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Abstract. We develop for set cover games several general cost-sharing meth-
ods that are approximately budget-balanced, core, and/or group-strategyproof.
We first study the cost sharing for a single set cover game, which does not have
a budget-balanced core. We show that there is no cost allocation method that can
always recover more than1

ln n
of the total cost if we require the cost sharing being

a core. Heren is the number of all players to be served. We give an efficient cost
allocation method that always recovers 1

ln dmax
of the total cost, wheredmax is

the maximum size of all sets. We then study the cost allocation scheme for all
induced subgames. It is known that no cost sharing scheme can always recover
more than1

n
of the total cost for every subset of players. We give an efficient cost

sharing scheme that always recovers at least1
2n

of the total cost for every subset
of players and furthermore, our scheme is cross-monotone. When the elements to
be covered are selfish agents with privately known valuations, we present a strat-
egyproof charging mechanism, under the assumption that all sets are simple sets,
such that each element maximizes its profit when it reports its valuation truth-
fully; further, the total cost of the set cover is no more thanln dmax times that of
an optimal solution. When the sets are selfish agents with privately known costs,
we present a strategyproof payment mechanism in which each set maximizes its
profit when it reports its cost truthfully. We also show how tofairly share the
payments to all sets among the elements.

1 Introduction

Generalized Set Cover ProblemLet U = {e1, e2, · · · , en} be a finite set, and letS =
{S1, S2, · · · , Sm} be a collection of multisets (orsetsfor short) ofU . For eachei ∈ U
and eachSj ∈ S, we denote the multiplicity ofei in Sj by kj,i. EachSj is associated
with a costcj . For anyX ⊆ S, let C(X ) denote the total costs of the sets inX , i.e.,
C(X ) =

∑
Sj∈X cj . For a givenk > 0 and a set ofelement coverage requirements

{r1, r2, · · · , rn}, a k-partial-coverC is defined to be a subset{Sj1 , Sj2 , · · · , Sjl
} of

S such that
∑n

i=1 min{ri,
∑l

t=1 kjt,i} ≥ k. Thegeneralized set cover problemis to
compute an optimumk-partial-coverCopt with the minimum costC(Copt).
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This problem becomes the traditional multicover problem [1, 2] when we setk =∑n
i=1 ri andkj,i = 1 for all Sj andei, as each elementei should befully covered

and each setSj is a simple set. When we setri = 1, it becomes the traditional partial
cover problem [3]. This problem is therefore a natural extension of the classic set cover
problem by allowing partial cover, multiset, and element coverage requirement greater
than 1. Accordingly, the greedy algorithm for this problem is a combination of the
algorithms designed for partial cover and multicover [1–3].

Set Cover GameConsider the following scenario: a company can choose from a set of
service providersS = {S1, S2, · · · , Sm} to provide services to a set of service receivers
U = {e1, e2, · · · , en}.

– With a fixed costcj , each service providerSj can provide services to a fixed subset
of service receivers.

– There may be a limitkj,i on the number of units of service that a service provider
Sj can provide to a service receiverei. For example, each service provider may be
a cargo company that is transporting goods to various cities (the service receivers),
and the amount of goods that can be transported to a particular city daily is limited
by the number of trains/trucks that are going to that city everyday.

– Each service receiverei may have a limitri on the number of units of service that
it desires to receive (and is willing to pay for).

– There may be a limitk on the total number of units of service that the service
providers shall provide to the service receivers.
The problem can be modeled by the generalized set cover problem defined previ-

ously. There may be different types of games according to various conditions:
1. Each service receiverei has to receive at leastri units of service, and the costs

incurred by the service providers will be shared by the service receivers.
2. Each service receiverei declares a bidbi,r for ther-th unit of service it shall receive,

and is willing to pay for it only if the assigned cost is at mostbi,r.
3. Each service providerSj declares a costcj , and is willing to provide the service

only if the payment received is at leastcj .
There are different algorithmic issues for these games. For example, for Game 1,

we shall define a cost allocation method so that every subset of service receivers feel
that the total cost they need to pay is “fair” according to certain criteria. For Games
1 and 2, the cost allocation method, by charging service receivers, needs to recover
(either entirely or a constant fraction of) the total cost of the chosen service providers.
For Games 2 and 3, we need a mechanism (for determining costs charged to service
receivers and payments paid to service providers) that can guarantee that the players
are truthful with their declaration of bids/costs.

