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ABSTRACT
In wireless ad hoc networks, each wireless device has a trans-
mission range, which is usually modeled as a disk centered at
this node. A wireless node can send message directly to all
nodes lying inside this disk. We present several intersection
graphs to model the wireless networks. Then we present
some simple heuristics and/or PTASs to approximate the
maximum independent set, the minimum vertex cover and
the minimum graph coloring in these graph models.

Categories and subject descriptors: C.2.1 Network
Architecture and Design—Wireless communication; F.2.2
Nonnumerical Algorithms and Problems—Geometrical prob-
lems and computations; G.2.2 Graph Theory—Network prob-
lems.

General Terms: Algorithms.

keywords: Independent set, vertex cover, vertex color-
ing, disk graphs, PTAS, wireless ad hoc networks.

1. INTRODUCTION
Mobile wireless networking has received significant atten-

tion over the last few years due to its wide potential applica-
tions in various situations such as battlefield, emergency re-
lief and so on. There are no wired infrastructures or cellular
networks in wireless ad hoc networks. Multi-hop communi-
cation (carried out by the relaying of intermediate nodes) is
required when the receiver node is not within the sender’s
transmission range. Thus, each wireless node also acts as a
router, forwarding data packets for other nodes. Each wire-
less node often has an omni-directional antenna, i.e., a single
transmission of a node can be received by any node within
its vicinity. The transmission range of a node is often mod-
eled as a disk centered at this node. When all wireless nodes
have the same transmission radius, the wireless ad hoc net-
works are often modeled by the unit disk graph (UDG), in
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which two nodes are connected iff their Euclidean distance is
no more than the transmission radius. However, generally,
different nodes will have different transmission radius due to
various workloads and tasks performed. Thus, we apply the
intersection graph and its variations to model the wireless
networks.
Intersection graphs are graphs each of whose vertices is

represented by a set, and two vertices are connected if their
corresponding sets have a non-empty intersection. Intersec-
tion graphs have been widely studied [4, 11, 12]. The ex-
ample of intersection graphs includes interval graph [9], unit
disk graph [1, 2, 10], and coin graph [14]. In this paper, we
define several new intersection graph models to capture the
communication properties of wireless networks. It is well-
known that many NP-hard problems remain NP-hard even
they are restricted to intersection graph model. Moreover,
the maximum independent set (MIS) problem, the minimum
vertex cover (MVC) problem, and the minimum graph color-
ing (MGC) problem remain NP-hard even we restrict them
to unit disk graph. In this paper we present some simple
heuristics and PTASs to approximate these problems in the
intersection graph models.

1.1 Preliminaries
We consider a wireless ad hoc network consisting of a set

V of wireless nodes distributed in a two-dimensional plane.
In addition, we assume that the nodes are static or can be
viewed as static during a reasonable period of time. Each
node v ∈ V has a transmission radius rv. Let D(v, rv) de-
note the disk centered at v with radius rv. Then the set of
wireless node V defines a set of disks D = {D(v, rv) | v ∈ V }
in the two dimensional plane. Generally, without specifically
expressing, we assume that the geometry location of a node
v is unknown, but the transmission radius rv is known by
node v and each node v knows all its 1-hop neighbors in
the graph models (proposed later). Let ‖uv‖ denote the
Euclidean distance of two wireless nodes u and v.
A disk graph is the intersection graph of the set of disks

defined by wireless nodes V . In other words, two nodes
u and v are connected if ‖uv‖ ≤ ru + rv. In wireless ad
hoc networks, if two nodes u and v are not connected in
the disk graph, then they can transmit messages simultane-
ously without causing any signal interferences. Therefore,
the chromatic number of the disk graph is the upper-bound
of the number of channels needed by all wireless nodes so
that they can communicate without interferences. Here we



assume that a wireless node can tune its receiving device to
different channels other than its transmission channel. The
disk graph model actually captures the primal interference
among all wireless nodes.
However, the disk graph model is an over-estimation for

interferences. For example, when two disks intersect, i.e.,
the transmission region of two corresponding wireless nodes
overlap, these two nodes can still use the same channel
if their common transmission region does not contain any
other wireless node inside. Then we define the interfer-

ence graph as follows: two nodes u and v are connected
if there is a node inside their common transmission region,
i.e., D(u, ru) ∩ D(v, rv) contains some node from V . The
interference graph model takes not only the primal interfer-
ences but also the secondary interferences into account.
Remember that, for wireless ad hoc networks, when node

u is not within the transmission region of v, then v cannot di-
rectly communicate with u; it needs some other intermediate
nodes to relay the message. When a node v sends a message
to some node w within its transmission range, several exist-
ing wireless protocols require a direct acknowledgment from
node w. Then we can model the ack-based communication
by the ack-communication graph. Two nodes u and v are
connected if ‖uv‖ ≤ min(ru, rv).
The last interesting model is the conflict graph, in which

two nodes u and v are connected, i.e., conflicted, if ‖uv‖ ≤
max(ru, rv). Then the chromatic number of the conflict
graph is a lower-bound of the number of channels needed
by all wireless nodes so that they can communicate without
interferences.
For a given set of wireless nodes V with a function R speci-

fying the transmission radius of each node, we let DG(V,R),
IG(V,R), AG(V,R), and CG(V,R) denote the disk graph,
the interference graph, the ack-communication graph, and
the conflict graph defined by V and R. When it is clear from
the context, we will omit R or even V . It is easy to show
that AG ⊆ CG ⊆ IG ⊆ DG.
A subset of vertices in a graph G is an independent set if

for any pair of vertices, there is no edge between them. It is
a maximal independent set if no more vertices can be added
to it and it still be an independent set. It is a maximum
independent set (MIS) if no other independent set has more
vertices. The goal of the MIS problem is to compute, given
a graph, a subset of pair-wisely unconnected vertices with
maximum cardinality.
Given a graph G = (V,E), a subset V ′ ⊆ V of vertices is

a vertex cover if for every edge in G, V ′ contains at least one
of its end-vertices. In other words, every edge is dominated
by some node from V ′. The goal of minimum vertex cover

