
1

The spanning ratios of �-Skeletons
Weizhao Wang? Xiang-Yang Li? Kousha Moaveninejad? Yu Wang? Wen-Zhan Song?

Abstract— In this paper we study the spanning ratio of the �-skeleton
for � 2 [0; 2]. Both our upper-bounds and lower-bounds improve the
previously best known results [10], [12].

I. INTRODUCTION

Proximity graphs [1], [2], [3], [4] have been used extensively in
various fields including pattern recognition, GIS (Geographic Infor-
mation System), computer vision, and neural network [5], [3]. The
spanning ratios of the proximity graphs are of great interest to many
applications. For example, several results showed that Delaunay Tri-
angulation has a constant bounded spanning ratio, which is at least �

2

[6] and at most 2�=(3 cos(�=6)) ' 2:42 [2].
As one of the proximity graphs, �-skeletons have been studied ex-

tensively in [8], [9], [10], [11]. Our main concern in this paper is
about the spanning ratio (or dilation) of the �-skeleton. Given a set
S of n points in a two dimensional plane, two points u and v are �-
neighbors in S ifN(u; v; �) contains no point of S, other than u or v,
in its interior 1. The most common definition ofN(u; v; �) is so-called
Lune-Based Neighborhood, which is defined as follows.

Case 1: � � 1. N(u; v; �) is the intersection of the two circles
of radius �kuvk

2
centered at the points p2 = (1 � �

2
)u + �

2
v and

p1 =
�
2
u+ (1� �

2
)v, respectively.

Case 2: 0 � � � 1. N(u; v; �) is the intersection of the two circles
of radius D(uv)

2�
passing through both u and v.

Here kuvk is the Euclidian distance between u and v. The �-
skeleton of a point set S, denoted byG�(S), is the set of edges joining
�-neighbors in S. When � = 1, the closedN(u; v; �) corresponds ex-
actly to the Gabriel neighborhood of u and v. When � = 2, the open
N(u; v; �) is the relative neighborhood of u and v. As � approaches
1, the neighborhood of u and v approximates the infinite strip formed
by translating the line segment (u; v) normal to itself. Notice when
� > 2 the �-skeleton graph can be disconnected, so we restrict our
attention to the case that 0 � � � 2. As � approaches 0, N(u; v; �)
approximates the line segment connecting u and v. Thus, except in de-
generate situations (three or more points co-linear), all point pairs are
�-neighbors under this scheme for � sufficiently small, which means
that we can find a � to make the �-skeleton of S a complete graph.

For � 2 [0; 1], the spanning ratio of �-skeleton is at most O(nc2 )
[10], where c2 = (1 � log2(1 +

p
1� �2))=2 and at least 
(nc1 )

[12], where c1 = 1 � log5(3 +
q
2 + 2

p
1� �2). For the special

�-skeleton such as Gabriel graph (GG) [1], [13], [10] (� = 1) and the
relative neighborhood graph (RNG) [4], [14], [3], [15] (� = 2), Bose
et al. [10] gave a bound which is �(

p
n) and �(n) respectively. Since

the spanning ratio increases over � for � 2 [1; 2], the spanning ratio

of the �-skeleton for � 2 [1; 2] is at least 
(n
1
2 ) and at most O(n),

which is also the best known result till now.
The contribution of this paper is follows. We first prove that, for

� 2 [1; 2], the �-skeleton has spanning ratio at most (n� 1) , where
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1There are two possible interpretations of the interior: one includes the

boundary which is called Closed Region and the other excludes the boundary
which is called Open Region. We always consider closed region here.

 = 1 � 1
2
log2(�2 + 1), �2 = 2��

�
. We then show that the Gabriel

graph has exact spanning ratio
p
n� 1 and the relative neighborhood

graph has exact spanning ratio n�1. The spanning ratio of �-skeleton
for � 2 [0; 1] is at most (n�1) , where  = 1

2
� 1

2
log2(�1+1), �1 =p

1� �2. Finally, we construct a point set whose �-skeleton, for � 2
[0; 1], has spanning ratio nc3 , where c3 = 1

2
� 1

2
log2(1 +

q
�1+1
2

),
which improves the previously best known lower bound [12].