Our Results We first study how we share the cost of the selected service providers
among the service receivers such that some fairness criteria are met. We present a cost
sharing method that is 1

ln dmax
-budget-balanced and core, wheredmax is the maximum

set size. The bound 1
ln dmax

is tight. We also present a cost sharing method that is1
2n -

budget-balanced core and cross-monotone, which is almost the optimum [4].
We then design greedy set cover methods that are cognizant of the fact that the ser-

vice providers or the service receivers are selfish and rational. By “selfish,” we mean
that they only care about their own benefits without consideration for the global perfor-
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mances or fairness issues. By “rational,” we mean that when the methods of computing
the output for the set cover game are instituted, they will always choose their actions
to maximize their benefits. When the elements to be covered are selfish agents with
privately known valuations, we present a strategyproof charging mechanism, under the
assumption that all sets are simple sets, such that each element maximizes its profit
when it reports its valuation truthfully; further, the total cost of the set cover is no
more thanln dmax times that of an optimal solution for these selected service receivers
and their coverage requirements. When the sets are selfish agents with privately known
costs, we present a strategyproof payment mechanism in which each set maximizes its
profit when it reports its cost truthfully. We also show how tofairly share the payments
to all sets among the elements.

Paper Organization In Section 2, we give the exact definitions of fair cost sharing and
mechanism design. In Section 3, we study how to fairly share the cost of the service
providers among the covered service receivers when the receivers must receive the ser-
vice. We show in Section 4 how to charge the cost of service providers to the selfish
service receivers when each receiver has a valuation on ther-th cover received. We then
show in Section 5 a strategyproof payment scheme to the selfish service providers when
each has a privately known cost. We conclude our paper in Section 6.

2 Preliminaries and Prior Art

2.1 Preliminaries

Algorithm Mechanism Design (AMD) Assume that there aren agents. Each agent
i, for i ∈ {1, · · · , n}, has someprivate information ti, called its type. All agents’
types define a type vectort = (t1, t2, · · · , tn). A mechanism defines, for each agent
i, a set of strategiesAi. For each strategy vectora = (a1, · · · , an), i.e., agenti plays
a strategyai ∈ Ai, the mechanism computes anoutput o = O(a) and apayment
vectorP(a) = (p1, · · · , pn), wherepi = Pi(a) is the amount of money given to
the participating agenti. Let vi(ti, o) denote agenti’s preferences to an outputo and
ui(ti, o(a), pi(a)) denote itsutility at the outcome(o, p) of the game. We assume that
agents arerational and have quasi-linear utility functions. The utility function isquasi-
linear if ui(ti, o) = vi(ti, o)+pi. An agent is calledrational if it always adopts its best
strategy (calleddominant strategy) that maximizes its utility regardless of what other
agents do. A direct-revelation mechanism isincentive compatible(IC) if reporting val-
uation truthfully is a dominant strategy. Another common requirement in the literature
for mechanism design is the so calledindividual rationality (IR): the agent’s utility of
participating in the output of the mechanism is not less than the utility of the agent if
it did not participate at all. A mechanism is calledtruthful or strategyproofif it satis-
fies both IC and IR properties. To make the mechanism tractable, both methodsO()
andP() should be computable in polynomial time. A mechanismM = (O,P) is β-
efficient if∀t, ∑n

