
proposed a new distributed MDS approximation algorithm based
on linear programming (LP) relaxation techniques. For an arbi-
trary parameterk and maximum degree∆, their algorithm com-
putes a dominating set of expected sizeO(k∆2/k log ∆|MDS|)
in O(k2) rounds where each node has to sendO(k2∆) messages of
sizeO(log ∆). Moreover, the authors further gave the time lower
bounds for the distributed approximation of MDS in [32].

All of above methods try to minimize the number of cluster-
heads, i.e.,, the number of nodes in the backbone. However, in
many applications of wireless ad hoc networks, minimizing the size



of the backbone is not sufficient. For example, different wireless
nodes may have different costs for serving as a clusterhead, due to
device differences, power capacities, and information loads to be
processed. Therefore, in the remaining of the paper, for the suc-
cinctness of our presentation, we assume that each wireless node
has ageneric cost(or weight). The cost may also represent thefit-
nessor priority of each node to be a clusterhead. The lower cost
means the higher priority. In practice, the cost could represent the
power consumption rate of this node if backbone with small power
consumption is needed; the robustness of this node if fault-tolerant
backbone is needed; or a function of its security level if a secure
backbone is needed. We study how to construct a sparse backbone
efficiently for a set of weighted wireless nodes such that the to-
tal cost of the backbone is minimized and there is a cost (or hops)
efficientroute connecting every pair of wireless nodes via the con-
structed network backbone. Here a route is cost (or hops resp.)
efficientif its cost (or hops resp.) is no more than a constant factor
of the minimum cost (or hops resp.) needed to connect the source
and the destination in the original communication graph when all
possible physical communication links are considered.

Recently, many proposed clustering algorithms [44, 10, 18, 16,
17, 12, 27, 9, 31, 42, 5, 26, 19, 40, 38, 8] also considered different
weights as apriority criterion to decide whether a node will be a
clusterhead. Notice, the ultimate goal of the majority protocols is
still to minimize the size of the cluster (or backbone), not the to-
tal weight of the cluster (or backbone). For example, methods in
[12, 9, 40] considered the stability or mobility of each node as the
weight. They preferred the node with high stability and low mo-
bility to be the clusterhead. However, the definitions of stability or
the evaluation methods used are different. In [31, 5], authors also
combined the stability with the degree of each node as the weight.
The higher priority is given to relatively stable and high degree
nodes. Methods in [27, 26, 42] considered clustering in heteroge-
neous sensor networks, where each node has different energy level.
Most of them use the remaining energy or energy consumption rate
as the weight. Both [38] and [8] considered two factors in the prior-
ity: available energy and the speed, though they use different equa-
tion to combine them. In [18, 16, 17, 44], Chatterjeeet al. consid-
ered a combined weight metric for their clustering algorithm, that
takes into account several system parameters like the node-degree,
transmission power, mobility and the battery power of the nodes.
Similarly, Nocettiet al. [19] also combined these four facts to be
the weights for their clustering method. A nice literature review of
cluster methods can be found in Section 1 of [19]. In [11], Basagni
et al. also showed the performance comparison of some proposed
protocols for clustering and backbone formation. Most of these
proposed weighted clustering algorithms applied the simple greedy
algorithms where the nodes with highest priority (lowest cost) be-
come clusterheads. For example, cluster method in [18] selects a
node with the lowest cost among its unchosen neighbors to serve
as a clusterhead. These greedy heuristics work well in practice,
but as we will show in Section 2 that they may generate a back-
bone with a high cost compared with the optimum. Some of these
methods [27, 42] are randomized algorithms, nodes become clus-
terheads randomly with a weighted election probability. In [44],
Turgut proposed a genetic algorithm to optimize cluster process-
ing. All of these cluster methods do not guarantee any approxima-
tion ratio of the weighed cluster (or backbone) compared with the
optimum. Notice that, in [10], Basagni gave an algorithm to solve
maximal weighted independent setin wireless networks, but here
our solution for cluster is a distributed approximation algorithm
for maximum weighted independent set, andminimum connected
dominating setwhich are well-known NP-hard problems. Liet al.

[34] presented a centralized approximation algorithm for weighted
maximum independent set for some special graphs.

In this paper, we propose a novel distributed method to generate
weighted backbone with a good approximation ratio while using
small communication cost. Our methods work not only for homo-
geneous networks, but also for heterogeneous networks. We prove
that the total cost of the constructed backbone is withinmin(4δ +
1, 18 log d) + 10 times of the optimum for homogeneous networks
when all nodes have the same transmission range. Hereδ is the
maximum ratio of costs of two adjacent wireless nodes andd is the
maximum node degree in the communication graph. Notice that
the advantage of our backbone is that the total cost is small com-
pared with the optimum when either the costs of wireless nodes are
smooth, i.e., two neighboring nodes’ cost differ by a small constant
factor, or the network density is low. The total number of mes-
sages of our method isO(n) when the geometry information of
each wireless node is known and the network is modeled by unit
disk graph; the total number of messages isO(m) otherwise for
any network composed ofn wireless devices andm total pairs of
nodes that can directly receive signals from each other. We also
show that the constructed backbone is efficient for unicast: the to-
tal cost (or hop) of the least cost (or hop) path connecting any two
nodes using backbone is no more than3 times of the least cost (or
hop) path in the original communication graph. This is significant
since our backbone structure only usesO(n) total communication
links, which significantly reduces the cost of routing without losing
much ground on the performance of unicast.

The rest of the paper is organized as follows. In Section 2, we
provide preliminaries necessary for describing our new algorithms,
and show the possible bad performances of several proposed meth-
ods. Section 3 presents our new weighted backbone formation al-
gorithms, and Section 4 gives the theoretical performance analy-
sis of the proposed algorithms. In Section 5, we discuss several
possible network applications of our proposed weighted backbone
formation algorithms. Section 6 presents the experimental results.
We conclude our paper in Section 7 by pointing out some possible
future research directions.

2. PRELIMINARIES AND RELATED WORKS
In this section, we first give some definitions and notations that

will be used in our presentation later. We assume that all wireless
nodes are given as a setV of n points in a two dimensional space.
Each wireless node has an omni-directional antenna. This is attrac-
tive for a single transmission of a node can be received by all nodes
within its vicinity. Each node has some computational power. We
always assume that the nodes are almost-static in a reasonable pe-
riod of time. A communication graphG = (V, E) over a setV of
wireless nodes has an edgeuv between nodesu andv iff u andv
can communicate directly with each other, i.e., inside the transmis-
sion region of each other. Hereafter, we always assume thatG is a
connected graph. LetdG(u) be the degree of nodeu in a graphG
andd be the maximum degree of all wireless nodes. The average
node degree is calleddensityof the network. We assume that each
wireless nodeu has a costc(u) of being in the backbone. Here
the costc(u) could be the value computed based on a combination
of its remaining battery power, its mobility, its node degree in the
communication graph, and so on. We will discuss several possible
weight functions for different applications in Section 5 in detail. In
general, smallerc(u) means that the node is more suitable of being
in the backbone. Letδ = maxi,j∈E c(i)/c(j), whereE is the set
of communication links in the wireless networkG. We callδ the
cost smoothnessof the wireless networks. Whenδ is bounded by
some small constant, we say the node costs aresmooth.