II. UPPER BOUND OF SPANNING RATIOS

Consider a geometry graph G = (V;E) over a set V of n points.
For each pair of points (u; v), the length of the shortest path connect-
ing u and v measured by Euclidean distance is denoted by DG(u; v),
while the direct Euclidean distance is kuvk. The spanning ratio (also
dilation ratio or length stretch factor) of the graph G is defined by
 (G) = maxu;v2G

DG(u;v)
kuvk . If the graph G is not connected, then

 (G) is infinity, so it is reasonable to focus on connected graphs only.

A. Fade Factor of �-skeleton

Our analysis of the upper bound of the spanning ratio of a �-skeleton
relies on our definition of fade factor of a �-skeleton, which is de-
fined as follows. Given a 2-dimensional point set S and its �-skeleton
G�(S), choose any pair of points u; v 2 S. If uv 62 G�(S), there
must exist some point w other than u; v in N(u; v; �). We say that
the point w breaks edge (u; v) and define x1 = kuwk

kuvk , x2 = kvwk
kuvk as

the two fade factors of uv by w. We then study the property of fade
factors of an edge uv not in the �-skeleton, illustrated by Figure 1.

Case 1: � 2 [1; 2]. In this case, w must lie in the shaded
area N(u; v; �). For symmetry, we assume that kwuk � kwvk,
2 In triangles 4wup1 and 4wvp1, we have kuwk2 = kup1k2 +
kwp1k2 � 2kup1kkwp1k cos� and kvwk2 = kvp1k2 + kwp1k2 �
2kvp1kkwp1k cos(� � �). Consequently,

kuwk2 � kup1k2 � kwp1k2
kup1k

+
kuwk2 � kvp1k2 � kwp1k2

kvp1k
= 0

) x21
2� �

+
x22
�

=
1

2
+
kwp1k2
kuvk2

2

�(2 � �)
� 1

2� �
:

Suppose that 0 � �2 = 2��
�

� 1. The fade factors, when � 2 [1; 2]
and x1 � x2, satisfy

x21 + �2x
2
2 � 1 (1)

Case 2. � 2 [0; 1]. In this case, we have 1 = x21+x
2
2�2x1x2 cos �.

Let cos� =
p
1� �2. From � + � � �, we have

1 � x21 + x22 � 2x1x2 cos(� � �) = x21 + x22 + 2x1x2 cos� (2)

B. Construction of the fade factor tree

Our analysis of the spanning ratio is based on a concept called fade
factor tree, which intuitively records the edge-breaking sequence for
an edge uv not in �-skeleton. The exact definition is given along the
following construction algorithm.

Algorithm 1: Constructing the Fade Factor Tree
1) Construct the root node corresponding to uv.

2This assumption implies that kwp2k � kwp1k � kuvk and x1 � x2.
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Fig. 1. The relations between fade factors of�-skeleton.

2) If there is no point insideN(u; v; �) then stop. Otherwise, as-
sume a pointw 2 N(u; v; �). We put edgeuw asuv’s left child
and edgewv asuv’s right child and label these two branches
with their fade factorx1 = kuwk=kuvk andx2 = kwvk=kuvk
respectively. The leaf nodesuw,wv form pathuwv.

3) If we already have a binary tree withk leaf nodesp0p1,
p1p2, � � � , pk�1pk, where p0 = u, v = pk. Let S1 =
fp0; p1; � � � ; pkg. For every pointp 2 S, we test ifp breaks
some edgepipi+1. We considerfive cases here.

a) If p doesn’t break anypipi+1 then continue to try another
point fromS.

b) If p 2 S � S1 and p breaks a single edgepipi+1 then
similar to step(2), attachpip as the left child andppi+1 as
the right child of edgepipi+1.

c) If p 2 S � S1 and it breaks multiple edges, choose
such broken edgeprpr+1 with the minimum indexr and
psps+1 with the maximum indexs. Attach nodeprp to
nodeprpr+1 and nodepps+1 to nodepsps+1 in the tree.
Mark all leaf nodes betweenprp andpps+1. If all descen-
dant leaf nodes of an internal node have marks, then also
mark it. Delete all nodes with marks.