i=1 vi(ti,O(t)) ≥ β ·maxo

∑n
i=1 vi(ti, o). Obviously for the set cover

game, we cannot design ano(lnn)-efficient polynomial-time computable strategyproof
mechanism unlessNP ⊂ DTIME(nlog log n) [2].
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Cost SharingConsider a setU of n players. For a subsetS ⊆ U of players, letC(S)
be the cost of providing service toS. HereC(S) could be the minimum cost, denoted
by OPT(S), or the cost computed by some algorithmA, denoted byA(S). We always
assume that the cost functionC(S) is cohesive, i.e., for any two disjoint subsetsS1 and
S2, C(S1 ∪ S2) ≤ C(S1) + C(S2). A cost sharing scheme is simply a functionξ(i, S)
with ξ(i, S) = 0 for i 6∈ S, for every setS ⊆ U of players. An obvious criterion is that
the sharing method should befair. While the definition of budget-balance is straight-
forward, defining fairness is more subtle: many fairness concepts were proposed in the
literature, such asmax-min[5], min-max[6], coreandbargaining set[7]. Typically, the
following three properties are required by a cost sharing scheme.
1. (α-budget-balance) For some given parameterα ≤ 1, α·C(U) ≤ ∑

i∈U ξ(i, U) ≤
C(U). If α = 1, we call the cost sharing schemebudget-balanced.

2. (fairness under core) For any subsetS ⊆ U ,
∑

i∈S ξ(i, U) ≤ OPT(S).
3. (Cross-monotonicity) For any two subsetsS ⊆ T andi ∈ S, ξ(i, S) ≥ ξ(i, T ).

When only the first two conditions are satisfied, we call the cost sharing scheme to
be in theα-core. When all three conditions are met, we call the cost sharing scheme to
be cross-monotoneα-core. When each playeri has a valuationvi on getting the service,
a mechanism should first decide the output of the game (who will get the service), and
then decide what is the share of each selected player (what is the payment method). It is
well-known that a cross-monotone cost sharing scheme implies agroup-strategyproof
mechanism [8]. Notice that the cross-monotone property is not the necessary condition
for group-strategyproof. Naturally, several additional properties are required for a cost
sharing scheme when every player has a valuation on getting the service.
1. (Incentive Compatibility ) Assume that the valuation by playeri on getting the

service isvi. Let b = (b1, b2, · · · , bn) be the bidding vector ofn players. Let
O(b) = (o1, o2, · · · , on) denote whether a player is selected to get the service or
not andP(b) be the charge to playeri, i.e., the mechanism isM = (O(b),P(b)).
It satisfies IC if every player maximizes its profitvi · oi − pi whenbi = vi.

2. (No Positive Transfer) For every playeri, pi ≥ 0.
3. (Individual Rationality ) For every playeri, vi · oi − pi ≥ 0.
4. (Consumer Sovereignty) Fix the bids of all other players, there exists a valueτi

such that playeri is guaranteed to get the service when its bid is larger thanτi.

2.2 Prior Arts on Cost Sharing and Algorithm Mechanism Design

Although the traditional set cover problem (without multisets and partial-cover require-
ment) can be viewed as a special case of multicast, several results were proposed specif-
ically for set cover in selfish environment. Devanuret al. [9] studied, for the set cover
game and facility location game, how the cost of shared resource is to be distributed
among its users in such a way that revealing the true valuation is a dominant strategy
for each user. Their cost sharing method is not in thecoreof the game. One of the open
questions left in [9] is to design a strategyproof cost sharing method for multicover
game in which the bidders might want to get covered multiple times. For facility lo-
cation game, Pál and Tardos [10] gave a cost sharing method that can recover1

3 of the
total cost, and recently, Immorlicaet al.[4] showed that this is the best achievable upper
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bound for any cross-monotonic cost sharing method. Sharing thecostof the multicast
structure among receivers was studied in [8, 11–16] so some fairness is accomplished.

3 Cost Sharing Among Unselfish Service Receivers

In this section, we study how to share the cost of the service providers among a given
set of service receivers. For this scenario, it is difficult to find realistic examples where
a partial cover is desired. Therefore, in the remainder of this section, we only consider
the multiset multicover problem,i.e., k =

∑n
i=1 ri. However, the results presented here

can easily be generalized to the partial cover case, should such a scenario arise.