(MVC) problem is to find a vertex cover with minimum
cardinality. If the vertex of the graph is weighted, then the
minimum weighted vertex cover problem is to find a vertex
cover with minimum total weight.
The graph coloring (GC) problem (often called vertex col-

oring problem) is to assign each vertex a color so that two
adjacent vertices have different colors. The minimum graph

coloring (MGC) problem is to use minimum number of col-
ors so a valid vertex coloring can be obtained.
In this paper, we are interested in designing efficient algo-

rithms to approximate the maximum independent set, the
minimum vertex cover, and the minimum graph coloring for
the graph models defined above.
Given a graph G and a problem P , let OPTP (G) de-

note an optimum solution of problem P when the input
graph is G. An algorithm is a ρ-approximation algorithm
for a problem P if, given any input graph G, it runs in
polynomial time and always computes a solution that is
at least 1

ρ
OPTP (G) for maximization-based P and at most

ρ · OPTP (G) for minimization-based P . An algorithm is a
polynomial-time-approximation-scheme (PTAS) if, for any
additional parameter ε > 0, it always computes a solution
that is at least 1

1+ε
OPTP (G) for maximization based prob-

lem P and at most (1+ε) ·OPTP (G) for minimization based
problem P .

1.2 Previous Results
For unit disk graphs, Marathe et al. [10] gave simple cen-

tralized heuristics to approximate the maximum indepen-
dent set, the minimum vertex cover, the minimum vertex
coloring, the minimum dominating set, and the minimum
connected dominating set within constant 3, 3

2
, 3, 5, and 10

respectively. Hunt et al. [8] then presented the first PTAS to
approximate the maximum independent set, the minimum
vertex cover, and the minimum dominating set in UDG.
For disk graphs, it was claimed in [10] that the MIS prob-

lem can be approximated within 5. Then Erlebach [3] pro-
posed an elegant PTAS for maximum weighted indepen-
dent set (MWIS) and the minimum weighted vertex cover
(MWVC) based on the shifting strategy used by Hochbaum

[7] and Hunt et al. [8]. The algorithm runs in time 1
ε2
n
O( 1

ε4 )
.

Thus, when the wireless network is modeled by a disk graph,
we already have PTASs for maximum independent set and
minimum vertex cover problems.

1.3 Our Results
In this paper, we present PTASs or efficient algorithms to

approximate MIS, MVC and MGC when the wireless net-
works are modeled by disk graphs, interference graphs, ack-
communication graphs, and conflict graphs. Some of our
algorithms need only every node’s transmission radius and
the graph structure, while the PTASs need the exact geom-
etry location of each node as extra. We present PTASs for
MIS and MVC when the network is modeled by disk graphs,
interference graphs, ack-communication graphs, and conflict
graphs. We also show that the graph coloring problem in
these graph models can be approximated with 5 for disk
graphs, ack-communication graphs, and conflict graphs and
40 for interference graphs.
The rest of the paper is organized as follows. In Section 2,

we show that the previous centralized method for computing
MIS in disk graph model still works in other models intro-
duced in this paper. However, this method does not extend
naturally to minimum dominating set. We also give a PTAS
for approximating the maximum weighted independent set.
In Section 3, we present modified algorithms suitable for
approximating the minimum weighted vertex cover. Section
4 is devoted to study the approximation of graph coloring.
We conclude our paper in Section 5 by pointing out some
possible future research directions.
For easy reading, we summarize the notations used in this

paper in Table 1. In these notations, the definition of in-
dependence and non-independence are different in various
graph models. Figure 1 shows the situations in which two
disks Dv and Du are not independent under different graph
models. Similarly, it may have different meaning that a disk
Di could intersect a geometry square S. In the disk graph



model, the conflict graph model, and the interference graph
model, a disk Di is said to intersect a geometry square S
if it intersects the square S geometrically. However, in the
ack-communication graph model, we apply a much stronger
condition: a disk Di is said to intersect a geometry square
S if its center vi is inside S. The reason is that if vi is
outside of S, then it is impossible for vi to connect to any
node vj with the disk Dj contained inside S. Therefore, for
ack-communication graph model, we only consider the disks
whose centers are inside S instead of all the disks which
geometrically intersect S in our algorithms. We say a disk
Di covers a disk Dj if vivj is an edge in the corresponding
graph model.

v u uv

(a) ack-communication (b) conflict graph

w
uv v u

(c) interference graph (d) disk graph

Figure 1: Non-independence in our graph models.

2. MAXIMUM INDEPENDENT SET
The problem of constructing MIS is well-known to be a

NP-hard problem even restricted to UDG [2]. It is easy
to show that UDG is a special case of all graph models
introduced in this paper. Thus, constructing MIS remains
NP-hard when restricted to the graphs defined in this paper.
For disk graphs, Marathe et al. [10] presented an algorithm
that is easy to implement and approximates the MIS within
5. Recently, Erlebach [3] proposed a PTAS for MIS on disk
graph based on the shifting strategy [7, 8]. In this section,
we show that these methods work well in all graph models.

2.1 Simple Approximation Method
Assume that we know the transmission radius rv of each

wireless node v. In addition, we also know the graph repre-
sentation of the underlying graph. The algorithm (see [10])
first finds the node with the smallest transmission radius,
and adds it to the independent set; then removes this node
and all its neighbors from the graph. Repeat the above
steps until the graph is empty. Obviously, this algorithm
does compute a maximal independent set with O(n logn)
running time. We then prove the following theorem that
guarantees the quality of the computed independent set.

Theorem 1. The computed IS has size at least 1
5
of that

of MIS if the input graph is a disk graph, an ack-communication

graph, or a conflict graph.

Proof. We claim that, for any node u ∈ IS, there are
at most 5 nodes from an optimum MIS solution such that
they are connected to u and are removed by the algorithm
due to the removing of u. Notice that, every node from
an optimum solution is connected to some node from IS

computed by our algorithm because IS is maximal. Then it
immediately implies our theorem.
To prove our claim, we will show that if v1 and v2 from

an optimum solution are connected to u and removed by u,
then ∠v1uv2 > π

3
. The selection of node u always implies

that ru ≤ rvi for i = 1, 2. We prove this for different input
graph models.
If the input graph is a disk graph, uvi is an edge implies

that ‖uvi‖ ≤ ru + rvi for i = 1, 2. Notice that, here, nodes
v1 and v2 cannot belong to IS. Because v1 and v2 are in-
dependent, ‖v1v2‖ > rv1 + rv2 . Thus, ‖v1v2‖ > ‖uvi‖ for
i = 1, 2. In other words, ∠v1uv2 > π

3
.