When the transmission region of every wireless node is modeled
by a unit disk centered at itself, the communication graph is often
called aunit disk graph, denoted byUDG(V ), in which there is an
edge between two nodes if and only if their distance is at most one.
We also call such wireless networks ashomogeneous networks.

We call all nodes within a constantk hops of a nodeu in the
communication graphG as thek-local nodesork-hop neighborsof
u, denoted byNk(u), which includesu itself. Thek-local graph of
a nodeu, denoted byGk(u), is the induced graph ofG onNk(u),
i.e., Gk(u) is defined on vertex setNk(u), and contains all edges
in G with both end-points inNk(u).

A subset of vertices in a graphG is anindependent setif for any
pair of vertices, there is no edge between them. It is amaximal
independent setif no more vertices can be added to it to generate
a larger independent set. It is amaximum independent set(MIS)
if no other independent set has more vertices. The independence
number, denoted asα(G), of a graphG is the size of the max-
imum independent set ofG. The k-local independence number,
denoted byα[k](G), is defined asα[k](G) = maxu∈V α(Gk(u)).
It is well-known that for a unit disk graph,α[1](UDG) ≤ 5 and
α[2](UDG) ≤ 18.

A subsetS of V is adominating setif each nodeu in V is either
in S or is adjacent to some nodev in S. Nodes fromS are called
dominators, while nodes not inS are called dominatees. Clearly,
any maximal independent set is a dominating set. A subsetC of
V is a connected dominating set(CDS) if C is a dominating set
andC induces a connected subgraph. Consequently, the nodes in
C can communicate with each other without using nodes inV −
C. A dominating set with minimum cardinality is calledminimum
dominating set(MDS). A connected dominating set with minimum
cardinality is theminimum connected dominating set(MCDS).

In wireless ad hoc networks, assume that each nodeu has a cost
c(u). Then a connected dominating setC is calledweighted con-
nected dominating set(WCDS). A subsetC of V is a minimum
weighted connected dominating set(MWCDS) if C is a WCDS
with minimum total cost.

Several methods have been proposed in the literature to find a
small dominating set for homogeneous networks. Most of them are
based on greed algorithms. Since, in this paper, we are interested in
distributed methods, we will thus mainly discuss the priori distrib-
uted greedy methods here. If we insist on applying these distrib-
uted methods to approximate the minimum weighted dominating
set, they may produce a backbone that is arbitrarily worse than the
optimum. We will show by examples that three classical methods
do not generate a dominating set whose cost is always comparable
with ours in the worst case.

The first method to generate a dominating set is to generate a
maximal independent set as follows [47, 18]. First, assume that
all nodes are marked asWHITE originally, which represents that
the node is not assigned any role yet. A nodeu sends a message
IamDominator to all its one-hop neighbors if it has the smallest
cost (ID is often used if every node has a unit cost) among all its
WHITE neighbors. Nodeu also marks itselfDominator. When a
nodev received a messageIamDominator from its one-hop neigh-
bors, nodev then marks itselfDominatee. Nodev then sends a
messageIamDominatee to all its one-hop neighbors. Clearly, the
nodes marked withDominator indeed form a dominating set.

We then show by example that the produced dominating set may
be arbitrarily larger than the optimum solution. Although the in-
stance illustrated here uses UDG as communication graph, it is not
hard to extend this to general communication graph. See Figure 1
for an illustration. Assume that3 wireless nodesu, v andw are
distributed along a line with one unit interval. The nodes’ costs

of u, v, andw are∞, 1, and1 − ε respectively. The dominators
selected by the first method are nodesw andu, and the total cost
of the solution is∞. However, the optimal solution is formed by
v with a total cost1. Our method presented later does produce a
dominating set of total cost2− ε.
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1

Figure 1: An example why the first method fails to produce low
cost weighted connected dominating set.

The second method of constructing a dominating set [22, 23] is
based on minimum weighted set cover [21]. The method can be
described in a centralized way as follows: in each round, we se-
lect an unselected nodei with the minimum ratioc(i)/di, where
di is the number of nodes not covered by previously selected dom-
inators. It is well-known that this centralized method produces a
dominating set whose total cost is no more thanlog d times of the
optimum, whered is the maximum original degree of all nodes. In
[4], Alzoubi et al. gave an example (as in Figure 2) with a fam-
ily of instances for which the size of the solution computed by the
second method is larger than the optimum solution by a logarithm
factor when all nodes have the same weight. Although the instance
illustrated here uses UDG as communication graph, obviously, we
can extend this to a general communication graph. In this example,
all nodes have a unit weight. For the detail of this example, see [4].
Moreover, this method is expensive to implement in a distributed
way. First, it is expensive to find the nodei with the minimum ratio
c(i)/di among all unchosen nodes. Second, it is also expensive to
updatedi, which is the number of neighbors that are not covered
by previously selected dominators. Our method described later will
produce a dominating set whose size is no more than5 times of the
optimum for unit weighted UDG. More importantly, our method is
a fully distributed method.
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Figure 2: An example [4] why the second method fails to pro-
duce low cost weighted connected dominating set.

The third method to select the dominating set is proposed by
Bao and Garcia-Luna-Aceves [8]. Unlike the previous two meth-
ods, this is a fully localized method and it can be executed in2
rounds using synchronous communication model. A node decides
to become a dominator if either one of the following two criteria
are satisfied: 1) the node has the smallest cost in its one-hop neigh-
borhood; 2) the node has the smallest cost in the one-hop neigh-
borhood of one of its one-hop neighbors. We show by an example
that the produced dominating set may be arbitrarily larger than the
optimum solution. See Figure 3 for an illustration of an instance in
UDG. Assume that2n + 1 wireless nodes are distributed as shown
in Figure 3. The nodes’ costs ofui, vi, andw are1, 1 − ε, and



1 − 2ε, respectively. The dominators selected by the third method
are nodesw andvi (0 ≤ i < n), the total cost of the solution
is n(1 − ε) + 1 − 2ε. However, the optimal solution formed by
nodew and seven nodes fromui has total cost8− 2ε. It is easy to
show that seven unit disks centered at7 nodes among someui can
cover allui. Our method described later will produce an optimal
dominating set in this special case.
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Figure 3: An example why the third method fails to produce
low cost weighted connected dominating set.