3.1 α-Core

Given a subset of elementsX, let OPT(X) denote the cost of an optimum cover
Copt(X) of X. This cost function clearly iscohesive: for every partitionT1, T2, · · · ,
Tt of U , OPT(U) ≤ ∑t

i=1 OPT(Ti). A cost allocationfor U is an-dimensional vec-
tor x = (x1, x2, · · · , xn) that specifies for each elementei ∈ U the sharexi ≥ 0 of the
total cost of servingU thatei shall pay. Ideally, when the set of elements to be covered
is fixed to beU , we want the cost allocationx to be budget-balanced and fair,i.e., be-
ing in core. However, a simple example in [17] shows that there is no budget-balanced
core for the set-cover game. We then relax the notion of budget-balance to the notion of
α-budget-balance for someα ≤ 1. See [17] for the proof of the achievableα-core.

Theorem 1. For the set cover game,nocost allocation method isα-core forα > 1
ln n .

We then give a cost allocation method that can recover1ln dmax
of the total cost

OPT(U) for a multiset multicover game, wheredmax = max1≤j≤m |Sj |. Without loss
of generality, we assume thatdmax ≤

∑n
i=1 ri. The basic approach of our cost alloca-

tion method is as follows. We first run the greedy Algorithm 1 to find a set coverCgrd

with an approximation ratio ofln dmax. Starting withCgrd = ∅, the greedy algorithm
adds toCgrd a setSjt′ at each roundt′. After thes-th round, we define theremaining
required coverager′i of an elementei to beri −

∑s
t′=1 kjt′ ,i. For anySj 6∈ Cgrd, the

effective coveragek′j,i of ei by Sj is defined to bemin{kj,i, r
′
i}, thevaluevj of Sj is

defined to be
∑n

i=1 k′j,i, and theeffective average costof Sj is defined to becj

vj
.

Algorithm 1 Greedy algorithm for multiset multicover problem.

1: Cgrd←∅; r′i←ri for eachei.
2: while U 6= ∅ do
3: pick the setSt′ in S \ Cgrd with the minimum effective average cost.
4: Cgrd←Cgrd ∪ {St′}.
5: for all ei ∈ U do
6: r′i←max{0, r′i − kt′,i}.
7: if r′i = 0 then U←U \ {ei}.
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The greedy algorithm will select a setSj with the least effective average cost. For
anyei andr such thatri − r′i + 1 ≤ r ≤ ri − r′i + k′j,i, we letprice(i, r) = cj

vj
. Let

x′i =
∑ri

r=1 price(i, r) andxi = x′i
ln dmax

. We claim the following theorem (see [17]):

Theorem 2. The above-defined cost allocationx is a 1
ln dmax

-core.

Recall that the core we defined, given a set of playersU , required that
∑

ei∈T ξ(i, U)
is at most theoptimumcost of providing service to elements inT . For a set cover game,
clearly it is NP-hard to find the optimum cost of coveringT . Naturally, one may relax
the α-core as follows: a cost sharing methodξ(i, ·) is called arelaxedα-core if (1)
α · Cgrd(U) ≤ ∑

i∈U ξ(i, U) ≤ Cgrd(U); and (2)
∑

i∈T ξ(i, U) ≤ Cgrd(T ) for every
subsetT ⊆ U . Even we relax the definition of the core to this, we can still prove in [17]
that with the cost function computed by the greedy algorithm, there is no cost sharing
method that is a relaxedα-core forα = Ω( 1

ln n ).

3.2 Cross-monotoneα-Core

Clearly, if a cost sharing scheme is cross-monotoneα-core then every cost allocation
methodξ(·, S) induced on a subsetS of players is alwaysα-core, but the reverse is not
true. From Theorem 1, clearlyno cost sharing scheme for the set cover game is cross-
monotoneα-core forα = 1

ln n . Recently, it was claimed in [4] that for set cover game,
there isnocross-monotoneα-core cost sharing scheme forα = 1

n + ε.
For generalized set cover games, we will present a cross-monotone cost sharing

schemeξ(i, S) (see Algorithm 2) that can recover12n of the total cost. We show an
example in [17] that the bound12n is tight for Algorithm 2. Further, the bound is tight,
for set cover games without multisets (but still allowing multicover requirements): our
cross-monotone cost sharing schemeξ(i, S) can recover1n of the total cost.

Algorithm 2 Cost sharing for multiset multicover game with elementsT .