If the graph is an ack-communication graph, uvi is an edge
implies that ‖uvi‖ ≤ min(ru, rvi) = ru for i = 1, 2. Because
v1 and v2 are independent, ‖v1v2‖ > min(rv1 , rv2) ≥ ru.
Thus, ‖v1v2‖ > ‖uvi‖ for i = 1, 2. In other words, ∠v1uv2 >
π
3
.
If the graph is a conflict graph, uvi is an edge implies that

‖uvi‖ ≤ max(ru, rvi) = rvi for i = 1, 2. Because v1 and v2

are independent, ‖v1v2‖ > max(rv1 , rv2). Thus, ‖v1v2‖ >
‖uvi‖ for i = 1, 2. In other words, ∠v1uv2 > π

3
.

Notice that the above proof cannot be directly applied
to interference graphs. Unlike the proof of Theorem 1, we
cannot show that, if v1 and v2 from an optimum solution
are connected to u and removed by u, then ∠v1uv2 > π

3
.

Instead, we have

Theorem 2. The computed IS has size at least 1
40

of that

of MIS if the input graph is an interference graph.

Proof. We prove this using an area argument. Consider
any node u selected by our algorithm. The nodes from an
optimum solution, which are connected to u and removed by
u, can be partitioned into two cases: outside Du or inside
Du.
Let v1, v2, · · · , vk 6∈ Du be the k nodes from the optimum

solution that are connected to u and are removed by the
algorithm due to the removing of u. The selection of u
implies that rvi ≥ ru for all i = 1, 2, · · · , k. In addition,
the disk Di centered at vi, i = 1, 2, · · · , k cannot contain
any node vj , j 6= i inside because all disks centered at i =
1, 2, · · · , k are independent in the interference graph model.
Nodes vi, i = 1, 2, · · · , k is connected to u implies that Di

intersects with disk Du. Let Bu be the disk centered at u
with radius 2ru and Tu = Bu − Du. Then every disk Di,
i = 1, 2, · · · , k, will intersect Tu. It is not difficult to show
that Tu ∩ Di achieves the smallest area when vi is on the
boundary of Bu and rvi = ru. See Figure 2. We can show
that ∠wv2u > 5

12
π. Thus, the smallest area is at least 5

12
π.

Notice that the area of Tu is 3π.
Notice that the region Tu∩Di and Tu∩Dj for 1 ≤ i, j ≤ k

may overlap. However, we will show that every point x is
covered by at most 5 disks from Di, i = 1, 2, · · · , k. See
Figure 3. Assume node x is covered by two disks Di and
Dj , i.e., ‖xvi‖ ≤ rvi and ‖xvj‖ ≤ rvj . Then ‖vivj‖ >
max(rvi , rvj ) because Di and Dj are independent in the in-
terference graph, which implies that ∠vixvj > π

3
. Thus, x

is covered by at most 5 independent disks. Therefore, by an
area argument, we have k · 5

12
π < 5 · 3π. Thus, k ≤ 35.

Let v1, v2, · · · , vh ∈ Du be the h nodes from the optimum
solution that are connected to u and are removed by the
algorithm due to the removing of u. Then obviously, all
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Figure 2: The number of independent neighbors re-

moved by u is bounded.

j

x

v

vi

Figure 3: The number of independent disks which

cover any point x is bounded by 5.

disks centered at vi, i = 1, 2, · · · , h contain node u but not
any other node. Then similarly, we have ∠viuvj > π

6
for

1 ≤ i, j,≤ h. Thus h ≤ 5.
Consequently, there are at most 35 + 5 = 40 independent

nodes are removed when we remove all nodes adjacent to a
node u selected by our algorithm.

Figure 4 gives a configuration example such that there are
12 independent nodes that are removed. These 12 nodes vi,
i = 1, 2, · · · , 12 are equally distributed on the circle centered
at u with radius 2ru. The transmission radius of each of
them is set as ru + ε for a very small positive ε. A node
wi, i = 1, 2, · · · , 12, is placed on segment uvi and ‖uwi‖ =
ru. Thus, node u has interference with all 12 nodes vi,
i = 1, 2, · · · , 12, and these 12 nodes are independent with
each other. It then implies that the lower bound on the

u

v
1

π/6

w

1

2

w

v2

Figure 4: 12 independent neighbors removed by u.

approximation ratio for MIS of the smallest radius heuristic

is at least 12 for interference graph model. We believe that
12 is also the tight upper bound, but to prove that, a more
rigorous analysis is needed.
This simple approximation method for MIS can be easily

converted to a distributed one that is suitable wireless ad
hoc networks. It is omitted here due to space limit.

2.2 PTAS for MWIS
Assume that we are given a set D = {D1, D2, · · · , Dn}

of n disks in the two-dimensional plane, where disk Di has
transmission radius ri, center vi = (xi, yi) and a weight
w(Di) = wi. For a subset of disks U ⊆ D, let w(U) =
∑

Di∈U
w(Di), i.e., the summation of the weights of disks in

U . Two disks Di and Dj are said to be independent if the
two nodes vi and vj are not connected in the correspond-
ing graph model. Figure 1 shows the non-independence in
different graph models.
The shifting strategy [8] was used to develop a PTAS for

the unit disk graph. The plane is subdivided into grid of
size at m by m for some integer m by a collection of vertical
lines x = i·m and horizontal lines y = j ·m. A subdivision is
called (r, s)-shifting if it is formed by a collection of vertical
lines x = i ·m+r and horizontal lines y = j ·m+s. A square
is formed by two consecutive vertical lines and two consec-
utive horizontal lines in a (r, s)-shifting. For each square,
an optimal solution of MIS is obtained in polynomial time
for all disks contained in the square but not intersecting the
boundary of the square. The union of the MIS in all squares
is returned as the final solution for this shifting. It is not
difficult to show that the result is an independent set. The
pigeonhole principal implies that there is a shifting of the
subdivision such that the size of the computed independent
set is at least (1− 1

m
)2 of optimum.

The basic approach of the PTAS for approximating MIS
in various graph models introduced in this paper is similar to
that of [3], i.e., to divide the transmission disks into different
level according to its radius. At same level, all nodes have
similar transmission radii. As in [3], we scale all disks so
that the largest disk has transmission radius 1

2
. Let rmin be

the smallest transmission radius among all wireless nodes.