3. EFFICIENT LOW-COST BACKBONE
FORMATION ALGORITHMS

In this section, we will propose a distributed algorithm that can
construct a low-cost backbone (weighted connected dominating set)
for a wireless ad hoc networkG by assuming that each wireless
nodeu has a costc(u) of being on the backbone. We will prove
that the total cost of the constructed backbone is no more than

min(α[2](G) log d, (α[1](G)− 1)δ + 1) + 2α[1](G)

times of the optimum solution. Hered is the maximum degree of
all wireless nodes, andδ = maxi,j∈E c(i)/c(j), whereE is the
set of communication links in the wireless network. Notice that,
for homogeneous wireless networks modeled by UDG, it implies
that the backbone produced by our method has a cost no more than
min(18 log d, 4δ + 1) + 10 times of the optimum solution.

Here, we assume that each node knows the IDs and costs of all
its 1-hop neighbors, which can be achieved by requiring each node
to broadcast its ID and cost to its 1-hop neighbors initially. This
protocol can be easily implemented using synchronous communi-
cations as did in [7, 6]. If the number of neighbors of each node is
known a priori, then this protocol can also be implemented using
asynchronous communications. Our method has the following two
phases: the first phase (clustering phase) is to find a set of wireless
nodes as the dominators1 and the second phase is to find a set of
nodes, calledconnector, to connect these dominators to form the
final backbone of the network. Notice that these two phases could
interleave in the actual construction method. We separate them just
for the sake of easy presentations.

3.1 Finding Dominators
We then propose our method of constructing a dominating set

whose total cost is comparable with the optimum solution. Our
1We will interchange the terms cluster-head and dominator. The
node that is not a cluster-head is also calledordinary node ordom-
inatee. A node is calledwhitenode if its status is yet to be decided
by the clustering algorithm. Initially, all nodes are white. The status
of a node, after the clustering method finishes, could bedominator
or dominatee.

method first constructs a maximal independent set (MIS) using
node weight as selection criterion. Then for each nodev in MIS, we
run local greedy set cover method onlocal neighborhoodN2(v) to
find some nodesGRDYv to cover all one-hop neighbors ofv. If
GRDYv has a total cost smaller thanv, then we useGRDYv to
replacev, which will further reduce the cost of MIS. Our method
works as follows.

Algorithm 1 Construct Low-cost Dominating Set
1: First assume that all nodes are originally markedWHITE.
2: A nodeu sends a messageItryDominator to all its one-hop

neighbors if it has the smallest cost among all itsWHITE neigh-
bors. Nodeu also marks itselfPossibleDominator.

3: When a nodev received a messageItryDominator from its
one-hop neighbors, nodev then marks itselfDominatee.
Nodev then sends a messageIamDominatee to all its one-
hop neighbors.

4: When a nodew receives a messageIamDominatee from its
neighborv, nodew removes nodev from its list of WHITE

neighbors.
5: Each nodeu marked withPossibleDominator collects the

cost and ID of all of its two-hop neighborsN2(u).
6: Using the greedy method for minimum weighted set cover (like

the second method), nodeu selects a subset of its two hop-
neighbors to coverall the one-hop neighbors (includingu) of
nodeu. If the cost of the selected subset, denoted byGRDYu,
is smaller than the cost of nodeu, then nodeu sends a message
YouAreDominator(w) to each nodew in the selected subset.
Otherwise, nodeu just marks itselfDominator.

7: When a nodew received a messageYouAreDominator(w),
nodew marks itselfDominator.

For example illustrated by Figure 1, the MIS will be two nodes
w andu, whose cost is large. Nodeu is PossibleDominator and
thus performs the local set cover. ClearlyN2(u) = {u, v, w} and
N1(u) = {u, v}. The local set cover will selectw and thenv to
cover all nodes inN1(u). The final dominating set is then{v, w},
which is close to optimum{v}.
3.2 Finding Connectors

The second step of weighted connected dominating set formation
is to find someconnectors(also calledgateways) among all the
dominatees to connect the dominators. Then the connectors and the
dominators form aconnected dominating set(or called backbone).

Several methods [25, 7, 6, 3, 2, 47] have been proposed in the
literature to find the connectors. However, all of these methods
only consider the unweighted scenario. We can show by examples
that these methods generally do not produce a weighted connected
dominating set with good approximation ratio.

Given a dominating setS, letV irtG be the graph connecting all
pairs of dominatorsu andv if there is a path in the original graph
G connecting them with at most3 hops. It is well-known that the
graphV irtG is connected. It is natural to form a connected domi-
nating set by finding connectors to connect any pair of dominators
u andv if they are connected inV irtG. This strategy was used in
several previous methods, such as [4, 2, 7, 6, 37, 47, 1].

Our new connector selection method for weighted connected dom-
inating set is also based on this observation. First, we define two
dominatorsu andv asneighboring dominatorsif they are at most
3 hops away, i.e., they are neighbors in the graphV irtG. Let
LCP(u, v, G) denote the least cost pathuv1v2 · · · vkv between ver-
ticesu andv on a weighted graphG, andL(u, v, G) denote the
total cost of nodes on pathLCP(u, v, G) excludingu andv, i.e.,



L(u, v, G) =
P

1≤i≤k c(vk). For every pair of neighboring domi-
natorsu andv, our method will find the shortest path with at most
3 hops to connect them. The nodes on this shortest path will be
assigned a role of connector.

Our method uses the following data structures and messages.

1. Dk(v) is the list of dominators that arek-hops away from a
nodev.

2. Pk(v, u) is the least cost path fromv to u using at mostk-
hops. Noticeu andv may be less thank-hops away.

3. OneHopDominatorList(v, D1(v)): nodesD1(v) are the dom-
inators of nodev that are1-hop fromv.

4. TwoHopDominator(v, u, w, c(w)): nodeu is a2-hop dom-
inator of nodev and the pathuwv has the least cost.

Algorithm 2 Low-cost Connector Selection
1: Every dominatee nodev broadcasts to its 1-hop neighbors the

list of its one-hop dominatorsD1(v) using messageOneHop-
DominatorList(v, D1(v)). When a nodew receivesOneHop-
DominatorList(v, D1(v)) from one-hop neighborv, it puts the
dominatoru ∈ D1(v) to D2(w) if u /∈ D1(w). Update the
pathP3(w, u) asuvw if it has a smaller cost.

2: When a dominatee nodew received messagesOneHopDomi-
natorList from all its one-hop nodes, for each dominator node
u ∈ D2(w), nodew sends out messageTwoHopDomina-
tor(w, u, x, c(x)), wherewxu is the least cost pathP2(w, u).

3: When a dominatorz receives a messageTwoHopDomina-
tor(w, u, x, c(x)) from its neighborw, it puts u to D3(z)
if u 6∈ D2(z), and updates the pathP3(w, u) as uwxz if
c(w) + c(x) has a less cost.

4: Each dominatoru builds a virtual edgefuv to connect each
neighboring dominatorv. The length offuv is the cost of path
P3(u, v). Notice that here the cost of end-nodesu andv is
not included. All virtual edges forms anedge weightedvirtual
graphV irtG in which all dominators are its vertices.