1: SetCA ← ∅, Y (i, j) = 0 andζ(i, j) = 0 for 1 ≤ i ≤ n and1 ≤ j ≤ m. Here
Y (i, j) denotes how many cover requirements of elementei are provided by setSj ,
andζ(i, j) denotes the fraction cost of setSj shared by the elementei.

2: for all elementei ∈ T do
3: Setr′i ← ri;
4: while r′i > 0 do
5: Find the setSt with the minimum ratiominSj∈S−CA

cj

min(kj,i,r′i)
;

6: Y (i, t) ← min(kj,i, r
′
i); r′i ← r′i − Y (i, t); andCA ← CA ∪ {St}.

7: for all setSj do
8: if

∑
1≤i≤n Y (i, j) > 0 then ρj ← cj∑

1≤i≤n Y (i,j) ;

9: for all elementei ∈ T do
10: Setζ(i, j) = Y (i, j) · ρj .
11: for all elementei ∈ T do
12: Setξ′(i, T ) =

∑
1≤j≤m ζ(i, j) andξ(i, T ) =

∑
1≤j≤m ζ(i,j)

2|T | .
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Theorem 3. The cost sharing schemeξ(·, ·) is a cross-monotone12n -core and is cross-
monotone1

n -core for set cover game when every setSj is a simple set.

4 Cost Sharing Among Selfish Service Receivers

In Section 3 we assumed that all elements (service receivers) are unselfish and all their
coverage requirements are to be satisfied. In this section, we consider the problem of
selecting service providers under the constraint of a collection of bidsB = B1 ∪B2 ∪
· · · ∪ Bn. EachBi contains a series of bidsbi,1, bi,2, · · · , bi,ri

, wherebi,r denotes the
declared price that elementei is willing to pay for ther-th coverage (i.e., the valuation
of ther-th coverage). In this scenario, we may also consider partial cover, as the total
number of units of service available may be limited by a constantk.

We assume thatbi,1 ≥ bi,2 ≥ · · · ≥ bi,ri
. This is often true in realistic situations: the

marginal valuations are usually decreasing. A bidbi,r will be served (and the subsequent
bid bi,r+1 will be considered) only ifbi,r ≥ price(i, r), whereprice(i, r) is the cost to
be paid byei for its r-th coverage. Further, to guarantee that the mechanism is both
strategyproof and budget-balanced, we assume that each set is a simple set.

We use a greedy algorithm (see Algorithm 3) similar to the one for the traditional
set cover game [9]. Informally speaking, we start withy = 0, wherey is the cost to
be shared by each bid served. We raisey until there exists a setSj whose cost can be
sufficiently covered by the element copies inSj , if each element copy needs to payy.
To adapt to the multicover scenario, we make the following changes:

? For any setSj 6∈ Cgrd and anyei, we define thecollection of alive bidsB(j)
i of ei

with respect toSj to be{bi,ri−r′i+1} if k′j,i > 0 (i.e., k′j,i = 1 sinceSj is a simple
set) andbi,ri−r′i+1 ≥ y, or ∅ if otherwise. That is, ify is the cost to be paid for each

bid served,B(j)
i contains the bid ofei covered bySj that can afford the cost (if any).

? Define the valuevj of Sj as
∑n

i=1 |B(j)
i |, and its effective average cost ascj

vj
.

Algorithm 3 Cost sharing for multicover game with selfish receivers.

1: Cgrd(B)←∅; A←∅; y←0; k′←k; B′ = ∅;
2: while A 6= U andk′ > 0 do
3: Raisey until one of the two events happens:
4: if B

(j)
i = ∅ for all Sj then U←U \ {ei};

5: if cj ≤ vj · y for some setSj then
6: Cgrd(B)←Cgrd(B)

⋃{Sj}; k′←k′ − vj ;

7: for all elementei with B
(j)
i 6= ∅ do

8: price(i, ri − r′i + 1)← cj

vj
; B′←B′ ∪ {bi,ri−r′i+1};

9: r′i←r′i − 1;
10: if r′i = 0 then A←A

⋃{ei};
11: update allB(j′)

i for all Sj′ 6∈ Cgrd andei ∈ Sj

⋂
Sj′ ;
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When the algorithm terminates,B′ contains all bids (of all elements) that are served.
We prove the following theorem about this mechanism (see [17] for proof):

Theorem 4. Algorithm 3 defines a strategyproof mechanism. Further, the total cost of
the sets selected is no more thanln dmax times that of an optimal solution.

