
Share the Multicast Payment Fairly

WeiZhao Wang1, Xiang-Yang Li?1, and Zheng Sun??2

1 Illinois Institute of Technology, Chicago, IL, USA, wangwei4@iit.edu, xli@cs.iit.edu
2 Hong Kong Baptist University, Hong Kong, China, sunz@comp.hkbu.edu.hk

Abstract. Multicast routing uses a structure, either a tree or a mesh, to connect the receivers to the
source, thus saving the bandwidth. How to share the cost among the receivers in a certain fair way has
been studied widely in literature. When the agents, either the links or the nodes, in the network are
selfish, it is desirable to pay the agents in a proper way such that each agent still reveals its true cost, a
property known as strategyproofness. Several strategyproof mechanisms have been proposed based on
several different multicast structures, and it is natural that the payments instead of the costs should
be shared among the receivers. Motivated by this, we study how the payment should be shared among
the receivers in a fair way when the payment is computed via a strategyproof mechanism based on
some low cost multicast structure. Specifically, when links are selfish agents, based on a strategyproof
mechanism whose multicast tree is at most 2 times the optimal, we propose a payment sharing scheme
that is 1

n2 -budget-balanced, cross-monotonic, and in the core. We also prove that there is no payment
sharing scheme that can achieve β-budget-balance and cross-monotonicity for β = Ω(1

n
). When both

the relay agents and the receivers are selfish, we show a negative result: combining a strategyproof
mechanism M for the relay agents and a fair sharing scheme ξLST for the receivers does not necessarily
imply a strategyproof mechanism overall.

1 Introduction

Multicast has been a popular technique for supporting group-based applications, such as video-conference
and content distribution. Multicast routing often uses a tree to connect the receivers to the source, and every
internal node only sends the data to its downstream nodes in the multicast tree, which saves the bandwidth.
Traditionally, whenever the source needs to send some data to a subset of the receivers, the multicast routing
picks the shortest path tree (also called least cost path tree in [1]) that spans these receivers. This simple
approach ignores the fact that the shortest path tree may be arbitrarily worse than the optimal tree with
respect to the total cost. Thus, we need to find the optimal tree connecting a given set of receivers with the
minimum total cost, a problem known as the Steiner tree problem. However, this problem is well-known to
be NP-hard, and a sequence of approximation algorithms have been developed for the Steiner tree problems.
In literature, there are two types of Steiner trees: the node weighted Steiner tree where only the nodes have
costs, and the link weighted Steiner tree where only the links have the costs. In this paper, we will assume
that the network is link weighted, i.e., only the links have costs. Notice that most of our results can be
extended to the node weighted network without difficulty.

Recently, sharing the cost of the multicast routing among receivers in a “fair” manner has been studied
extensively [2, 3]. An assumption made by the cost sharing schemes is that the costs of the links (or nodes)
are publicly known. However, this is not the case in many application scenarios. When the links (or nodes)
are independent and self-interested agents, several strategyproof mechanisms [1, 4, 5] have been developed
so that a proper payment to each agent can be computed efficiently. A multicast mechanism M = (O,P)
consists of two parts: a multicast tree construction method O that determines which agent will be used in
the tree, and a payment scheme P that determines how much each agent will be paid to compensate its cost
incurred. When the payments to the agents needed to be shared among the receivers, we need to design a
payment sharing scheme instead of the traditional cost sharing scheme. If every receiver is also selfish with a
privately known valuation, then a payment sharing mechanism is needed to determine which receiver get the
multicast data and at what price. Surprisingly enough, several results from cost sharing mechanisms do not
carry over to the payment sharing mechanism. In [1], Wang et al. first studied how to fairly share, among
the set of receivers, the payment of the mechanism that uses the shortest path tree as its multicast tree.

? The research of the author was supported in part by NSF under Grant CCR-0311174.
?? The research of the author was supported in part by Grant FRG/03-04/II-21 and Grant RGC HKBU2107/04E.

By assuming that each receiver is willing to pay the computed charge, i.e., its valuation is sufficiently large,
they proved that their payment sharing scheme is fair. However, the cost of the shortest path tree could
be as large as r times of the optimum, where r is the number of receivers. In this paper, we will study the
payment sharing scheme when the payment is computed by a certain mechanism using a multicast tree with
a constant approximation ratio, when the network links are selfish agents with privately known costs. We
first show that if a payment sharing scheme is cross-monotone and never overcharges, then the total charge
to receivers is at most Θ(1

n) of the total payment to the selfish relay links in the worst case. We then present
a payment sharing scheme that is in the core and can recover at least Θ(1

n2) of the total payment to the
selfish links. When both the relay agents and the receivers are selfish, we show a negative result: combining
a strategyproof mechanism M for the relay agents and a fair sharing scheme ξLST for the receivers do not
necessarily imply a strategyproof mechanism overall.

The rest of the paper is organized as follows. In Section 2, we give necessary preliminaries and review the
related previous results. We present our payment sharing scheme in Section 3. In Section 4, we present some
negative results on payment-sharing mechanisms when both the relay links and the receivers are selfish. We
conclude our paper in Section 5 with possible future works.