5: Run a distributed algorithm to build a MST on graphV irtG.
Let V MST denoteMST (V irtG).

6: For any virtual edgee ∈ V MST , select each of the domina-
tees on the path corresponding toe as a connector.

The graph constructed by combining all of dominators and the
connectors selected by the above algorithm is called a weighted
connected dominating set (WCDS) graph (orbackbone).

4. PERFORMANCE GUARANTEE
In this section, we will study the performances of the proposed

weighted backbone structure in terms of the total node cost in the
backbone and the unicast routing cost.

4.1 Total Cost of the Backbone
First, we would like to build a weighted backbone whose total

node cost is as less as possible. We will show that the backbone
constructed by our method is comparable to the optimum when the
network is not dense, or the costs of the nodes do not have a dra-
matic change, i.e., being smooth. Our analysis following is on the
homogeneous networks, but it can be extended to general hetero-
geneous networks without difficulty. Before describing our result,
we first review an important observation of thedominating seton
UDG, which will play an important role in our proofs later. After

clustering, one dominator node can be connected to many domina-
tees. However, it is well-known that a dominatee node can only be
connected to at mostfive independent nodes in the unit disk graph
model. In other words, the1-local independence numberof UDG,
α[1](UDG), is 5. Generally, it is well-known that, for each node,
there are at most a constant number (α[k](UDG)) of independent
nodes that are at mostk units away. The following lemma which
bounds the number of independent nodes withink units from a
nodev is proved in [47, 1] by using a simple area argument.

LEMMA 1. For every nodev, the number of independent nodes
inside the disk centered atv with radiusk-units, α[k](UDG), is
bounded by a constant`k = (2k + 1)2.

The bounds oǹk can be improved by a tighter analysis. In [46],
Wanet al. gave the detailed proof to show that for unit disk graph
the number of independent nodes in2-hops neighborhood (not in-
cluding the1-hop neighbors) is at most13 while the number of
independent nodes in1-hop neighborhood is at most5. Therefore,
there are at most18 independent nodes inside the disk centered at
a nodev with radius2, i.e.,α[2](UDG) = 18.

THEOREM 2. Algorithm 1 constructs a dominating set whose
total cost is no more thanmin(18 log d, 4δ + 1) times of the opti-
mum for networks modeled by UDG.

PROOF. First, we prove the total cost of the maximal indepen-
dent setMIS formed by allPossibleDominator nodes is no more
than 4δ + 1 times of the optimum. Assume nodeu is a node
from the optimumOPT . If u is not aPossibleDominator node
then there are at most5 PossibleDominator nodes aroundu. Let
vu
1 , vu

2 , · · · , vu
5 denote them. The cost of one of these five nodes

is smaller than the cost ofu, otherwise nodeu will be selected as
a PossibleDominator node. W.l.o.g., letc(vu

1 ) ≤ c(u). We also
know thatc(vu

i ) ≤ δ · c(u) for 2 ≤ i ≤ 5. Thus,
P

1≤i≤5 c(vu
i ) ≤

(4δ + 1)c(u). If we summarize the inequations for all nodes in the
optimum dominating setOPT , we getX

u∈OPT

X
1≤i≤5

c(vu
i ) ≤ (4δ + 1)

X
u∈OPT

c(u) = (4δ + 1)c(OPT ).

Notice that every node in MIS will appear asvu
i for at least one

nodeu ∈ OPT sinceOPT is a dominating set. Thus,c(MIS) =P
v∈MIS c(v) ≤Pu∈OPT

P
1≤i≤5 c(vu

i ). It follows that

c(MIS) ≤ (4δ + 1)c(OPT ).

Then, we prove the total cost of the nodes selected by the greedy
method in Step 6 of Algorithm 1 is no more than18 log d times
of the optimum. Assume that nodeu runs the greedy algorithm
and gets the subset asGRDYu, and the cost of the selected subset
c(GRDYu) is at mostc(u). It is well known that the dominat-
ing set generated by the greedy algorithm for set cover is no more
than log f times of the optimum if every set has at mostf items.
Here, we know that every dominator can cover at mostd domi-
natees, thus,c(GRDYu) ≤ log d · c(LOPTu). HereLOPTu is
the local optimum dominating set in the2-hops neighborhood ofu.
Assume thatOPTu is the subset of the optimum solution, denoted
as OPT, forMWCDS which falls in the2-hops neighborhood of
u, i.e., OPTu = OPT

T
N2(U). ObviouslyOPTu is a domi-

nating set forN1(u). Thus, we havec(LOPTu) ≤ c(OPTu),
sinceLOPTu is the local optimum. Therefore,c(GRDYu) ≤
log d · c(LOPTu) ≤ log d · c(OPTu). Consider all nodes in the
MIS, we get

c(GRDY ) ≤
X

u∈MIS

c(GRDYu) ≤ log d ·
X

u∈MIS

c(OPTu).

Remember that for each nodev, the number of independent nodes
in the 2-hops neighborhood ofv is bounded by18. Therefore, each



dominator is counted at most18 times (once for each nodeu ∈
MIS that selects it toGRDYu). Thus,

P
u∈MIS c(OPTu) ≤

18c(OPT ).
For each nodeu in MIS, we either useu as a dominator or use

GRDYu as dominators, whichever has a smaller cost. Then, the
total weight of the final dominating set is at mostX

u∈MIS

min(c(u), c(GRDYu))

≤ min(
X

u∈MIS

c(u),
X

u∈MIS

c(GRDYu))

≤ min(4δ + 1, 18 log d) · c(OPT ).

This finishes our proof.

Notice that here the approximation ratio ismin(18 log d, 4δ+1).
So if one oflog d andδ is a constant, the approximation ratio is a
constant. Our analysis is also pessimistic. As our simulation shows
that the practical performance is much better than this theoretical
bound. It is easy to generalize the above result to heterogeneous
networks.

THEOREM 3. For a network modeled by a graphG, Algorithm
1 constructs a dominating set whose total cost is no more than
min(α[2](G) log d, α[1](G)δ + 1) times of the optimum.

Now, we need to prove the total cost of connectors selected by
Algorithm 2 is also bounded. The following lemma about the re-
lationship betweenL(u, v, G) andL(u, v, V irtG) will be used in
the proof.

LEMMA 4. For any pair of dominatorsu andv,

L(u, v, V irtG) ≤ 2 · L(u, v, G).

PROOF. Notice that the original graph is node weighted while
the virtual graphV irtG is edge weighted. We assume that path
uv1v2 · · · vkv is the least cost path connectingu andv in the orig-
inal graph G, as shown in Figure 4.

uk

vk

u1 u2 u3 u4 u5 u6

v1 v2 v3 v4 v5 v6

Figure 4: L(u, v, G) ≥ 2 · L(u, v, V irtG).