In [9] multicover game was also considered. However, the algorithm used is different
from ours and also they did not assume that the bids by the same element are non-
increasing, and their mechanism is not strategyproof.

5 Selfish Service Providers

The underline assumption made so far in previous sections is that the service providers
are truthful in revealing their costs of providing the service. In this section, we will
address the scenario when service providers are selfish in revealing their costs.

5.1 Strategyproof Mechanism

We want to find a subset of agentsD such that
⋃

j∈D Sj hasri copies of element
ei for every elementei ∈ U . Let c = (c1, c2, · · · , cm). The social efficiency of the
outputD is −∑

j∈D cj , which is the objective function to be maximized. Clearly a
VCG mechanism [18–20] can be applied if we can find the subset ofS that satisfies the
multicover requirement of elements inU with the minimum cost. Unfortunately this is
NP-hard. LetCgrd(S, c, U, r) be the sets selected fromS (with cost specified by a cost
vectorc = (c1, · · · , cm)) by the greedy algorithm to cover elements inU with cover
requirement specified by a vectorr = (r1, · · · , rn) (see Algorithm 1). We assume that
the type of an agent is(Sj , cj), i.e., every service providerj could lie not only about its
costcj but also about the elements it could cover. This problem now looks very similar
to the combinatorial auction with single minded bidder studied in [21]. We show in [17]
that the mechanismM = (Cgrd,PV CG) is not truthful,i.e., use Algorithm 1 to find a
set cover, and apply VCG mechanism to compute the payment to the selected agents:
the payment to an agentj is 0 if Sj 6∈ Cgrd; otherwise, the payment to a setSj ∈ Cgrd

isPV CG
j = C(Cgrd(S \ {Sj}, c|j∞, U, r))− C(Cgrd(S, c, U, r)) + cj . HereC(X ) is

the total cost of the sets inX ⊆ S.
For the moment, we assume that agentj won’t be able to lie about its elementSj .

We will drop this assumption later. Clearly, the greedy set cover method presented in
Algorithm 1 satisfies a monotone property: if a setSj is selected with a costcj , then
it is still selected with a cost less thancj . Monotonicity guarantees that there exists a
strategyproof mechanism for generalized set cover games using Algorithm 1 to com-
pute its output. We then show how to compute the payment to each service provider
efficiently. We assume that for any setSj , if we removeSj from S, S still satisfies the
coverage requirements of all elements inU . Otherwise, we call the set cover problem
to bemonopoly: the setSj can charge an arbitrarily large cost in the monopoly game.
The following presents our payment scheme for multiset multicover set cover problem.

We show in [17] that the mechanismM = (Cgrd,Pgrd) is strategyproof (when the
agentj does not lie about the setSj of elements it can cover) and the paymentPgrd

j
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Algorithm 4 Strategyproof paymentPgrd
j to service providerSj ∈ Cgrd.

1: Cgrd←∅ ands←1;
2: k′←k, r′i = ri for eachei;
3: while k′ > 0 do
4: pick the setSt 6= Sj in S \ Cgrd with the minimum effective average cost;
5: Let vt andvj be the values of the setsSt andSj at this moment;
6: κ(j, s)← vj

vt
ct ands←s + 1; Cgrd←Cgrd ∪ {St}; k′←k′ − vt;

7: for eachei, r′i←max{0, r′i − kt,i};
8: Pgrd

j = maxs−1
t=1 κ(j, t) is the payment to selfish service providerSj .

is the minimum to the selfish service providerj among any strategyproof mechanism
using Algorithm 1 as its output. We now consider the scenario when agentj can also
lie aboutSj . Assume that agentj cannot lie upward3, i.e., it can only report aS′j ⊆ Sj .
We argue that agentj will not lie about its elementsSj . Notice that the valueκ(j, s)

computed for thes-th round isκ(j, s) = vj

vt
ct =

∑
1≤i≤n min(r′i,kj,i)∑
1≤i≤n min(r′i,kt,i)

ct. Obviouslyvj

cannot increase when agentj reports any setS′j ⊆ Sj . Thus, falsely reporting a smaller
setS′j will not improve the payment of agentj.