2 Preliminaries and Previous Works

2.1 Algorithmic Mechanism Design

In a standard model of algorithm mechanism design, there are n agents {1, 2, · · · , n}. Each agent i ∈
{1, · · · , n} has some private information ti, called its type (e.g. its cost to forward a packet in a network envi-
ronment). All agents’ types define a profile t = (t1, t2, · · · , tn). Each agent i declares a valid type τ ′i which may
be different from its actual type ti and all agents’ strategies define a declared type vector τ = (τ1, · · · , τn).
A mechanism M = (O,P) is composed of two parts: an output method O (also called allocation rule in
some literature) that maps a declared type vector τ to an output o, and a payment scheme P that decides
the monetary payment pi = Pi(τ) for every agent i. Each agent i has a valuation function wi(ti, o) that
expressed its preference over different outcomes. Agent i’s utility or called profit is ui(ti, o) = wi(ti, o) + pi,
given output o and payment pi. An agent i is said to be rational if it always chooses its strategy τi to
maximize its utility ui.

Let τ−i = (τ1, · · · , τi−1, τi+1, · · · , τn), i.e., the declared types of all other agents except i and τ |iti =
(τ1, τ2, · · · , τi−1, ti, τi+1, · · · , τn). A mechanism is strategyproof if for every agent i, revealing its true type
ti will maximize its utility regardless of what other agents do. In this paper, we are only interested in
mechanisms M = (O,P) that satisfy the following three conditions:
1. Incentive Compatibility (IC): ∀ agent i,∀τ , wi(ti,O(τ |iti)) + pi(τ |iti) ≥ wi(ti,O(τ)) + pi(τ)
2. Individual Rationality (IR)(a.k.a., Voluntary Participation): Each agent must have a non-negative

utility, i.e., wi(ti,O(τ |iti)) + pi(τ |iti) ≥ 0.
3. Polynomial Time Computability (PC): O and P are computed in polynomial time.

In addition to the above requirements, some other common requirements for a mechanism could be
1. Consumer Sovereignty (CS): If the actions of all other agents are fixed, for every player i, there exists

a threshold τ̃i such that player i is guaranteed to get the service when its cost is at most τ̃i.
2. Group Strategyproof (GS): No group of players can increase their utilities (or called profits) by

colluding and lying about their truthful types.

2.2 Payment Sharing

In multicast transmission, one of the key concerns is how to charge the receivers in a fair way. If the relay
links are cooperative, i.e., the costs of relay links are publicly known, then we need to share the costs of
the multicast tree among receivers fairly. For the fair cost sharing, most of the literatures [2, 6, 7] used the
Equal Link Split Downstream (ELSD) sharing scheme to charge receivers: the cost of each link is shared
equally among all its downstream receivers. However, if we simply apply the ELSD as our charging scheme
to share the payment, it usually is not reasonable in a common sense; for example, it is not cross-monotonic.
If the relay links are selfish, then we have to share the payments to these relay links, while the payment
to a selfish link should be computed by a certain strategyproof mechanism. In this paper, our focus is the
payment sharing instead of the cost sharing studied in literature.

Consider a set U of n players. For a subset S ⊆ U of players, let P(S) be the total payment of providing
service to S. A payment sharing scheme is simply a function ξi(S, c) with ξi(S, c) = 0 for i 6∈ S, for every
set S ⊆ U of players. While the definition of budget-balance is straightforward, defining fairness is more
subtle: many fairness concepts were proposed in the literature, such as core and bargaining set [8]. We call
a charging scheme ξ reasonable or fair if it satisfies the following criteria.
1. Budget Balance (BB): The payment to all relay agents should be shared by the receivers, i.e., P(R, c) =∑

ri∈R ξi(R, c), where c is the cost vector of the network. When budget-balance cannot be met, we relax
it to β-budget-balanced: for the receiver set R, β · P(R, c) ≤ ∑

i∈R ξi(R, c) ≤ P(R, c), for some given
parameter β ≤ 1. Equivalently, if we divide the shares by β, we would require that the total payment
sharing of the receivers is at least the payment of providing the service, but does not exceed 1

β of that.
2. No Positive Transfer (NPT): Any receiver ri’s sharing should not be negative. In other words, we do

not pay the receiver to receive service.
3. Cross-monotonicity (CM): For any two subsets S ⊆ T and i ∈ S, ξi(S, c) ≥ ξi(T, c). In other words,

the payment share of a player i should not go up if more players require the service. This is also called
population monotone.

4. Fairness under core (Core): For any subset S ⊆ R,
∑

i∈S ξi(R, c) ≤ P(S, c). In other words, the
payment shares paid by any subset of players should not exceed the total payment of providing the
service to them alone, hence they have no incentives to secede.
Notice that a budget-balanced and cross-monotonic cost sharing scheme is always in the core. When each

receiver qi has a maximum payment ζi it is willing to pay to receive the multicast service, then we have to
decide which receivers will get the service and at what price, i.e., we need design a truthful mechanism. This
mechanism sometimes is called payment sharing mechanism. Several additional properties could be required
for a payment sharing mechanism.
1. Group Strategyproof For any subset of receiver S ⊆ R, they can not collude together such that every

receiver does not decrease its utility while at least one receiver increases its utility.
2. Consumer Sovereignty(CS): For any receiver qi, if ζi is sufficiently large, then qi will be selected to

receive the service. The payment sharing mechanism cannot arbitrarily exclude any users; the network
has to allow users to receive the transmission if they are willing to pay a sufficiently high payment.
It is well-known [2] that a cross-monotonic budget-balanced cost sharing scheme ξ implies a group-

strategyproof mechanism M(ξ) that determines which receiver will get the service and at what price. Moulin
and Shenker [2] also offered a characterization of a whole class of budget-balanced and group strategyproof
mechanisms.

2.3 Problem Statement

Given a communication network G = (V, E, c), where V = {v1, · · · , vn} is the set of communication terminals,
E = {e1, e2, · · · , em} is the set of links. Every link ei in the network has a cost ci to transmit a unit size of
data. Each of a set of terminals R = {q1, q2, · · · , q|R|} ⊂ V is willing to receive the data from a source node
s. For simplicity, assume that q0 = s is the source node in one specific multicast and the size of the data is
normalized to 1. In order to prevent monopoly, we assume that the network G is bi-connected.