Let k > 1 be a fixed integer and ` =
⌊

logk+1
1

2rmin

⌋

. We

partition D into ` + 1 levels such that level j, 0 ≤ j ≤ `,
consists of all disks Di with transmission radius satisfying

1

(k + 1)j+1
< 2ri ≤

1

(k + 1)j
.

Let l(Di) denote the level of diskDi, i.e., l(Di) =
⌊

logk+1
1

2ri

⌋

.

As did for UDG, for each level j, we subdivide the plane
into grid by using a set of vertical lines Lj,v : x = v 1

(k+1)j , v ∈

Z and a set of horizontal lines Hj,h : y = h 1
(k+1)j , h ∈ Z.

Hereafter j is called the level of the lines; v (and h) is called
the index of the vertical (and horizontal) line lj,v (and hj,h)
at level j. A (r, s)-shifting of the subdivision is the grid
defined by the set of vertical lines whose indices modulo k
equal r and the set of horizontal lines whose indices modulo
k equal s. It was proved in [3] that a vertical line at level j
of a (r, s)-shifting subdivision is also a vertical line at level
j + 1 of the (r, s)-shifting subdivision.
Any two consecutive vertical lines at level j whose indices

modulo k equal r, and any two consecutive horizontal lines
at level j whose indices modulo k equal s, form a j-square
in the (r, s)-shifting subdivision. See Figure 5 for an illus-



tration of a 0-square for r = s = 0 and k = 3. Here the solid
lines are all lines at level 0 and all dashed lines are all lines
at level 1. The j-squares are represented by thicker lines.
It is easy to show that any j-square S is subdivided into
(k+1)2 (j +1)-squares (by lines Lj+1,v and Hj+1,h at level
j+1). Notice that it only contains k2 grids defined by lines
at level j. These (j+1)-squares S′ are called the children of
S, denoted by S′ ≺ S. And S is called the parent of S′. It
is easy to show that any j-square S has length k

(k+1)j . Thus

it can contain some disks inside with level at least j−1, but
not any disks inside with level less than j − 1.
A disk Di with center (xi, yi) and radius ri is said to hit

a vertical line at x = a if a − ri < xi ≤ a + ri. Similarly,
we say the disk Di hits a horizontal line at y = b if b− ri <
yi ≤ b+ ri. In other words, a disk hits a line if it intersects
this line, except that it only touches the line from the left
or from the bottom. For maximum independent problem, a
disk Di at level l(Di) = j is said to be active (respecting to
shifting (r, s)) if it does not intersect the boundary of any
j-square of the (r, s)-shifting subdivision. The definition of
active disks for minimum vertex cover is different, which
will be discussed later. For a j-square S, let D<j

S be the
set of active disks with level less than j and intersect with
S. Similarly, we define D≤jS , D

=j
S , D

>j
S , and D

≥j
S . For a

j-square S, let OPT<j
S be the set of disks from OPT (DS)

with level less than j and intersect with S. Similarly, we
define OPT≤jS , OPT=j

S , OPT>j
S , and OPT≥jS .

For each level j, let Dj(r, s) be the set of active disks
at level j respecting to shifting (r, s). Define D(r, s) =
∪`j=0Dj(r, s), i.e., the union of active disks at all levels re-
specting to shifting (r, s). Then a j-square S is called rel-

evant if D(r, s) contains at least one disk of level j that is
inside S in the corresponding graph model. More rigorous
definition of relevant will be given later, which depends on
the graph models. Let OPTIS(D

′, G) denote the weight of
the maximum weighted independent set for a set of disks
D′ when the network is modeled by graph model G. We
will omit G and/or IS when it is clear from the context.
The following proof is given by Erlebach [3]. We found that
the correctness of this lemma does not depend on the graph
model. We include it here for the completeness of presenta-
tion.

Lemma 3. There is at least one shifting (r, s), 0 ≤ r, s <
k such that

OPT (D(r, s)) ≥ (1−
1

k
)2 ·OPT (D)

when the graph is modeled by the disk graph, the interference

graph, the ack-communication graph, and the conflict graph.

Proof. Consider a maximum weighted independent set
S? ⊆ D for any graph model introduced here. Let S?

r be the
set of disks Di ∈ S? such that the disk Di hits some vertical
line Lj,v at the level j = l(Di) whose index v modulo k
equals r. Then ∪k−1

r=0S
?
r ⊆ S?. In addition, S?

r , 0 ≤ r ≤ k−1
are pair-wise disjoint. Thus,

k−1
∑

r=0

w(S?
r ) ≤ w(S?)

The pigeonhole principal implies that there is an index r0

such that w(S?
r0) ≤

1
k
·w(S?). Let S?

r0
= S?−S?

r0 . Therefore,

w(S?
r0
) ≥ (1− 1

k
) · w(S?).

Using the same technique, we can show that there is an
index s0 such that the set of disks from S?

r0
, each Di of

which does not hit a horizontal line Hj,h at its level j =
l(Di) and the index h modulo k equals s0, has total weight
at least (1 − 1

k
) · w(S?

r0
). Use S?

r0,s0
to denote such set of

disks. Obviously, S?
r0,s0

is an independent set for D(r0, s0).
Thus, there is a (r0, s0)-shifting such that the weight of the
maximum weighted independent set in D(r0, s0) is at least
(1− 1

k
)2 of the optimum OPT (D).

Before we show the PTASs for maximum weighted inde-
pendent set for graph models introduced in this paper, we
first exam the structural properties of an optimum solution
for all disks in D(r, s) for 0 ≤ r, s ≤ k − 1. Given a graph
model, an optimum solution cannot contain any disk that
hits a line at level 0 of the (r, s)-shifting subdivision. In other
words, each disk of the optimum solution OPT (D(r, s)) is
contained inside some 0-square. Moreover, the optimum so-
lution can be divided into two subsets. One contains some
independent disks at level 0, denoted by I0. The other one
contains independent disks at lower level that are indepen-
dent with any disk from I0. By the definition of D(s, r), all
disks in the second subset cannot intersect any lines, with
level 1, of the (r, s)-shifting subdivision. In other words,
each disk in the second subset is contained inside some 1-
square. Figure 5 gives an example of optimum solution in
a 0-square. Here k = 3 and r = s = 0. The disks with
the thickest boundary are at level 0. The disks that are not
active is represented by dashed boundary. The shaded disks
are in the optimum solution.