For any dominatee nodep in original communication graph, it
must be dominated by at least one dominator. Thus, we can assume
that nodeui is nodevi’s dominator as shown in Figure 4. For dom-
inatorsui andui+1, we argue that the length offuv is at most the
summation of the cost ofvi andvi+1. Notice thatuivivi+1ui+1 is
a3-hops path betweenui andui+1 whose length isc(vi)+c(vi+1).
Thus, the length offuv is at mostc(vi) + c(vi+1). Thus we have
c(ũiui+1) ≤ c(vi) + c(vi+1) for 1 ≤ i ≤ k − 1. Similarly, we
also havec(guu1) ≤ c(v1) andc(gukv) ≤ c(vk). Summing all these
inequalities, we get

L(u, v, V irtG) ≤ c(guu1) + c(gvkv) +

k−1X
i=1

c(ũiui+1) ≤ 2
kX

i=1

c(vi).

This finishes our proof.

In graphG, we set all dominators’ cost to0 to obtain a new graph
G′. AssumeTopt is the tree with the minimum cost that spans all
dominators selected by Algorithm 1. Following lemma shows that
there exists a treeT ′opt whose cost equals the cost ofTopt and every
dominatee nodeu in T ′opt has a node degree at mostα[1](G).

LEMMA 5. There exists a treeT ′opt in G′ spanning all domina-
tors selected in Algorithm 1 and connectors in this tree has degree
at mostα[1](G).

PROOF. We prove this by construction. Consider any optimum
cost treeTopt spanning all dominators. In treeTopt, assume there
exist some connectors whose degrees are greater thanα[1](G). We
choose any one of them as the root. The depth of a connector is de-
fined as the hops from this connector to the root inTopt. We process
all connectorsu in Topt whose degree is greater thanα[1](G) in an
increasing order of their depths. Notice that, as we will see later,
the depth of a node does change in our construction, but it will only
increase. Assume that currently we are processing a nodeu with
more thanα[1](G) neighbors. Clearly, there are at least two neigh-
bors ofu in treeTopt that are connected, sayp, q. Notice eitherp
or q’s depth is greater thanu sinceu only has one parent. With-
out loss of generality, we assume thatp’s depth is bigger thanu’s
depth. We then remove edgeuq and add edgepq. Then,u’s degree
decreases by1 while all other connectors whose depth is less than
or equal tou’s remains unchanged andp’s degree increases by1.
Notice this will result in a new tree spanning all dominators while
keep the cost of the tree unchanged. Update the depth of nodeq
and all nodes of the subtree rooted atq (the depths will increase by
one). Repeat the above iteration until all nodes are processed. It is
obvious that the above process will terminate. The resulting tree is
T ′opt.

For treeT ′opt, we define its weightc(T ′opt) as the sum of the
cost of all connectors. We also definec(T ) =

P
e∈T ce for an

edge weighted treeT . The above lemma implies that there is an
optimum tree connecting all dominators with node degree at most
5 for networks modeled by UDG.

THEOREM 6. The connectors selected by Algorithm 2 have a
total cost no more than2 · α[1](G) times of the optimum for net-
works modeled byG.

PROOF. Let KG be another virtual complete graph whose ver-
tices are all dominators selected in Algorithm 1 and edge length
equal the cost of least cost path between two dominators on origi-
nal graphG. Following we argue the weight of MST on graphKG

is at mostα[1](G) times the weight of treeT ′opt.
For spanning treeT ′opt, we root it at an arbitrary node and du-

plicate every link inT ′opt (the resulting structure is calledDT ′opt).
Clearly, every node inDT ′opt has an even degree now. Thus, we
can find an Euler circuit, denoted byEC(DT ′opt), that uses every
edge ofDT ′opt exactly once, which is equivalent to say that every
edge inT ′opt(G) is used exactly twice. Consequently, every node
vk in V (T ′opt) is used exactlydT ′opt

(vk) times. HeredG(v) de-
notes the degree of a nodev in a graphG. Thus, the total weight
of the Euler circuit is at mostα[1](G) times of the weightc(T ′opt),
i.e.,

c(EC(DT ′opt)) ≤ α[1](G) · c(T ′opt).

Notice that here if a nodevk appears multiple times inEC(DT ′opt),
its weight is also counted multiple times inc(EC(DT ′opt)).

If we walk alongEC(DT ′opt), we visit all dominators, and the
length of any subpath between dominatorsui anduj is not smaller
thanL(ui, uj , G). Therefore, the cost ofEC(DT ′opt) is at least
c(MST (KG)) sinceMST (KG) is the minimum cost tree span-
ning all dominators and the edgeuiuj in MST (KG) corresponds
to the path with the least cost betweenui anduj . In other words,

c(EC(DT ′opt)) ≥ c(MST (KUDG)).

Consequently, we have

c(MST (KG)) ≤ c(EC(DT ′opt)) ≤ α[1](G) · c(T ′opt). (1)



Now we prove the weight ofMST (V irtG) is at most two times
the weight ofMST (KG). For any edgee = uiuj ∈ MST (KG),
from Lemma 4, we have

ce ≥ L(ui, uj , G) ≥ L(ui, uj , V irtG)

2
.

For each edgee = uiuj ∈ MST (KG), we connect them in graph
V irtG using pathLCP(ui, uj , V irtG). This constructs a con-
nected subgraphMST ′ on graphV irtG whose cost is not greater
than twice of the weight ofMST (KG). Thus, we have

c(MST (V irtG)) ≤ c(MST ′) ≤ 2 · c(MST (KG)). (2)

The theorem follows from combining inequalities (1) and (2):
c(MST (V irtG)) ≤ 2c(MST (KG)) ≤ 2α[1](G) · c(T ′opt).

Notice that Theorem 6 also implies the following side-product
result: given a group of receivers in a node weighted network,
the connectors found through VMST has total cost no more than
2α[1](G) times of the minimum cost multicast tree. For the spe-
cial case of UDG, the total cost of the connectors is no more than
10 times of the optimum multicast tree. Here we assume that the
receivers have cost0.

Combining Theorem 3 and Theorem 6, we get the following the-
orem which is one of the main contributions of this paper.

THEOREM 7. For any communication graphG, our algorithm
constructs a weighted connected dominating set whose total cost is
no more than

min(α[2](G) log d, (α[1](G)− 1)δ + 1) + 2α[1](G)

times of the optimum.

Specifically, when the networks are modeled by a unit disk graph,
we have the following corollary.

COROLLARY 8. For homogeneous wireless networks, our al-
gorithm constructs a weighted connected dominating set whose to-
tal cost is no more thanmin(18 log d, 4δ + 1) + 10 times of the
optimum.

4.2 Unicast Performance
After we construct the backbone WCDS, if a nodeu wants to

broadcast a message, it follows the following procedure. If nodeu
is not a dominator, then it sends the message to one of its domina-
tors. When the message reaches the backbone, it will be broadcast
along the virtual minimal spanning tree. In previous section, we
prove that the total cost of WCDS is no more than a constant times
of the optimum, which implies that our structure is energy efficient
for broadcast.