d) If p 2 S1, sayp = pj , and it breaks single edgepipi+1.
If j > i + 1 then attachpipj to nodepipi+1, and mark
all leaf nodespmpm+1 for i + 1 � m � j � 1. If j < i
then attachpjpi+1 to nodepipi+1 and mark all leaf nodes
pmpm+1 for j + 1 � m � i. If all descendant leaf nodes
of an internal node have marks, then also mark it. Delete
all nodes with mark.

e) If p 2 S1, sayp = pj , and it breaks multiple edges, choose
the edge with the minimum indexprpr+1 and the maxi-
mum indexpsps+1. If j < r then attachpjps+1 to pjpj+1

and mark all leaf nodes betweenpjps+1 andpsps+1. If
j > s + 1 then attachpspj to psps+1 and mark all leaf
nodes betweenpsps+1 andpj�1pj . If r+ 1 < j < s then
attachprpj to prpr+1 and attachpjps+1 to psps+1, then
mark all nodes betweenprpr+1 andpsps+1. If an inter-
nal node’s all descendant leaf nodes have marks, then also
mark it. Delete all nodes with mark.

4) When there is no updating to the tree, conduct the follow-
ing reduction process: for every internal node, if it has
only one child then remove its only child. Visiting all
leaf nodes from left to right, we get a sequence of edges
uE0,B1E1; � � � ; Bl�1El�1,Blv.

Observations of fade factor tree:

1) For every0 � i � l � 1, we haveEi = Bi+1, so the sequence
can be written asu0u1; u1u2; � � � ; ul�1ul. (u0 = u, ul = v).

2) l � n� 1, wheren is the number of total points inS.
3) u0u1; u1u2; � � � ; ul�1ul corresponds to asimple path connect-

ing u andv in �-skeleton.

We can show that the above algorithm terminates. For detail of the
proof, see the full version of the paper.

C. Upper bound when � 2 [1; 2]

Previously, Boseet al. [10] gave an upper boundO(n) for �-
skeleton when� 2 [1; 2] from the fact that, for a point setS, the
�1-skeleton belongs to the�2-skeleton when�1 � �2. They use the
upper bound of the RNG (� = 2) as upper bound for� 2 [1; 2]. We
improve it to

U(�; n) = (n� 1) ;

where = maxf1 � 1
2
log2(�2 + 1); g(�2)g = 1 � 1

2
log2(�2 +

1), �2 = 2��
�

, andg(�2) is the solution to the equation(�
1

g(�2)

2 +

1)2g(�2) = 1 + �2 (See appendix about the details ofg(�2) and).
Before presenting our proof, we list some simple results. Ifx1 � x2

and subject to the constraint of(1), then fora; b � 0,

max
x1;x2

fax1 + bx2g =
p
a2 + b2=�2 ; if b � �2a (3)

max
x1;x2

fax1 + bx2g = (b+ a)=
p
�2 + 1 ; if b � �2a (4)

Now we prove our upper bound by induction onn. Whenn = 3,
there are only three pointsu, v andw, and suppose thatuv is the
longest edge. Ifw doesn’t breakuv, then (G) = 1 � U(�). Other-
wise, the relation of the fade factors from(1) implies

 (G) = x1 + x2 � 21�
1
2
log2(1+�2) = U(�; 3):

Suppose for allk < n we have (G) � U(�; k). Then fork = n
and any pair of pointsu andv, we construct their fade factor treeT ,
and suppose the fade factors of the root arex1 andx2. Suppose there
arenl leaf nodes in root’s left subtree andnr leaf nodes in root’s right
subtree. Clearly,nl + nr � n � 1 and we have (G) � U(�; nl +
1)x1 + U(�; nr + 1)x2. By induction, we haveU(�; nl + 1) � nl
andU(�; nr + 1) � nr . We consider two different cases here.