Theorem 5. Algorithm 1 and 4 together define aln dmax-efficient strategyproof mech-
anismM = (Cgrd,Pgrd) for multiset multicover set cover game.

5.2 Sharing the Payment Fairly

In the previous subsection, we only define what is the payment to a selfish service
providerSj . A remaining question is how the payment should be charged fairly (under
some subtle definitions) to encourage cooperation among service receivers. One natural
way of defining fair payment sharing is to extend the fair cost sharing method. Consider
a strategyproof mechanismM = (O,P). LetP(T ) be the total payment to the selfish
service providers whenT is the set of service receivers to be covered. A payment shar-
ing scheme is simply a functionπ(i, T ) such thatπ(i, T ) = 0 for any elementei 6∈ T . A
payment sharing scheme is calledα-budget-balancedif α · P(T ) ≤ ∑

ei∈T π(i, T ) ≤
P(T ). A payment sharing scheme is said to be acore if

∑
ei∈S π(i, T ) ≤ P(S) for

any subsetS ⊂ T . A payment sharing scheme is said to be anα-core if it is α-budget-
balanced and it is a core. For payment methodPgrd, we prove in [17] that

Theorem 6. There is noα-core payment sharing scheme forPgrd if α > 1
ln n .

It is easy to show that if we share the payment to a service provider equally among
all service receivers covered by this set, the scheme is not in the core of the game. We
leave it as an open problem whether we can design anα-core payment sharing scheme
for the paymentPgrd with α = O( 1

ln n ).

3 This can be achieved by imposing a large enough penalty if an agent could not provide the
claimed service when it is selected.
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In the next, we study the cross-monotone payment sharing scheme. A payment shar-
ing scheme is said to becross-monotoneif π(i, T ) ≤ π(i, S) for any two subsetsS ⊂ T
and i ∈ S. A payment sharing scheme is said to be across-monotoneα-core if it is
α-budget-balanced and cross-monotone, and it is a core. We propose the following con-
jecture.

Conjecture 1 For the strategyproof mechanismM = (Cgrd,Pgrd) of a set cover game,
there is no payment sharing schemeπ(·, ·) that is cross-monotoneα-core forα = 1

n +ε.

In the remaining of this section we will present a cross-monotone budget-balanced
payment sharing scheme for a strategyproof payment scheme of the set cover game.
Our payment sharing scheme is coupled with the followingleast cost setmechanism
M = (Clcs,P lcs). It uses the output calledleast cost setClcs (described in Algorithm
5): for each service receiverei, we find the service providerSj with the least cost
efficiency cj

min(ri,kj,i)
to cover the elementei. New cost efficient sets are found till the

cover requirement ofei is satisfied. The payment (described in Algorithm 6) to a setSj

is defined asP lcs
j = maxei∈U pi

j , wherepi
j is the largest cost thatSj can declare while

Sj is still selected to coverei. If the setSj is not selected to coverei, thenpi
j = 0.

Algorithm 5 Least cost set greedy for multiset multicover game.

1: Let Clcs ← ∅.
2: for all elementei ∈ T do
3: Let r′i ← ri;
4: while r′i > 0 do
5: Find the setSt with the minimum ratiominSj∈S−Clcs

cj

min(kj,i,r′i)
;

6: r′i ← r′i −min(kj,i, r
′
i); Clcs ← Clcs ∪ {St}.

Algorithm 6 Compute the paymentP lcs
j to a setSj in Clcs.