When considering unicast routing, we can modify our backbone
formation algorithms by (1) removing steps 5, 6, and 7 (collecting
2-hop information and running the greedy algorithm for set over)
from Algorithm 1; (2) modifyingPossibleDominator to Domi-
nator in step 2 of Algorithm 1; and (3) removing steps 5 and 6
(building V MST ) from Algorithm 2. Notice that the changes to
Algorithm 1 are not necessary as will see later. LetUWCDS be
the constructed backbone. If a nodeu wants to unicast a message,
it follows the following procedure. If nodeu is not a dominator and
nodev is not a neighbor ofu, nodeu sends the message to one of
its dominators. Then the dominator will transfer the message to the
target or a dominator of the target through the backbone. Now, we
prove that the backbone is a spanner for unicast application, i.e.,

every route in the constructed network topology is efficient. Re-
member a route isefficientif its total cost (or total hop number) is
no more than a constant factor of the minimum total cost (or total
hop number) needed to connect the source and the destination in
the original communication graph. The constant is called cost (or
hops) stretch factor.

We first prove the backbone has a bounded cost stretch factor.

THEOREM 9. For any communication graph, the cost stretch
factor of UWCDS is at most3.

PROOF. Consider any source nodes and target nodet that are
not connected directly in the original communication graphG. As-
sume the least cost pathLCP(s, t, G) froms to t in G isΠGh(s, t) =
v1v2...vk, wherev1 = s andvk = t, as illustrated by Figure 4. We
construct another path in UWCDS froms to t and the total cost
of this path is at most3 times of the cost of the least cost path
LCP(s, t, G).

For any dominatee nodep in original communication graphG,
we will show that there must exist one dominatorq whose cost is
not greater thanp’s cost. First, from our selection procedure of
the maximal independent set, nodep is not selected to MIS implies
that, at some stage, there is a neighbor, sayu, with smaller cost se-
lected to MIS, which will bePossibleDominator. Notice that, this
PossibleDominator nodeu may not appear in our final structure.
However, this node is not selected only ifc(GRDYu) is smaller
thanc(u). Notice that clearly, there is at least one node, sayv, in
GRDYu that dominates nodep sincep is a one-hop neighbor of
nodeu andGRDYu covers all one hop neighbors ofu (including
u). Clearly, all dominators inGRDYu has cost no more thanc(u)
from c(GRDYu) ≤ c(u). If nodeu is in final structure, we setq
asu, otherwise, setq as nodev. We call nodeq as nodep’s small
dominator. Notice thatq andp can be the same node.

For each nodevi in the pathLCP(s, t, G), let ui be its small
dominator ifvi is not a dominator, else letui bevi itself. Notice
that there is a 3-hop pathuivivi+1ui+1 in the original communi-
cation graphG. Then from Algorithm 2, we know there must exist
one or two connectors connectingui andui+1, and also the cost
summation of these connectors is at most the cost summation of
vi andvi+1. We define a path, denoted byLCP(s, t, UWCDS),
to connects and t in UWCDS as the concatenation of all paths
LCP(ui, ui+1, V irtG), for 1 ≤ i ≤ k − 2, and a least cost path
(with≤ two hops) connectinguk−1 andt. Remember that the path
LCP(ui, ui+1, V irtG) is only the least cost path among all paths
connectingui andui+1 using at most3 hops.

We then show that the pathLCP(s, t, UWCDS) has a cost no
more than3 times of the pathLCP(s, t, G), whereLCP(s, t, G) is
the least cost path connectings andt in the original communica-
tion graphG. Clearly,

Pk−2
i=1 L(ui, ui+1, V irtG) ≤ c(v1) + 2 ·Pk−2

i=2 c(vi) + c(vk−1). Notice that, in our unicast routing algo-
rithm, when the target nodet is within two hops of the dominator
nodeuk−1, nodeuk−1 will not send the data to dominator node
uk. Instead, if targett is one hop neighbor of nodeuk−1, it will
directly send data to nodet; otherwise, nodeuk−1 will find a least
cost node, sayw, to connect to the target nodet directly. Obvi-
ously,c(w) ≤ c(vk−1) since nodevk−1 connectsuk−1 and target
t. Thus, the total cost of the path in the constructed backbone is

k−2X
i=1

L(ui, ui+1, V irtG) + L(uk−1, t, V irtG) +

k−1X
i=1

c(ui)

≤ c(v1) + 2 ·
k−2X
i=2

c(vi) + c(vk−1) + c(vk−1) +

k−1X
i=1

c(vi)

< 3 ·
k−1X
i=1

c(vi).



This finishes our proof.

Similar with the proof in [47, 1], we can easily prove the follow-
ing theorem:

THEOREM 10. For any communication graph (not necessarily
a UDG model), the hops stretch factor of UWCDS is at most3.2

4.3 Message Complexity
In wireless ad hoc networks, comparing in data processing, wire-

less node expends more energy in data communication. Therefore,
in this section we show that our algorithms are efficient in term of
communication complexity.

THEOREM 11. Algorithm 1 usesO(n) messages if the networks
are modeled by UDG and the geometry information of all nodes is
known.

PROOF. First, for messagesItryDominator and IamDomina-
tee, every node at most sends out once this kind of messages. Thus,
the total number of these two messages isO(n).

Second, for eachPossibleDominator node, it needs to collect
the costs and IDs of all of its two hop neighbors. This step may
cost lots of communications (at mostO(m) messages when no
geometry information is known, wherem in the number of links
in the original UDG). Recently Calinescu [14] proposed a commu-
nication efficient method (usingO(n) messages) to collectN2(u)
for every nodeu when the geometry information is known for net-
works modeled by UDG.

Third, after applying the greedy method nodeu may send a mes-
sageYouAreDominator to nodev, but since the number of inde-
pendent nodesu in two hops ofv is bounded by a constant, the total
number of this kind of messages is alsoO(n).

Consequently, Algorithm 1 usesO(n) messages.

It is easy to show that Algorithm 1 usesO(m) messages for a
general networks or the geometry information of all nodes is un-
known. For Algorithm 2, if the networks is modeled by UDG,
the number of neighboring dominators of a node is bounded by a
constant, therefore, the number of messages in the first three steps
is at mostO(n). Since the graphV irtG has only linear number
of links, we can construct the minimum spanning tree onV irtG
usingO(n log n) number of messages. In practice, we may not
need construct the minimum spanning tree exactly: a localized ap-
proximation of the minimum spanning tree [35] may perform well
enough, which has a message complexity onlyO(n). In addition,
if only unicast running on the backbone, we can ignore the MST
construction, then the message complexity is onlyO(n).

4.4 Time Complexity
Considering the data processing at each wireless node, we also

study the time complexity of our algorithms.
For Algorithm 1, the first four steps take at mostO(n) in time.