0 1 2 3
0

1

2

3

0

1

2

3

4

a 0-square

a 1-square

Figure 5: An optimum solution for a 0-square.

The above partition of disks in the optimum solution in a
0-square can be performed recursively down to the squares
at level ` as follows. Given a j-square S, let I be a set
of independent disks of level smaller than j, each of which
intersects S. Let MWIS(S, I) be a maximum weighted in-
dependent set of disks that are contained in S (must be of
level at least j) and independent from the disks in I. Then
the union of MWIS(S, ∅) for all relevant squares S without
parent must be the optimum solution for D(r, s).
We then discuss in detail how to compute MWIS(S, I)

using dynamic programming. Assume that we already com-
pute the entry MWIS(S, I) for all squares S with level at
least j + 1 and all appropriate independent set I intersect-
ing S. We show how to compute MWIS(S, I) for a j-square
S and some independent set of disks I intersecting S. The
disks in MWIS(S, I) can be divided into two subsets. One,
denoted by X, contains some independent disks inside S
with level j that are independent with disks from I. The
other one contains independent disks at level larger than j



that are independent with any disk from I and X. By the
definition of D(s, r), all disks in the second subset cannot
intersect any lines, with level j+1, of the (r, s)-shifting sub-
division. In other words, each disk in the second subset is
contained inside some (j + 1)-square S′, which is contained
in S. Thus, by properly choosing the set of disks X (disks
inside S with level j and independent with I), we can gen-
erate MWIS(S, I) by

MWIS(S, I) = max
X
((

⋃

S′≺S

MWIS(S′, IS′ ∪XS′)) ∪X).

Here IS′ is the subset of disks from I that intersect S ′. XS′

is defined similarly.
It is not difficult to prove the correctness of the above dy-

namic programming approach. To guarantee that the above
dynamic programming approach runs in polynomial time of
the number of disks n and k, we have to show that the size
of IS ∪XS , i.e., the number of independent disks with level
at most j and intersecting a j-square S, is always bounded
by a constant under the graph models introduced in this
paper.

Lemma 4 (Bounded Independent Disks). Let S be

any j-square and let I be a set of independent disks with

level at most j, each of which may connect to some disk

contained in S. Then there is a constant C depending on

the graph model and k such that the cardinality of I is at

most C.

Proof. We prove this lemma individually for each graph
model introduced in this paper.
For disk graph model, Erlebach et al. [3] gave a constant

C = 4
π
(k + 2)2(k + 1)2 using an area argument.

10 2 3

Figure 6: There are constant number of independent

disks of level at most j, intersecting a j-square S in

the ack-communication graph model.

For ack-communication graph model, the disk whose cen-
ter is outside of S cannot have edge with any disk contained
inside S. So if we add them to MWIS(S, I), the resulted set
is still guaranteed to be an independent set. Thus, unlike
the disk-graph model, to bound |I|, we only have to consider
the disks whose centers are inside S, i.e., the disks that can
possibly “connect” with some disk contained inside S. No-
tice that all disks in I has level at most j, which implies
that all disks in I has diameter at least 1

(k+1)j+1 . Then the

distance of the centers of any two disks Dp and Dq from
I is at least 1

2(k+1)j+1 ; otherwise, these two disks Dp and

Dq will not be independent. The j-square S has side length
k

(k+1)j . Therefore, there are at most CAG independent disks

whose centers are inside S. See Figure 6. Here, by an area
argument,

CAG ≤ (
k

(k + 1)j
)2/(π(

1

4(k + 1)j+1
)2) =

16k2(k + 1)2

π
.

1/2(k+1)
j+1

j−square

Figure 7: There are constant number of independent

disks of level at most j and intersecting a j-square
S in the conflict graph model.

For conflict graph model, again, we only have to consider
all independent disks that could connect to some disks con-
tained in S. Remember that, here, two disks Dp and Dq

are independent if vp is not inside Dq and vq is not inside
Dp. Thus, the distance between the centers of any two disks
from I is at least 1

2(k+1)j+1 . Using the same area argument,

we can show that there are at most 16k2(k+1)2

π
independent

disks with centers inside S in the conflict graph model. Then
we concentrate on estimating how many independent disks,
denoted by IO, such that (1) their centers are not inside S,
(2) with level at most j, (3) each of them intersects S. We
show that there are only a constant number of such disks
by an area argument. Consider the four strips, denoted by
B(S), surrounded S with width 1

2(k+1)j+1 . See Figure 7 for

an illustration. For a disk Di ∈ IO, it is not difficult to show
that B(S)∩Di achieves the smallest area when vi is on the
boundary of B(S) and rvi =

1
2(k+1)j+1 . The smallest area

of B(S) ∩Di is π
1

8(k+1)2(j+1) . Similar to Theorem 2, every

point in B(S) is covered by at most 5 disks from IO. The

area of B(S) is 2k(k+1)+1

(k+1)2(j+1) . Thus, the size of IO is at most

5 ·
2k(k + 1) + 1

(k + 1)2(j+1)
/(π

1

8(k + 1)2(j+1)
) =

80k(k + 1) + 40

π

Thus, the total number of independent disks I with level at
most j intersecting S is at most

CCG ≤
16k2(k + 1)2

π
+
80k(k + 1) + 40

π

For interference graphs, as we already showed that CG ⊆
IG, any independent set in IG is also an independent set
in CG. We just proved that, for conflict graph model, the
number of independent disks with level at most j intersect-
ing S is bounded from above by constant CCG. Thus, CCG

is also an upper-bound of the number of independent disks
with level at most j intersecting S for interference graph
model.



Remark: The number of independent disks that intersect
a j-square in the ack-communication graph model is not
bounded. It is easy to show that the disks Di, i ≥ 1, with
center vi = (2

i−1(1 + ε)i, 0) and radius ri = 2
i−1(1 + ε)i are

independent; all such disks intersect any square containing
the point (0, 0). Here ε is a small positive real number.
The algorithm processes all relevant squares in order of

non-increasing levels. For each j-square S and some ap-
propriate independent set I, MWIS(S, I) is computed by
dynamic programming as follows.