1: Let Clcs ← ∅, pi
j = 0 for 1 ≤ i ≤ n ands = 1;

2: for all elementei ∈ T do
3: Let r′i ← ri;
4: while r′i > 0 do
5: Find the setSt 6= Sj with the minimum ratiominSx∈S−Clcs−{Sj}

cx

min(kx,i,r′i)
;

6: κ(j, i, s) = min(kj,i,r
′
i)

min(kt,i,r′i)
ct; r′i ← r′i − min(kj,i, r

′
i); Clcs ← Clcs ∪ {St} and

s←s + 1;
7: pi

j←max1≤x<s κ(j, i, s);
8: P lcs

j ←max1≤i≤n pi
j ;

Theorem 7. The mechanismM = (Clcs,P lcs) is 1
2n -efficient and strategyproof.
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We then study how we charge the service receivers so that a budget-balance is
achieved and the charging scheme also is fair under some concepts. Notice that, given
a subset of elementsT , we can view the total paymentsP(T ) to all service providers
coveringT as a “cost” toT . The payment computed by mechanismM = (Clcs,P lcs)
clearly is cohesive. Then naturally, we could use the cost-sharing schemes studied be-
fore to share this special cost among elements. However, it is easy to show by example
that the previous cost-sharing schemes (studied in Section 3) are not in the core and
also not cross-monotone.

Roughly speaking, our payment sharing scheme works as follows. Notice that a final
payment to a setSj is the maximum of paymentspi

j by all elements. Since different
elements may have different value of payment to setSj , the final paymentP lcs

j should
be sharedproportionallyto their values, notequallyamong them as cost-sharing.

Algorithm 7 Sharing MV costP among receivers.

1: Initialize ξ(i, U) = 0 andζj(i, U) = 0. Hereζj(i, U) denotes the payment to set
Sj shared by the elementei when the set of elements isU .

2: for all Sj ∈ S do
3: For all elementsei, we compute the paymentpi

j . Sort the paymentspi
j , 1 ≤ i ≤

n, in an increasing order. Assume thatp
σ(1)
j , p

σ(2)
j , · · · , p

σ(n−1)
j , p

σ(n)
j are the

sorted list of payments in an incremental order.

4: For elementseσ(1), · · · , eσ(n), let ζj(σ(i), U)←∑i
t=1

p
σ(t)
j −p

σ(t−1)
j

n−t+1 . Here we

assume thatpσ(0)
j = 0. Update the payment sharing as follows:ξ(i, U) =

ξ(i, U) + ζj(i, U) for eachei ∈ U .
5: ξ(i, U) is the final payment sharing of service receiverei.

Our payment sharing method described in Algorithm 7 applies to a more general
cost function. A cost functionP is said to bemaximum-view cost(MV cost) if it is
defined asPj = maxei∈U pi

j wherepi
j is theview of the cost of setSj by element

ei. Obviously, the traditional costc is a MV cost function by settingpi
j = cj for each

elementei. The payment functionP lcs is also a MV cost function.
A service receiver is calledfree-rider in a payment sharing scheme if its shared

total payment is no more than1n of its total payment it has to pay if it acts alone. Notice
that, when a service receiver acts alone, the same mechanism is applied to compute the
payment to the service providers.

Theorem 8. The payment sharing scheme described in Algorithm 7 is budget-balanced,
cross-monotone, in the core and does not permit free-rider.

6 Conclusion

We studied cost sharing and strategyproof mechanisms for various set cover games. We
gave an efficient cost allocation method that always recovers1ln dmax

of the total cost,
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wheredmax is the maximum size of all sets. We further gave an efficient cost sharing
scheme that is1

2n -budget-balanced, core and cross-monotone. When the elements to
be covered are selfish agents with privately known valuations, we presented a strate-
gyproof charging mechanism. When the sets are selfish agents with privately known
costs, we presented two strategyproof payment mechanisms in which each set maxi-
mizes its profit when it reports its cost truthfully. We also showed how tofairly share
the payments to all sets among the elements.

There are a number of open questions left for future research. Are the bounds on the
α-budget-balanced cost sharing schemes tight, although we proved that they are asymp-
totically tight? Consider the strategyproof mechanismM = (Cgrd,Pgrd). Is there a
payment sharing method that is1ln n -core? Is there a payment sharing method that is
cross-monotone1n -core? Is this1

n a tight lower bound?
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