There are several different scenarios, concerning whether the links are selfish and whether every receiver
has a willing payment for receiving the data, which could be studied. In this paper, we always assume that
each link is a selfish agent who will provide the relay service to receivers only if it gets a certain amount of
payment. We assume throughout this paper that the selfish links in the network will not collude to improve
their profits together. To design a multicast protocol, we first need to design a strategyproof mechanism
ME = (OE ,PE) such that

1. the links selected under the allocation rule OE form a topology (a tree, a mesh, a ring, etc) that spans
the set of receivers R;

2. PE defines a payment for each relay agent. Here a link is paid according to a strategyproof payment
scheme if it is selfish; otherwise its payment will be its actual cost.

This has been well-studied [4, 1, 5]. In this paper, we concentrate on designing a fair payment sharing scheme
ξ when the payment is computed by a mechanism M = (OE ,PE) with the property that OE has a constant
approximation ratio.

We further assume that each receiver has a valuation of receiving the data from the source. Let ζi be the
willing payment by receiver qi, and ζ be the vector of the willing payments of the receivers. A mechanism
MR = (OR,PR) determines the receivers that receive the service and the prices they pay.If the links are not
selfish, then this is the cost sharing problem, for which Jain and Vazirani [9] proposed a 1

2 -budget-balanced
cross-monotonic cost sharing scheme in [9]. In this paper, instead of focusing on the cost sharing, we focus
on the payment sharing. For simplicity of our notation, given a payment sharing scheme ξ, we always use
M(ξ) to denote its induced mechanism defined in [2].

Given a structure H ⊆ G, we use ω(H) to denote the sum of the costs of all agents in this network. If
we change the cost of any agent i (link ei or node vi) to c′i, we denote the new network as G′ = (V, E, c|ic′i),
or simply c|ic′i. If we remove one agent i from the network, we denote it as c|i∞. We denote G\ei as the
network without link ei, and denote G\vi as the network without node vi and all its incident links. For the
simplicity of notations, we will use only the cost vector c to denote the network G = (V, E, c) if no confusion
is caused.

2.4 Previous Works

Strategyproof unicast and the efficient computing of the payment were addressed in [10–13]. Several results
were proposed in the literature to deal with multicast in selfish networks [6, 5, 1, 4]. By assuming that the
links (or nodes) of a network are selfish agents, a variety of strategyproof mechanisms were studied using
different methods to construct the multicast tree.

Sharing the cost of providing service among the set of service receivers has been extensively studied in
[2, 6, 7, 14–19] so some fairness is accomplished. Moulin and Shenker [2] showed that a budget-balanced and
cross-monotone cost sharing scheme implies a group strategyproof mechanism when the receivers are selfish.
Feigenbaum et al. [6], by assuming a fixed multicast structure, designed a strategyproof mechanism that
selects a subset of receivers (each with a privately known willing payment) and then shares the cost of the
multicast tree providing the service among the selected receivers so that budget-balance is achieved. Herzog
et al. [7] considered an axiomatic approach to the problem, analyzing the implications of different distributive
notions on the resulting allocations. A variety of cost allocation schemes were proposed and studied in [7].
Feigenbaum et al. [15] gave a group-strategyproof mechanism that can be computed with exponentially lower
worst-case communication than the Shapley Value algorithm, but it might fail to achieve exact budget balance
(albeit by a bounded amount). Feigenbaum et al. [16] also studied the message complexity of distributed cost
sharing mechanism. They showed that any distributed algorithm, deterministic or randomized, that computes
a (or an approximately, resp.) budget-balanced, group-strategyproof multicast cost-sharing mechanism must
send Ω(n) (or Ω(log n) resp.) bits over linearly many links in the worst case. Gupta et al. [17] gave a
cross-monotone, fair cost-sharing method for the Single Source Rent-or-Buy network design game that is
also β-budget-balanced, where β = 4.6. Notice that the traditional multicast game is a special case of the
Rent-or-Buy game by letting M = 1 in [17]. Devanur et al. [18] obtained strategyproof cost allocations
for the set cover game and the facility location game. The mechanisms for the set cover game in [18] is
not group-strategyproof. Li et al. [20] gave for a general multi-set cover game the first group-strategyproof
mechanism, which is also 1

2n -budget-balanced. Maximizing profit in strategyproof multicast was studied
in [9, 21]. Jain and Vazirani [9] gave a 1/2-budget-balanced cross-monotonic cost sharing scheme for the
link weighted multicast using a prima-dual approach. Immorlica et al. [19] studied the maximum β for a
cross-monotonic β-budget-balanced cost sharing schemes for a variety of games.

The only result that studied the payment (instead of cost) sharing among a set of receivers is by Wang
et al. [1]. They specifically studied how to share the payment to all relay agent, defined by the mechanism
using the shortest path tree as the multicast tree, among all receivers. They show that their payment sharing
scheme is budget-balanced, cross-monotonic, and without free-rider (NFR). A receiver is called free-rider in
[1] if its shared payment is less than 1

r of the payment of a unicast from the source. Here r is the total number
of receivers. Notice that the cost of the shortest path tree could be as large as r times the cheapest cost
multicast tree. In this paper, we will study the payment sharing of multicast when the tree is constructed by
a certain polynomial-time method with a constant approximation ratio, such as the method by Takahashi
and Matsuyama [22].