Algorithm 1. Compute MWIS(S, ∗)

Let R be all disks in D(r, s) of level at most j intersecting
S. For ack-communication graph model, we only consider
disks of level at most j and with centers inside S.
For all J ⊆ R with at most C disks {
If J is an independent set then
Let X be all disks in J with level j.
For each child square S′ of S {
Let I ′ be disks in J intersecting S′.
X = X ∪MWIS(S′, I ′). }
Let I be disks in J with level less than j.
If w(X) > w(MWIS(S, I)), then MWIS(S, I) = X. }

For the base situation, we can try all the possible indepen-
dent sets to get the optimum solution in the largest level `.
The output of the algorithm is the union of theMWIS(S, ∅),
taken over all relevant squares S that do not have a parent.
As did in [3], we can easily prove that the running time
of this algorithm is O(k2nC). Here C is the constant in
Lemma 4. In summary, we obtain a PTAS for the MWIS in
all various intersection graphs introduced in this paper.

3. VERTEX COVER
It is well-known that the minimum weighted vertex cover

for a general graph can be approximated within 2. In this
section, we present a PTAS for the minimum weighted ver-
tex cover problem for all graph models introduced here. As
we did for approximating MWIS, we use the same partition
of disks into levels and the same subdivision of the plane into
squares at each level. In addition, all integer values r and s
within interval [0, k − 1] are considered. We first study the
structural properties of the MWVC. Let OPT be the mini-
mum weighted vertex cover for D. For any pair of r and s,
Let OPTV (r) be the set of disks Di ∈ OPT such that the
disk Di hits some vertical line Lj,v at the level j = l(Di)
whose index v modulo k equals r; Let OPTH(s) be the set
of disks Di ∈ OPT such that the disk Di hits some horizon-
tal line Hj,h at the level j = l(Di) whose index h modulo k
equals s. let OPT (r, s) = OPTV (r) ∪OPTH(s).

Lemma 5. There is a (r0, s0)-shifting such that the total

weight of disks in OPT (r0, s0) is no more than 2
k
of the

weight of OPT .

Proof. Obviously, OPTV (r) are pairwise disjoint for 0 ≤

r < k and
∑k−1

r=0 w(OPTV (r)) = w(OPT ). Pigeonhole prin-
cipal implies that there is r0 such that w(OPTV (r0)) ≤
1
k
w(OPT ). Similarly, there exists s0 such that w(OPTH(s0)) ≤

1
k
w(OPT ). Therefore, w(OPT (r0, s0)) ≤ w(OPTV (r0)) +

w(OPTH(s0)) ≤
2
k
w(OPT ).

Notice that the correctness of Lemma 5 does not depend
on the graph model.
For independent set problem, to guarantee that the union

of an independent set in each child of a square S is still
an independent set, we only consider the independent disks
that are totally contained in the children of S. In other
words, a disk with level j is active for independent set if it
is geometrically inside some j-square. Contrary to MWIS,
a vertex cover of disks inside a square could use some disks
are not totally inside in this square. Then we have to define
active disks for a j-square differently. As the vertex cover
has to cover all edges, we associate each edge to at least
one square and then compute the vertex cover for all edges
associated with that j-square.
For the disk graph model, the interference graph model,

and the conflict graph model, we associate an edge uv to a
j-square S if S intersects with Du ∩Dv. Obviously, in any
graph model introduced in this paper, if uv is an edge then
Du intersects Dv. In addition, there is always some square
S that has non-empty intersection with Du∩Dv. Thus, any
edge uv is associated with some square. See the left figure
in Figure 8.
For the ack-communication graph model, we associate the

edge uv to a j-square S if S intersects with Du ∩Dv and S
contains u inside and either (1) ru < rv or (2) ru = rv and
the identity ID(u) of u is less than ID(v). For any edge uv,
assume that u ∈ S1 and ru ≤ rv. Then S1 ∩ (Du ∩Dv) 6= ∅
because u ∈ Du ∩Dv. So edge uv must be associated with
square S1. See the right figure in Figure 8.

a) non-ack-communication (b) ack-communication

Figure 8: Examples for the associated edges and the

active disks in different graph models.

For a j-square S, a disk Du is said to be active for S
if there is an edge uv or vu associated with S for some v.
Thus, for edges associated with a j-square S, their vertex
cover must be a subset of the active disks in S. Notice
that an active disk Du for a j-square S always intersects
S. See Figure 8 as an illustration. Here the dashed disks
are inactive, the solid disks are active for S. For all graph
models introduced here, each disk is at most active for four
j-squares on the same level of this disk.
A j-square S is called relevant if there are some edges in

the corresponding graph model associated with S. Given
a j-square S, the presented algorithm will then construct
a vertex cover for the edges associated with S using disks
active for S knowing that some active disks P are already
chosen to be in the vertex cover. More precisely, given some
subset P of active disks for a j-square S, we will compute
the minimum weighted set of active disks X, denoted by
VC (S, P ), such that P ∪X is a vertex cover for edges asso-
ciated with S.



For each j-square S, we consider all the disks each of
which is incident on some edges associated with S. We then
consider the optimum solution OPT restricted to a square
S, denoted by OPTS , i.e., the disks in OPT that are active
for S. Then, OPTS is a vertex cover for all edges associated
with S. Define active edges of S as the set of edges uv with
Du and Dv are active for S. Then the active edges of S
contains the associated edges of S. Thus, OPTS is also a
vertex cover for all active edges of S.
Consider a relevant 0-square S, the optimum solution

OPTS can be divided into two subsets. One contains the
disks which is a complement of an independent set of active
disks for S at level 0, denoted by P0. The other one contains
disks at lower level that, together with P0, can form a vertex
cover for all edges active for S. Figure 9 gives an example
of optimum solution restricted in a 0-square. Here k = 3
and r = s = 0. The disks with the thickest boundary are
at level 0. The disks that are not active is represented by
dashed boundary. The un-shaded disks are in the optimum
solution. The shaded disks are an independent set.

0 1 2 3
0

1

2

3

0

1

2

3

4

a 0-square

a 1-square

Figure 9: Active disks and a vertex cover for a 0-

square in disk graph model.