To collect the information of two-hop neighbors, we apply the method
proposed by Calinescu [14], which also takes at mostO(n) in time.
Notice that the time complexity of the greedy method in [22, 23]
(based on the set covering method in [21]) is at mostO(m∆),
wherem is number of nodes participating in the algorithm and
∆ is the maximum node degree. So the sixth step of Algorithm
1 takes at mostO(d2d) whered2 is the maximum number of two-
hop neighbors andd is the maximum number of one-hop neighbors.
2Actually, the bound is3 + 2

k
, wherek is the number of hops of

the shortest hop path in the original communication graph. Since
1-hop neighbors can directly communicate with each other, for any
nodes that are at least 2-hops away, the bound is4.

Sinced2 ≤ n andd2 ≤ d2, the sixth step takes at mostO(d3) or
O(nd) ≤ O(n2). Therefore, the time complexity of Algorithm 1
is O(n2) in worst case.

For Algorithm 2, the most time consuming step is build a MST
onV irtG. Notice that since the graphV irtG has only linear num-
ber of links, we can construct the MST using at mostO(n log n)
time.

5. DISCUSSIONS

5.1 Practical Applications
As we mentioned in the introduction (Section 1), the proposed

distributed algorithms can be used in wireless ad hoc networks to
form a low-cost network backbone for unicast routing or broad-
casting application. The cost which we used as the input of our
algorithms could be agenericcost, which defined by various prac-
tical applications. Here we list some possible weights maybe used
in wireless ad hoc networks.

Energy Consumption Rate: Most backbone-based unicast rout-
ing or broadcasting protocols [22, 41, 49, 48, 36] deliver packets
only through the backbone or restrict the flooding packets in the
backbone, thus the nodes serving as clusterheads or connectors in
the backbone consume more energy than ordinary nodes. If we use
the energy consumption rate at each node as its weight, using the
proposed low-cost backbone formation algorithm, we can achieve
an energy efficient backbone where the total energy consumption
of this backbone is at most constant times of the energy consump-
tion of the optimum. Also the unicast carried on the backbone is
also power efficient, compared with the least energy consumption
path in the original communication graph.

Another way to build energy-efficient backbone is to select nodes
with the maximum amount of remaining energy (equivalently, the
minimum amount of consumed energy if the initial energy of each
node is same).

Fault Tolerant Rate: Fault tolerance is also an important issue
in wireless ad hoc networks, since nodes are mobile and in a dy-
namic environment. If each node estimates its probability of being
fault and we treat it as the weight, we can use our algorithm to build
a fault-tolerant backbone for routing. The fault tolerant rate can be
evaluated by considering the mobility (stability, speed) of the node,
the quality of links (link failures) around the node, the interference
level at the node, or other metric. Some research along this line
have been done in [12, 9, 40, 31, 5]. Assume thatpi is the prob-
ability that the wireless nodevi ∈ V will have fault in computing
or communicating with its neighbors. Two possible criteria could
be used to measure the fault-tolerant quality of a backbone (i.e., a
CDS S ⊂ V ):

P
vi∈S pi or Πvi∈Spi. In the first case, the cost

(or called weight) of nodevi is assigned asc(vi) = pi, while in
the latter case, the cost ofvi is assigned asc(vi) = log pi. Then
building most fault-tolerant backbone is equivalent to find a CDS
with the minimum total cost.

Security Level: Our algorithm can also be applied in designing
secure routing protocols. Since ad hoc networks lack a central au-
thority for authentication and key distribution, security is hard to
achieve. In [39], Liuat el. proposed a dynamic trust model for
ad hoc network. Each node has a security level by observing its
neighbor. By using the security level information got from their
method, we can apply our low-cost method to build a backbone for
routing with high security. We could assign the cost to a node using
a method analog to the case of fault-tolerance discussed above.

More different metrics can be considered as the weight in our
method, such as traffic load, signal overhead, battery level, and
coverage. As done in [18, 16, 17, 44, 19], we can also use a com-



bined weight function to integrate various metrics in consideration
to form a more robust and efficient backbone for wireless ad hoc
networks in general applications.

Beside forming the backbone for routing or broadcasting, our
cluster algorithm (Algorithm 1) can also be used in other applica-
tions. For example, Zheng et al. [50] studied thetime indexing
problem in sensor networks. To enable time-indexed in-network
storage of sensor data, they selected a subset of sensors, i.e., ren-
dezvous points to collect, compress and store sensor data from its
neighborhood for pre-defined periods of time. To consider the en-
ergy and storage balancing, we can apply our weighted cluster al-
gorithm to select the rendezvous points. Another example, in [28],
a simple cluster algorithm is used for selecting the mobile agents
to perform intrusion detection in wireless ad hoc networks. We can
also apply our method to their intrusion detection system to achieve
more robust and power efficient agent selection.

5.2 Dynamic Update
After the generation of the weighted backbone, dynamic main-

tenance of the backbone is also an important issue, since an ad hoc
network could be highly dynamic. Two major events may cause
the backbone obsoleted: 1)topology changesdue to node moving,
node joining or leaving, node failure; and 2)weight changeswhen
weights are assigned based on some observed status of nodes. No-
tice that some of the practical weights we discussed above change
frequently, such as battery level and quality of links. Therefore, a
dynamic update method for our backbone is needed. Usually, there
are two kinds of update methods: on-demand update or periodi-
cal update. Most of the existing clustering algorithms are invoked
periodically, while some algorithms [18, 16, 17] perform the updat-
ing only when it is required (i.e., on-demand). Our algorithm can
adapt and combine both of these two update methods. If no major
topology change or no remarkable weight change, no update will
be performed until some pre-set timer expires. In other words, we
perform our algorithm periodically with a pre-set time. The time
could be set quite long depending on the types of the weight and
applications. This kind of global update also insures the load bal-
ance throughout the network. But for some major topology change
(such as a clusterhead dies) or tremendous change of weights (such
as a big drop of security level), an on-demand update will be per-
formed. Notice that since our algorithm is a localized algorithm3,
the update process can be performed only in a local area where the
change occurs.

6. PERFORMANCE EVALUATION
In this section, we conduct extensive simulations to study the

performances of our proposed backbone and compared them with
previously greedy algorithms.

6.1 Practical Implementation
Since the distributed construction of MST in Algorithm 2 is ex-

pensive, we implement a localized approximation of MST,local-
ized minimum spanning tree(LMST) [35]. For completeness, we
give the definition of LMST for general edge weighted graphG
here.

DEFINITION 1. Thek-local minimum spanning tree (LMSTk)
contains adirectededge−→uv if edgeuv belongs toMST (Nk(u)).