3 Payment Sharing For Multicast

In this section, we focus on the scenarios when the relay links are selfish. Thus, we study how to share the
payment instead of the cost to the links among the receivers in a fair way.

3.1 Tree Construction

In practice, the shortest path tree (SPT), which is the union of the shortest pathes from source to all receivers,
is most widely used as a multicast tree. We use SPT (R, c) to denote the shortest path tree of a network
when the network cost vector is c and receivers set is R. Although SPT is used very often in practice, the
weight of SPT (R, c) could be as large as |R| times the optimal. Takahashi and Matsuyama [22] first gave a
polynomial time algorithm computing a 2-approximation of the minimum cost Steiner tree (MCST). Then
a series of results have been developed to improve the approximation ratio. The current best result is due to
Robins and Zelikovsky [23], in which the authors presented a polynomial time method with approximation
ratio 1 + ln 3

2 . Due to its simplicity of construction, we will use algorithm in [22] to construct the multicast
tree, and the resulting tree is denoted as LST (R, c).

Algorithm 1 Construct the Steiner Tree (Takahashi and Matsuyama [22])
1: Initialize LST (R, c) = ∅.
2: repeat
3: for each receive ri in R do
4: Find the least cost path LCP(s, qi, c) between s and qi.
5: Find the receiver qj with the minimum cost of the shortest path LCP(s, qj , c).
6: Remove qj from R and add LCP(s, qj , c) to LST (R, c).
7: Set all links’ costs on LCP(s, qj , c) as 0.
8: until R is empty.
9: Output LST (R, c).

3.2 Payment Computation

We now briefly review the truthful payment scheme for links when they are selfish. We continue to present
some important properties stating the relations of different payment schemes, which are crucial to design
our payment sharing scheme. Wang et al. [4] gave the truthful payment schemes for tree SPT and LST
respectively and a more general framework to design truthful payment schemes for any given multicast
structure is given in [1, 5]. We use PSPT (R, c) and PLST (R, c) to denote the payment scheme for tree SPT
and LST respectively given the set R of receivers. We also use PSPT (R, c) and PLST (R, c) to denote the total
payment to the links in the network for tree SPT and LST respectively, i.e. PSPT (R, c) =

∑
ek∈E PSPT

k (R, c)
and PLST (R, c) =

∑
ek∈E PLST

k (R, c).
For a link ek ∈ SPT (R, c), we compute an intermediate payment pi

k(c) to link ek for any receiver qi as
pi

k(c) = |LCP(s, qi, c|k∞)| − |LCP(s, qi, c|k0)|. The final payment to link ek ∈ SPT (R, c) is

PSPT
k (R, c) = max

qi∈R
pi

k(c) (1)

For a link ek ∈ LST (R, c), the payment PLST
k (R, c) is computed as follows (see [4] for more detail):

Lemma 1. Given a network G = (V, E, c), for any link ek, we have PSPT
k (R, c) ≤ PLST (R, c).

Proof. We prove it by contradiction. For the sake of contradiction, we assume that PSPT
k (R, c) >

PLST (R, c). Without loss of generality, we assume that PSPT
k (R, c) = PLST (R, c) + δ where δ > 0. We

also assume that PSPT
k (R, c) = pj

k(R, c), i.e.,PSPT
k (R, c) = |LCP(s, qj , c|k∞)| − |LCP(s, qj , c|k0)|, where

LCP(s, qj , c|k0) is the shortest path between s and qj . Let ĉ = c|k(PLST (R, c) + δ
2). Notice here that

PLST
k (R, c) is the maximum cost that ek could declare such that it is selected (called cut-value in [5]).

Thus we have ek 6∈ LST (R, ĉ). Let ΠLST (s, qj) be the path between s and qj in the tree LST (R, ĉ), then

Algorithm 2 Payment Scheme PLST (R, c)
1: Set ck = ∞ and apply Algorithm 1. Without loss of generality, we assume that the cost vector in the beginning

of ith round is c(i) and the path selected in round i is P(s, qσi).
2: for each round i do
3: Set c

(i)
k = 0.

4: Let LCPek (s, qt, c
(i)) be the path with the smallest weight among all paths between s and receivers in R.

5: Define an intermediate payment pi
k(c) as pi

k(c) = |P(s, qσi)| − |LCPek (s, qt, c
(i))|.

6: The final payment PLST
k (R, c) is PLST

k (R, c) = max
|R|
i=1 pi

k(c).

ek 6∈ ΠLST (s, qj). Notice that LCP(s, qj , c|k∞) is the shortest path between node s and qj when link ek is
removed. Thus

PSPT
k (R, c) ≤ |LCP(s, qj , c|k∞)| ≤ |ΠLST (s, qj)| ≤ |LCP(s, qj , ĉ)|

≤ |LCPek
(s, qj , ĉ)| ≤ PLST (R, c) +

δ

2
< PLST (R, c) + δ = PSPT

k (R, c),

which is a contradiction. This finishes our proof.

Similarly, we have the following lemma.

Lemma 2. Given a network G = (V, E, c), for any link ek, we have PLST
k (R, c) ≤ PSPT (R, c).

Proof. Recall that if ek 6∈ LST (R, c), then PLST
k (R, c) = 0. Thus, we only need to consider the case when

ek ∈ LST (R, c). Without loss of generality, we assume that PLST
k (R, c) = pi

k(c) and qσi = qj . The tree
shown in Figure 1 (a) is the tree in the beginning of iteration i, and the path Π3 = LCP−ek

(s, qj , c). Now we
discuss by cases:

q j

Π3

q1
q t

s

q j

Π3

Π1

Π2

q1
q t

s

ek

(a) The original (b) Network after

Fig. 1. The payment of LST.