The above partition of disks in the optimum solution in a
relevant 0-square can be performed recursively down to the
squares at level ` as follows. Given a j-square S, let R be
the set of all active disks for S with level at most j. Then
any active edge using only disks from R must have vertex
cover from R. Thus for any vertex cover U , R− U must be
an independent set. Hereafter, we will use J to denote a set
of independent and active disks with level at most j for a
j-square S. Let Q = R − J be the complement set of disks
of J . Then, Q can cover all disk in R. Let P = Q<j . Let
VC (S, P ) be the set of minimum weighted disks such that
VC (S, P ) ∪ P is a vertex cover for all active edges for S.
Notice that, for optimum solution OPT restricted to S, we
can set Q = OPT≤jS , P = OPT<j

S , J = R − OPT≤jS . The
union of VC (S, ∅) for all relevant squares S without parent
must be a vertex cover for the graph defined on D.
A dynamic programming to compute VC (S, ∅) is straight-

forward. The algorithm presented here is similar to that
of [3]. It processes all relevant squares in order of non-
increasing levels. For each j-square S and some set P ,
VC (S, P ) is computed as follows.

Algorithm 2. Compute VC (S, P )

Let R be all active disks for S with level ≤ j.
For all J ⊆ R with at most C2 disks {
If J is an independent set then
Let Q = R− J .

Let X be all disks in Q with level j.
For each relevant child square S′ of S {
Let P ′ be disks in Q that is active for S′.
X = X ∪VC (S′, P ′). }
Let P be disks in Q with level less than j.
If w(X) > w(VC (S, P )), then VC (S, P ) = X. }

For the base situation (without relevant child), we actually
try all the complement sets of possible independent active
disks to get the optimum solution with minimum weight.
The output of the algorithm is the union of the VC (S, ∅),
taken over all relevant squares S that do not have a parent.
Similar to Algorithm 1, the running time of this algorithm
is O(k2nC2). Here C2 is a constant that will be proved by
the following Lemma 6.

Lemma 6 (Bounded Independent Active Disks). Let
S be any j-square and let J be a set of independent disks

with level at most j that is active for S. Then there is a

constant C2 depending on the graph model and k such that

the cardinality of J is at most C2.

Proof. For the disk graph models, the interference graph
models, and the conflict graph models, all active disks in-
tersect S. Then, the number of disks in J is bounded by
a constant using an area argument, which is the same as
Lemma 4.
We then consider the ack-communication graph model.

For each disk Du ∈ J with center u outside S, there is a
disk Dv with level at least j and uv is an edge. For ack-
communication model, we know that u must be inside Dv.
Thus, u is always inside the extended square S′. Similar to
Lemma 4, the number of independent active disks is at most

CAG
2 ≤ (

1

(k + 1)j−1
)2/(π(

1

4(k + 1)j+1
)2) =

16(k + 1)4

π
.

This finishes the proof.

We then show that, given S and P , our algorithm does
compute X = VC (S, P ) such that X ∪ P is a vertex cover
for all edges associated with S. For any edge uv associated
to S, without loss of generality, we assume that ru ≤ rv.
If Du has level j, then both Du and Dv is in R. Obviously,

not both of Du and Dv can belong to some independent set
J . In other words, either Du or Dv or both is selected to Q.
If Du is selected to Q. Then Du is also selected to X. So
X ∪ P covers edge uv. If Du is not selected to Q. Then Dv

is selected to Q. Then Dv will be put into X if l(Dv) = j
or it will be put to P if l(Dv) < j. Thus, X ∪P covers edge
uv.
If Du has level larger than j, then edge uv is also asso-

ciated with some child S′ of S. By induction, VC (S′, P ′)
covers edge uv. From VC (S, P ) = X ∪

⋃

S′≺S VC (S
′, P ′),

we know that uv is also covered by VC (S, P ).
Notice that every edge is active for some square. So the

output of our algorithm is a vertex cover of D. We then
study the quality of the computed vertex cover. Let OPT
be the minimum weighted vertex cover ofD in a graph model
introduced in this paper. The following theorem proved that
the shifting strategy does work for MWVC problem. Same
theory was proved in [3] for disk graph model.



Theorem 7. For all graph models introduced here, there
is a (r, s)-shifting, 0 ≤ r, s < k such that for the vertex cover
A generated by the algorithm,

w(A) ≤ (1 +
6

k
)w(OPT ).

Proof. Lemma 5 implies that there is a (r0, s0)-shifting
such that w(OPT (r0, s0)) ≤

2
k
w(OPT ). We then consider

the subdivision of the plane that results from this choice of
r0 and s0. Let R be the set of all relevant squares, and R0

be the set of all relevant squares without parent. For any
j-square S, let OPT=j

S denote the disks with level j in OPT

that are active for S. Notice that OPT =
⋃

S∈ROPT=j
S .

Any disk can be active for at most 4 squares on its level. In
addition, if a disk is active for some square S, it must inter-
sect S. Thus, when we summarize w(OPT=j

S ) over all rele-
vant squares S ∈ R, only disks in OPT (r0, s0) are counted
multiple times, whose weight w(OPT (r0, s0)) ≤

2
k
w(OPT ).

Since each such disk is counted at most four times, and it
must be counted once in OPT , we have

∑

S∈R

w(OPT=j
S ) ≤ w(OPT ) + 3

2

k
w(OPT ) = (1 +

6

k
)w(OPT ).

Then, we only need to prove that the total weight of the
output A =

⋃

S∈R0
VC (S, ∅) is at most

∑

S∈R w(OPT=j
S ).

We already showed that the optimum solution OPT re-
stricted to S, denoted by OPTS , is also considered by the
algorithm because in one iteration we have Q = OPT≤jS and

then P = OPT<j
S . The algorithm computes the minimum

weighted X such that P ∪X is a vertex cover for all edges
associated with S. Obviously,

w(VC (S,OPT<j
S )) ≤ min

X
w(X) +

∑

S′≺S

w(VC (S′, P ′)),

where the minimum is taken over all X (a subset of active
disks for S with level j) such that R − X ∪ OPT<j

S is an

independent set, and P ′ is all disks in X ∪OPT<j
S that are

active for S′. Remember that here R is the set of all active
disks with level at most j. Here, OPT<j

S denotes the set of
all disks in OPT that have level < j and are active for S;
S′ ≺ S means that S′ is a child of S. We say a relevant
j′-square S′′ v S if S′′ = S or there exists a relevant square
S′ ≺ S and S′′ v S′. As did in [3], we will prove

w(VC (S,OPT<j
S )) ≤

∑

S′vS

w(OPT=j′

S′ ).