For the edge weighted graphV irtG, each dominator nodeu
will first collect all dominator nodes that are at mostk-hops away
3By using localized minimum spanning tree(LMST) instead of
MST, our distributed algorithm becomes a localized algorithm. We
will discus it in Section 6.1 in detail.

in V irtG. Typically k is 1 or 2 in our methods. Nodeu then
constructs the minimum spanning treeMST (Nk(u)) and keep all
edgesuv ∈ MST (Nk(u)). The union of all such selected links are
called the local minimum spanning tree, denoted byLMSTk(G).
Notice that here the weight of a linkuv is the cost of the least cost
path (with≤ 3 hops) connectingu andv in G. From the property
of the minimum spanning tree, the following lemma is obvious.

LEMMA 12. The global minimum spanning treeMST (G) is a
subgraph of the local minimum spanning treeLMSTk(G).

Unfortunately, in the worst case, the total cost ofLMSTk(G)
could be arbitrarily larger than the cost ofMST (G). However,
our simulations show that it is within a small constant factor on
average. The advantage of using the local minimum spanning tree
instead of the global minimum spanning tree is the significant re-
duction in the communication cost.

6.2 Performance Comparisons
We then evaluate the performance of our new distributed weighted

backbone formation algorithm by simulations on random networks.
In our experiments, we randomly generated a setV of n wire-
less nodes with random costs drawn from[1, 100] and the induced
UDG(V ), then tested the connectivity ofUDG(V ). If it is con-
nected, we construct different cluster algorithms onUDG(V ) to
form dominating sets and measure the total costs of these dominat-
ing sets. Then, we apply our new method to construct the weighted
backbone. We test the total cost of the final backbone and measure
the average and maximum cost/hop spanning ratios.

In the experimental results presented here,n wireless nodes are
randomly distributed in a500m× 500m square, and the transmis-
sion range is set to100m. We tested all algorithms by varyingn
from 50 to 275, where50 vertex sets are generated for each case to
smooth the possible peak effects. The average and the maximum
were computed over all these50 vertex sets. Notice, the parameter
setting of our experiments here is just for demonstrations. We have
tried other various settings, the results and performances are stable,
due to space limit, we can not present all of them here.

6.2.1 Cost of Dominators
First, we compare our algorithm with the three previous greedy

algorithms to find a dominating set. Figure 5 gives an example
of the original communication graph with node costs and different
dominating sets by different greedy methods.

We plotted the performances of all methods in Figure 6. Our
method produces a dominating set whose cost is significantly less
than that produced by the MIS based method (greedy 1) and is on
the similar level with other two methods. In addition, our method
produces a dominating set whose size is significantly less than that
produced by the method in [8] (greedy 3) and is on the similar level
with other two methods. The set-cover based method (greedy 2)
is the only one that is comparable with our method for both met-
rics. However, it is a centralized method while our is a distributed
method with a small communication cost.

6.2.2 Cost of Backbone
After getting the dominating set (Figure 7(b)) by Algorithm 1,

we apply Algorithm 2 to find the connectors. Figure 7(c) shows
the backbone after adding some connectors to the dominating set.
Notice that we used the local minimum spanning tree to find the
connectors instead of the global minimum spanning tree (that is
why the graph WCDS in Figure 7(c) is not a tree). We plot the to-
tal cost and the size of the weighted backbone in Figure 8 (a) and
(b). The size of the backbone becomes stable when the network
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Figure 5: Different dominating sets by different greedy methods from the same original communication graph.
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Figure 6: Total cost and number of cluster-head of different greedy methods (when the number of nodes are from50 to 275).

becomes denser. However, the average total cost of the backbone
decreases over the increasing of the network density, which is due
to dense network provides more candidates for backbone with po-
tential lower costs.

6.2.3 Cost of Unicast Routing
For unicast, we can simplify Algorithm 2 by directly using VirtG

as the final backbone. Figure 7(d) illustrates such backbone. Span-
ning ratios of the final backbone are plotted in Figure 8 (c). Notice
that the average cost and hop spanning ratios are indeed small (al-
most 1). The maximum cost spanning ratio is less than3. The
maximum hop spanning ratio is no more than4. These maps well
to the theoretical bounds, which are3 and4 respectively.

6.2.4 Life-time Experiments
We also conduct simple experiments to test the life time of the

network when using our proposed backbone. Using the same ran-
dom distribution and transmission range as in previous experiments,
we setup networks in a500m × 500m square. Then, we assume
that each node in the network has total energy200 initially. We
perform the three classical greedy cluster algorithms and our algo-
rithm to build weighted backbone for the networks and update it
periodically. To ignore the effects of methods selecting connectors,
we apply the same method used in our solutions (Algorithm 2) to
connect clusters generated by the different cluster algorithms. For
the cost of each node being backbone, we simply use the reverse
of the remaining energy at each node. At the end of each period,
we reduce the power of backbone nodes by5, and update the back-
bone. Figure 9 shows the life time (the number of periods that the
network survives until the first node run out of energy). Again, our
method has longer life time than the MIS based method (greedy 1)

and is on the similar level with other two methods. Remember the
set-cover based method (greedy 2) is a centralized method, there-
fore it has good performance in this experiment. Notice, the third
greedy algorithm also has similar performance with our method.
The reason maybe as follows. Even the size of the dominating set
generated by greedy 3 is larger than our method (as shown in the
first experiment), after selecting the connectors the size of back-
bone is in same level with our method for a random distributed
network.
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Figure 9: The life time of the network using different greedy
methods (when the number of nodes are from50 to 275).

7. SUMMARY AND FUTURE WORK
In this paper, we present a new algorithm to construct a sparse
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Figure 7: Dominating set, connected dominating set and virtual backbone for unicast from the same original communication graph.
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Figure 8: Performance of backbone (when the number of nodes are from50 to 200).

structure for network backbone in wireless ad hoc networks. A
communication efficient distributed algorithm was presented for
the construction of a weighted connected dominating set, whose
size is guaranteed to be within a small constant factor of the mini-
mum (when eitherδ or d is a constant). We also show that WCDS
is efficient for both cost and hops and has at mostO(n) edges. This
topology can be constructed locally and is easy to maintain when
the nodes move around. All our algorithms have the message com-
plexity O(n) when geometry information is available.

There are many interesting open problems left for further study.
Remember that, we use the following assumptions on wireless net-
work model: omni-directional antenna, single transmission received
by all nodes within the vicinity of the transmitter, nodes being sta-
tic for a reasonable period of time. To prove that the backbone has
low cost, we also assume that all nodes have the same transmis-
sion range. Notice that the efficiency property for unicast does not
require the communication graph to be a UDG. The problem will
become much more complicated if we relax some of these assump-
tions. Another interesting open problem is to study the dynamic
updating of the backbone efficiently when nodes are moving in a
reasonable speed although our cost function does integrate the mo-
bility of the nodes. It is interesting to see the practical performance
differences of all proposed methods such as methods by Bakeret
al., Alzoubi et al., and our methods proposed here, in mobile envi-
ronment.
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