Case 1: LCP(s, qj , c) = LCP−ek
(s, qj , c), i.e., link ek is not on the shortest path between s and qj . In this

case, |Π3| = |LCP(s, qj , c)| ≤ ω(SPT (R, c)) ≤ PLST (R, c).
Case 2: LCP(s, qj , c) = LCPek

(s, qj , c), i.e., link ek is on the shortest path between s and qj . Recall that
PSPT

k (R, c) = |LCP−ek
(s, qj , c)| − |LCP(s, qj , c|k0)|, thus we have

|LCP(s, qj , c|k0)| =
∑

ei∈LCP(s,qj ,c|k0)−ek

ci ≤
∑

ei∈SPT (R,c)−ek

ci ≤
∑

ei∈SPT (R,c)−ek

PSPT
i (R, c)

Therefore

|Π3| = |LCP−ek
(s, qj , c)| = PSPT

k (R, c) + |LCP(s, qj , c|k0)| ≤ PSPT
k (R, c) +

∑

ei 6=ek

PSPT
i (R, c) = PSPT (R, c)

This proves that |Π3| ≤ PSPT (R, c) no matter whether ek in on the shortest path LCP(s, qj , c) or not.
Now we consider the iteration i. For simplicity, we assume that Π1 = LCPek

(s, qt, c
(i)) and Π2 = P(s, qσi).

From the assumption that PLST
k (R, c) = pi

k(c), we have

PLST
k (R, c) = pi

k(c) = |P(s, qσi)| − |LCPek
(s, qt, c

(i))| = |Π2| − |Π1| ≤ |Π3| − |Π1| ≤ |Π3| ≤ PSPT (R, c)

This finishes our proof.

Theorem 1. Given a n-nodes network G = (V,E, c), P
LST (R,c)

n ≤ PSPT (R, c) ≤ n · PLST (R, c).

3.3 Payment Sharing Scheme

Recall that, when the links in the network are selfish, we should give links some payments that are typically
larger than their costs. Thus, we need to study how to share the payment instead of cost of the multicast
tree among the receivers in a fair way, which we call payment sharing. In this situation, even for the tree
SPT, the ELSD sharing scheme is not a reasonable sharing scheme [1]. Then a reasonable payment sharing
scheme is given in [1]. Our new payment sharing scheme is built upon that payment sharing scheme. Thus,
for completeness of our presentation, we review their payment sharing scheme for the payment computed
by the mechanism (SPT,P). The basic idea of their payment sharing scheme is as follows. Notice that a
final payment to an agent j is the maximum of payments pi

j by all receivers. Since different receivers may
have different “views” on the payment agent j deserves to receive, the final payment Pj should be shared
proportionally to their views, not equally among them as what we do for cost-sharing. Figure 3.3 illustrates
the payment sharing scheme that follows. Without loss of generality, assume that the link agent j (denoted

i-1

t t-1

j

j j

j j

j j

p

i

g

q

q

q

- pp

g-i+1

1

e j

1

- pp

- pp

i

g g-1Σ
i

t=1

Fig. 2. Share the payment to service providers among receivers fairly.

by a circle) has g downstream receivers, say q1, q2, · · · , qg, and the payments of the receivers to j are
0 ≤ p1

j ≤ p2
j ≤ · · · ≤ pg

j , i.e., pj = pg
j . We then divide the payment pj into n portions: p1

j , p2
j − p1

j , · · · ,
pi

j − pi−1
j , · · · , pg

j − pg−1
j . Each portion pi

j − pi−1
j is then equally shared among the last g − i + 1 elements,

which have the largest g − i + 1 payments. Regarding the payment sharing scheme ξSPT
i (R, d), following

theorem is proved in [1].

Theorem 2 (Wang, Li et al. [1]). The payment sharing scheme ξSPT
i (R, d) is reasonable, i.e., satisfies

BB, NPT, NFR and CM.

For a mechanism based on tree LST, if a payment sharing scheme ξ is β-budget-balanced and cross-
monotonic, then we have

Theorem 3. If a payment sharing scheme ξ is β-budget-balanced and cross-monotonic, then β = O(1
n).

Here n is the size of the network.

Proof. We prove it by presenting a network example here. The network and the costs of the edges are
shown in Figure 3. There are n nodes between v4 and q1. The cost of link vivi+1 is ε, for 5 ≤ i ≤ n + 3.
Let ξLST be a payment sharing scheme for the mechanism (LST,PLST) that is β-budget-balanced and
cross-monotonic. Then from the β-budget-balance property we have ξLST

1 (q1, c) ≤ P1(q1, c) = 2.6 and
ξLST
2 (q2, c) ≤ P1(q2, c) = 2.9. When the receiver set is q1 ∪ q2, the cross-monotonicity property implies that

ξLST
1 (q1 ∪ q2, c) + ξLST

2 (q1 ∪ q2, c) ≤ ξLST
1 (q1, c) + ξLST

2 (q2, c) = 5.5. Notice that P(q1 ∪ q2) = 6 + 0.5 · n.
Thus, β ≤ ξLST

1 (q1∪q2,c)+ξLST
2 (q1∪q2,c)

P(q1∪q2)
= 5.5

6+0.5·n = O(1
n). This finishes our proof.