We prove it by induction on the number of relevant squares
that were processed by the algorithm.

w(VC (S,OPT<j
S ))

≤min
X

w(X) +
∑

S′≺S

w(VC (S′, P ′))

≤w(OPT=j
S ) +

∑

S′≺S

w(VC (S′, OPT≤j
S′ ))

≤w(OPT=j
S ) +

∑

S′≺S

∑

S′′vS′

w(OPT=j′′

S′′ )

=
∑

S′vS

w(OPT=j′

S′ ).

The second inequality is from taking X = OPT=j
S . Thus, P ′

is all disks in OPT that are active for S′ with level less than
j′. Notice that, for any child S′ of S, OPT≤j

S′ = OPT<j′

S′ .
The third inequality is from induction. Therefore,

w(A) =
∑

S∈R0

w(VC (S, ∅))

≤
∑

S∈R

w(OPT=j
S )

≤ (1 +
6

k
)w(OPT ).

This finishes the proof of the theorem.

In summary, we obtain a PTAS for the MWVC in all
various intersection graphs introduced in this paper.

4. GRAPH COLORING
In this section, we study how to color the graphs intro-

duced in this paper. Graf et al. [5] discussed four classes
of disk graphs and studied the relations between their chro-
matic number and the clique number. They proved that,
for all such four classes of graphs, their chromatic number
is within a constant factor of the clique number. They con-
sidered the unit disk graphs, intersection disk graphs (cor-
responding to disk graph models here), containment disk
graphs (corresponding to conflict graph models here), and
double disk graphs. Here double disk graph is defined over
a set of nodes. Each node u defines two disks D(u, ru) and
D(u,Ru). The double disk graph has an edge uv iff D(u, ru)
intersects D(v,Rv) or D(v, rv) intersects D(u,Ru).
Let δ(G) denote the largest d such that G contains a sub-

graph H in which each vertex has degree at least d. It
was proved by Szekeres and Wiff [13] that, every graph G
can be colored in δ(G) + 1 colors. Then Hochbaum [6] pre-
sented a method to find the value of δ(G) and gave an ef-
ficient method to color G using δ(G) + 1 colors with only
O(|V |+ |E|) time. For the completeness of presentation, we
review the algorithm here. To evaluate δ(G), it dismantles
G by successive removals of vertices of minimum degree and
all incident edges. Let vi denote the ith vertex removed from
G and Gi+1 be the graph after vi is removed (set G1 = G).
The degree of vi in graph Gi is called its valid degree. Set
δ(G) as the maximum valid degree of all nodes. Let vj be
the node with the maximum valid degree δ(G). Then, vj
has δ(G) neighbors among the vertices vj+1, vj+2, · · · , vn.
In, addition, all nodes vi with i > j have degree at least
δ(G) in graph Gj . To color G in no more than δ(G) + 1
colors, it scans the sequences of vi’s from vn to v1 and as-
signs to each vi the smallest positive integer not yet assigned
to any of its neighbors. Marathe et al. [10] also used this
method to color the disk graphs and show an approximation
factor of 6.

Theorem 8. The above coloring method achieves a con-
stant approximation ratio for all graph models introduced in

this paper.

Proof. It was already known that, for any graph G,
G can be colored by δ(G) + 1 colors. Let H be a sub-
graph such that all nodes have at least δ(G) degree in H.
Let u be the node of H with the smallest radius. Let
NH(u) be all neighbors of u in H. Then |N(H)| ≥ δ(G).



Consider the induced coloring on N(u) by any coloring of
G. The node in N(u) with the same color form an in-
dependent set. It was proved in Theorem 1 and Theo-
rem 2 that, if u has a radius less than all its neighbors
NH(u), then the maximum independent set in NH(u) has
size at most 5, 5, 5 and 40 for the disk graph model, ack-
communication graph model, conflict-graph model, and the
interference graph model respectively. Let OPT be the
chromatic number of the corresponding graph. There are
only OPT − 1 colors for nodes in N(H). Then |N(H)| ≤
5(OPT − 1) for disk-graph, ack-communication graph and
the conflict-graph, while |N(H)| ≤ 40(OPT − 1) for the in-
terference graph. Thus, the colors used by the above method
is at most 5 · OPT − 4 for disk-graph, ack-communication
graph and the conflict-graph, while at most 40 · OPT − 39
for the interference graph.

5. SUMMARY AND FUTURE WORK
In this paper, we present efficient algorithms and PTASs

to approximate MIS, MVC and MGC problems when the
wireless networks are modeled by disk graphs, interference
graphs, ack-communication graphs, and conflict graphs. We
show that MIS and MGC problems can be approximated
within 5 or 40 for all graph models presented in this paper
by simple methods. We also presents two PTASs for the
weighted versions of MIS and MVC for all graph models.
One of the most challenging problems is to design a PTAS

for dominating set problem and connected dominating set
problem, if it is possible, when the wireless networks are
modeled by some graph models introduced in this paper.
This has been studied for unit disk graph, however, little is
known for the graph models presented in this paper. We
leave these problems as future work.
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Table 1: Notations used in this paper.
D a set of 2-dimensional disks
Di a disk with index i

l(Di) the level of a disk Di

vi the center of a disk Di

ri the transmission radius of a disk Di

k parameter to control the quality of so-
lution

`+ 1 the total levels of disks

D(r, s) disks that are active for shifting (r, s)
MWIS(S, I) the maximum weighted set of indepen-

dent disks inside a square S and are in-
dependent with disks in I

VC (S, P ) the minimum weighted set of disks such
that VC (S, P )∪P covers all disks (with
level at least j) inside a j-square S

US the set of disks in U that are active for
a j-square S

U<j
S the set of disks in U with level less than

j that are active for S. Similarly we
define U≤jS , U=j

S , U
>j
S , and U≥jS .

R the set of active disks with level at most
j, intersecting a j-square S

J a subset of independent active disks
with level at most j, intersecting a j-
square S

I the set of independent active disks in J
with level less than j that intersect a
j-square S

Q the set of active disks not in J , with
level at most j, intersecting a j-square
S. So Q = R− J .

P the set of active disks not in J , with
level less than j, intersecting a j-square

C, C2 upper-bounds on the number of inde-
pendent active disks with level at most
j that intersect a j-square