The above theorem shows the limitations on the payment sharing scheme when the payment is computed
by mechanism (LST,P). In the following, we present a payment sharing scheme for LST that achieves
1

n2 -budget-balance and cross-monotonicity.

q
1

q
2

6v

3v
4v

5v

n+4v

1.5

0.4

1

1

2.5(2.6)

0.6

ε
ε

s

1

ε

1
q

2

3v
4v

5v
n+4v

1

1.5

0.42.5

1(1.4)

1(1.5)0.6

q

s

ε(.5+ε)

1
q

2

3v
4v

5v
n+4v

1

1.5

2.5

1(1.5)
.4(.9)

1(1.5)

.6(1.1)

q

s

(a) LST (q1, c) (b) LST (q2, c) (c) LST (q1 ∪ q2, c)

Fig. 3. A bad example of payment sharing of LST .

Algorithm 3 Payment Sharing Scheme for LST.
1: Compute the payment sharing ξSPT

k (R, c).

2: For each receiver qk, set ξLST
k (R, c) =

ξSP T
k (R,c)

n
, where n is the number of the nodes in G.

Theorem 4. The payment sharing scheme 3 satisfies NPT, CM, 1
n2 -budget-balance, and is in the core.

Proof. Recall that ξLST
k (R, c) = ξSP T

k (R,c)
n . From Theorem 2, we obtain that ξLST (R, c) satisfies NPT and

CM directly. Thus, we only need to prove that ξLST (R, c) is 1
n2 -budget-balance and in the core.

To prove the 1
n2 -budget-balance property, we need to show that P

LST (R,c)
n2 ≤ ∑

i ξLST
i (R, c) ≤ PLST (R, c).

From Theorem 1, we have PLST (R,c)
n2 ≤ PSP T (R,c)

n ≤ PLST (R, c). From Theorem 2, we know that ξSPT (R, c)

satisfies BB. Thus, P
SP T (R,c)

n =
P

i ξSP T
i (R,c)

n =
∑

i ξLST
i (R, c). Consequently, we have P

LST (R,c)
n2 ≤ ∑

i ξLST
i (R, c) ≤

PLST (R, c). This proves that the payment sharing scheme is 1
n2 -budget-balanced.

We then show that it is also in the core. This is due to the fact that
∑

i ξLST
i (R, c) =

∑
i

ξSP T
i (R,c)

n =
PSP T (R,c)

n ≤ PLST (R, c), since ξSPT is budget-balanced.

Notice that there is a gap between the upper bound O(1
n) and lower bound Ω(1

n2) on β for β-budget-
balanced cross-monotonic payment sharing scheme. A possible future work is to close the gap.

3.4 Satisfy Budget Balance with γ-Relaxed Core

In Section 3.3, we present a payment sharing scheme ξLST (R, c) that is 1
n2 -budget balanced, cross-monotonic,

and in the core. This payment sharing scheme will most likely run to deficit. However, under certain circum-
stances, there is no outsider who will afford the portion of the payment to the link that is not covered by the
receivers. Thus, sometimes we would like to achieve the budget balance property while sacrifice some other
properties such as core. Recall that a payment sharing scheme satisfies the core property if, for any receiver
set S ∈ R,

∑
qi∈S ξi(R, c) ≤ P(S, c). We generalize the core property as follows. A payment sharing scheme

ξ is γ-relaxed core if, for any receiver set S ∈ R,
∑

qi∈S ξi(R, c) ≤ γ · P(S, c). Following theorem shows that
a payment sharing scheme that is α-budget balanced and core implies a payment sharing scheme that is
budget balanced and 1

α -relaxed core.

Theorem 5. For any payment sharing scheme ξ that is α-budget-balanced and core, then payment sharing
scheme ξ̂

ξ̂i(R, c) = ξi(R, c) · P(R, c)∑
qi∈R ξi(R, c)

is budget balanced and 1
α -relaxed core.

Proof. It is obvious that ξ̂ is budget-balanced. Since the payment sharing scheme is α-budget-balanced,
we have

∑
qi∈R ξi(R, c) ≥ α · P(R, c). Thus, ξ̂i(R, c) = ξi(R, c) · P(R,c)P

qi∈R ξi(R,c) ≤ ξi(R,c)
α . For any receiver

set S ∈ R, we have
∑

qi∈S ξ̂i(R, c) ≤
P

qi∈S ξi(R,c)

α ≤ P(S,c)
α , which implies that ξ̂ is budget balanced and

1
α -relaxed core. This finishes our proof.

4 Selfish Relay Links and Receivers

So far, we assume that the receivers will pay the fair amount of sharing of payment to receive data using
multicast. In other words, each receiver qi is assumed to pay its sharing according to some payment sharing
scheme ξ. In practice, each individual receiver often has a maximum valuation indicating how much it is
willing to pay to receive the information from the source. A receiver will choose to receive the information
if and only if the charge by the source or by the relay agents is at most its valuation. Furthermore, receiver
could also be non-cooperative and selfish: it will always maximize its profit by manipulating its reported
valuation, should it be possible. This makes the multicast design even harder when both the relay agents
and the receivers could be selfish. It is well-known that a cost sharing scheme satisfying CM implies a group-
strategyproof mechanism [2]. Thus, when each receiver qi has a valuation ζi for receiving the data, i.e., it is
willing to pay at most ζi for the data, the first intuition is that we can design a payment sharing mechanism
as follows.

Algorithm 4 Payment Sharing Mechanism for Tree LST

1: S ← R, where R is the set of possible receivers.
2: repeat
3: Construct the tree LST (S, c).
4: For each receiver qi ∈ S, we compute the payment sharing ξLST

i (S, c) based on the declared cost of all possible
relay agents.

5: For each receiver qi ∈ S, the receiver qi is removed from S if ξLST
i (S, c) > ζi, i.e., S ← S−{qi} if ξi(S, c) > ζi.

6: until no receiver is removed in this round
7: All remaining receivers, say R̂ ⊆ R will receive the multicast data and pay a sharing ξLST

i (R̂, d) ≤ ζi.

Intuitively, when a relay agent is not in the multicast tree LST, the relay agent could not get positive
utility no matter what cost it declares. On the other hand, when a relay agent is in the relay agent could
manipulate its declared cost, and in consequence the payment sharing for its downstream receivers, such
that it is still in the final tree. There are two ways that a relay agent could change the payment sharing of
its downstream receivers: reporting a higher cost or lower cost. Following theorem shows the negative result
about payment sharing mechanism described by Algorithm 4.

Theorem 6. Payment sharing mechanism 4 is not strategyproof, and moreover, some links may have in-
centives to lie up and lie down.

Proof. We first show by example that some links may have incentives to lie up. Figure 4 illustrates such
an example of reporting a lower cost. Here the private valuations of receivers q1 and q2 are 2.4 and 3.4

3

3
5

5

5

3.42.4

v

s

q
21

43v

q 3.4

5

5

3

5
3

2.4q

43

2

v

q

s

v

1
3.4

5

5

3

5
3

2.4q

43

q

v

2

s

v

1

3

3.4

3

5

5

2.4

3

v

s

q
21

43v

q
(a) original network (b) SPT (q1 ∪ q2, c) (c) SPT (q1, c) (e) SPT (q1 ∪ q2, c

′) after lie

Fig. 4. A relay agent could lie down its cost to improve its utility when use payment sharing mechanism 4.

respectively. The true cost of links are c(sv3) = 5, c(sv4) = 3, c(v3q1) = 5, c(v4q2) = 5, and c(q1q2) = 3.
Observe that when link v4q2 truthfully reports its cost as 5, the multicast tree is formed by links sv3, v3q1,
sv4 and v4q2. Figure 4 (b) illustrates the tree SPT constructed based on the reported cost. In addition, the
payments to each individual links are psv4 = c(sv3) + c(v3q1) + c(q1q2) − c(v4q2) = 8, pv4q2 = 10, psv3 = 6,
pv3q1 = 6, and the payments to all other links are 0. Consider two receivers q1 and q2. The total payment

shared by receiver q1 is psv3+pv3q1
5 = 12

5 = 2.4, which is not larger than its willing payment 2.4. Similarly,
the total payment shared by q2 is psv4+pv4q2

5 = 185, which is larger than its maximum willing payment 3.4.
Consequently, the receiver q2 will not join the multicast (illustrated by Figure 4 (c)). In other words, link
v4q2 gets payment 0.

Let’s see what happens if link v4q2 lies its cost down to 3 < c(v4q2) (illustrated by Figure 4 (d)). Figure
4 (e) shows the multicast tree constructed in this scenario. It is easy to see that when link v4q2 reported its
cost as 3, the payments to each individual links are psv4 = 10, pv4q2 = 10, pq1q2 = 4, and the payments to
all other links are 0. Let’s see what is the sharing of receiver q2 in this case. It is not difficult to see that
pq2

sv4
= 10, pq1

sv4
= 4, pq2

v4q2
= 10, pq1

v4q2
= 4. Thus, the sharing of receiver q2 to the payment 10 to link sv4

is
p

q1
sv4
2 +(pq2

sv4
−pq1

sv4
)

5 = 1.6. Similar calculation shows that the charge to receiver q2 will be 16
5 = 3.2 and the

charge to receiver q1 is 7
5 = 1.4. Thus, both receivers q1 and q2 will join the multicast now. Then, the link

v4q2 gets a payment 10 when it lies its cost down to 3.

3

2

2

2

6

6

v

v5

3

v4

s

1
q

2(8) 6

6

3

2(8)

2(8)

v5

v3

v4

s

1
q

2−>7

2

2

6

6

3

v

v
5

3

v
4

s

1
q

2(3)

6

6

3

7(8)

2(3)

v5

v3

v4

s

1
q

(a) original network (b) SPT (c) link v3v5 lies (d) SPT after lie

Fig. 5. A relay agent could also decrease its utility when it lies down cost.

We then show by example that a relay agent could also improve its utility by reporting a cost higher than
its true cost. The intuition is as follows: reporting a higher cost such that it is still in LST and SPT, which in
turn could decrease the payment to other relay agents. Consequently, the payment sharing of its downstream
receivers is then decreased. Thus, the relay agent could be selected now when the new payment sharing of a
receiver is smaller than its valuation. Consider the network shown in Figure 5 (a). Assume that the valuation
of receiver q1 is 3. The tree LST (q1, c) = SPT (q1, c) and is shown in Figure 5 (b). The payment to each link
is shown beside its cost. Notice that ξLST

1 (q1, c) = ξSP T
1 (q1,c)

5 = 4.8 > 3. Thus no receiver will receive the
service and the multicast tree is empty. Therefore, link v3v5’s utility is 0 when reporting its cost truthfully.
Assume that it lies its cost as 7 and c′ is the cost vector. The tree LST (q1, c

′) = SPT (q1, c
′) and is shown

in Figure 5 (b), the payment to every link is shown beside its cost. ξLST
1 (q1, c

′) = ξSP T
1 (q1,c′)

5 = 2.8 < 3.
Thus receiver q1 receives the service, and link v3v5 is in the multicast tree who will receive a payment 8.
Consequently, link v3v5 has utility 6, which is larger than its utility 0 by reporting its cost truthfully.

The above theorem shows that combining two strategyproof mechanisms (one for selfish relay links, and
one for selfish receivers) does not necessarily imply a strategyproof mechanism for the situation when both
are simultaneously selfish.

5 Conclusion

Sharing the multicast cost among the receivers in a certain fair way has been studied widely in the literature.
In this paper we studied how the payment should be shared among the receivers when the payment is
computed by a mechanism M = (LST,P). Here, LST is the multicast tree construction method that can
achieve the cost at most 2 times the optimum. We described a payment sharing scheme that is 1

n2 -budget-
balanced, cross-monotonic, and in the core. We also proved that there is no payment sharing scheme that
is β-budget-balanced and cross-monotonic for β = Ω(1

n). When both the relay agents and the receivers
are selfish, we showed a negative results: combining the strategyproof mechanism M and the fair payment
sharing scheme ξLST (·) does not necessarily imply a strategyproof mechanism.

There are two future research directions. The first one is, for the β-budget-balanced and cross-monotonic
payment sharing scheme for M = (LST,P), to close the gap between the upper bound 1

n on β and the

achievable lower bound 1
n2 . The second direction is to design an overall strategyproof mechanism M = (O,P)

that will form an approximately efficient multicast tree, decide the payment to each relay links, determine
which receiver will receive the data and at what price. We have to make sure that both the relay links and
the receivers will maximize their profit when they report their cost (or willing payment) truthfully.

References

1. Wang, W., Li, X.Y., Sun, Z., Wang, Y.: Design multicast protocols for non-cooperative networks. In: Proceedings
of the 24th Annual Joint Conference of the IEEE Communication Society (INFOCOM). (2005) To appear.

2. Moulin, H., Shenker, S.: Strategyproof sharing of submodular costs: Budget balance versus efficiency. In: Economic
Theory. Volume 18. (2001) 511–533

3. Feigenbaum, J., Papadimitriou, C.H., Shenker, S.: Sharing the cost of multicast transmissions. Journal of
Computer and System Sciences 63 (2001) 21–41

4. Wang, W., Li, X.Y., Wang, Y.: Truthful multicast in selfish wireless networks. In: Proceedings of the 10th Annual
International Conference on Mobile Computing and Networking. (2004)

5. Kao, M.Y., Li, X.Y., Wang, W.: Towards truthful mechanisms for binary selection problems: A general design
framework. In: ACM EC, accepted for publication. (2005)

6. Feigenbaum, J., Papadimitriou, C.H., Shenker, S.: Sharing the cost of multicast transmissions. Journal of
Computer and System Sciences 63 (2001) 21–41

7. Herzog, S., Shenker, S., Estrin, D.: Sharing the “cost” of multicast trees: an axiomatic analysis. IEEE/ACM
Transactions on Networking 5 (1997) 847–860

8. Osborne, M.J., Rubinstein, A.: A course in game theory. The MIT Press (2002)
9. Jain, K., Vazirani, V.V.: Applications of approximation algorithms to cooperative games. In: Proceedings of the

3rd ACM Conference on Electronic Commerce. (2001) 364–372
10. Nisan, N., Ronen, A.: Algorithmic mechanism design. In: Proceedings of the 31st Annual ACM Symposium on

Theory of Computing. (1999) 129–140
11. Feigenbaum, J., Papadimitriou, C., Sami, R., Shenker, S.: A BGP-based mechanism for lowest-cost routing. In:

Proceedings of the 21st Annual ACM Symposium on Principles of Distributed Computing. (2002) 173–182
12. Hershberger, J., Suri, S.: Vickrey pricing in network routing: Fast payment computation. In: Proceedings of the

42nd Annual IEEE Symposium on Foundations of Computer Science. (2001) 252–259
13. Wang, W., Li, X.Y.: Truthful low-cost unicast in selfish wireless networks. In: Proceedings of the 4th International

Workshop on Algorithms for Wireless, Mobile, Ad Hoc and Sensor Networks. (2004)
14. Libman, L., Orda, A.: Atomic resource sharing in noncooperative networks. Telecommunication Systems 17

(2001) 385–409
15. Archer, A., Feigenbaum, J., Krishnamurthy, A., Sami, R., Shenker, S.: Approximation and collusion in multicast

cost sharing. Games and Economic Behavior 47 (2004) 36–71
16. Feigenbaum, J., Krishnamurthy, A., Sami, R., Shenker, S.: Hardness results for multicast cost sharing (extended

abstract). Theoretical Computer Science 304 (2003) 215 – 236
17. Gupta, A., Srinivasan, A., Tardos, E.: Cost sharing mechanisms for network design. In: Proceedings of AP-

PROX04. (2004)
18. Devanur, N.R., Mihail, M., Vazirani, V.V.: Strategyproof cost-sharing mechanisms for set cover and facility

location games. In: ACM Electronic Commerce (EC03). (2003)
19. Immorlica, N., Mahdian, M., Mirrokni, V.S.: Lower bounds for cost sharing and group-strategyproof mechanisms.

In: ACM SODA. (2004)
20. Li, X.Y., Sun, Z., Wang, W.: Cost sharing and strategyproof mechanisms for set cover games. In: Proceedings

of the 22nd International Symposium on Theoretical Aspects of Computer Science. (2005) To appear.
21. Chawla, S., Kitchin, D., Rajan, U., Ravi, R., Sinha, A.: Profit maximizing mechanisms for the extended multi-

casting games. Technical Report CMU-CS-02-164, Carnegie Mellon University (2002)
22. Takahashi, H., Matsuyama, A.: An approximate solution for the steiner problem in graphs. Mathematical

Japonica 24 (1980) 573–577
23. Robins, G., Zelikovsky, A.: Improved steiner tree approximation in graphs. In: Proceedings of the 11th Annual

ACM-SIAM Symposium on Discrete Algorithms, San Francisco, California, United States, Society for Industrial
and Applied Mathematics (2000) 770–779