1) If U(�; nr + 1) � �2U(�; nl + 1), we have

 (G) � (U(�; nl + 1) + U(�; nr + 1))=
p

1 + �2

� (nl + nr)
 � 21�1+ 1

2
log2(1+�2)=

p
1 + �2

� (n� 1) = U(�; n)

2) If U(�; nr + 1) � �2U(�; nl + 1), we have (G) �q
U(�; nl + 1)2 + 1

�2
U(�; nr + 1)2. Let f(x) = x2 +

1
�2

(n � x � 1)2 . Differentiating f(x), we get f 0(x) =

2[x2�1 � 1
�2

(n � x � 1)2�1]. Since1=2 �  � 1, f(x)

reaches its minimum at a pointx0 = (n� 1)=(1 + �
1

2�1

2 ), in-
creases whenx � x0, and decreases when0 � x � x0. Notice
thatU(�; nr+1) � �2U(�; nl+1), which implies that the fea-
sible region forx is xl = n�1

�
1=
2 +1

� x � n� 2 = xr. It is easy

to show thatxl � x0 when � 1 and�2 � 1. Consequently,
U(�; nl+1)x1+U(�; nr+1)x2 reaches its maximum at point
xl or xr = n� 2. We can show that it reaches the maximum at
pointxl. Thus,

 (G) �
p
1 + �2 � (n� 1)=(�

1


2 + 1) :

Notice(�
1


2 + 1) strictly increases over[0; 1] for . Thus

 (G) �
p
1 + �2 � (n� 1)=(�

1


2 + 1)

�
p
1 + �2 � (n� 1)=(�

1
g(�2)

2 + 1)g(�2) = n
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The upper bound we proved so far could be a loose bound, and usu-
ally the�-skeleton cannot reach this upper bound. At some extreme
cases, we can show that the upper bounds are indeed tight.

When� = 1, the �-skeleton is the Gabriel Graph. Then�2 =
2��
�

= 1. It is easy to verifyg(1) = 1
2
. Thus, = maxf1 �

1
2
log2(2);

1
2
g = 1

2
. In the following section, we construct an example

such that GG has spanning ratio(n� 1)
1
2 . Consequently, we have

Theorem 1: The spanning ratio of Gabriel Graph is exactly
U(1; n) = (n� 1)

1
2 .

When� = 2, the�-skeleton becomes the RNG. Notice�2 = 0, and
it is impossible thatU(�; nr) � �2U(�; nl). Then we have = 1.
In the following section we review an example in [10] such that RNG
has spanning ration � 1. Consequently, we have

Theorem 2: The spanning ratio of Relative Neighborhood Graph is
exactlyU(2; n) = n� 1.

D. Upper bound when � 2 [0; 1]

The fade factors satisfyx21+x
2
2+2x1x2

p
1� �2 � 1 when� < 1.

Let �1 =
p
1 � �2 here. For symmetry, assume thatx1 � x2. Thus,

0 � x2 �
q

1

2+2
p

1��2
. If x1 � x2 and subject to the constraint (2),

then fora > 0, b > 0,

max
x1;x2

fax1 + bx2g =
p
a2 + b2 � 2ab�1p

1� �21
if b � a�1 (5)

max
x1;x2

fax1 + bx2g = a�1 if b < a�1 (6)

When� 2 [0; 1], we prove that the spanning ratio is at most

U(�; n) = (n� 1)
1�log2(1+�1)

2 ;

We prove this bound similar to the case� 2 [1; 2]. Whenk = 3, it
is easy to verify the correctness of the bound. Suppose whenk < n
this bound holds. Fork = n we also construct the fade factor treeT ,
and assume the fade factors of the root arex1 andx2. Assume there
arenl leaf nodes in root’s left subtree andnr leaf nodes in its right
subtree, wherenl+nr � n� 1. We have (G) � U(�; nl+1)x1+
U(�; nr + 1)x2. Let a = U(�; nl + 1) andb = U(�; nr + 1). We
also prove it by cases:

Case 1: b < a�1. In this case,we have (G) � �1U(�; nl + 1) �
U(�; n).

Case 2: b � a�1. In this case we have (G) �
p
a2+b2�2ab�1p

1��21
,

and it reaches the maximum whena = b. Thus  (G) �
U(�; n+1

2
)
q

2
1+�1

= U(�; n):

III. L OWER BOUND OF�-SKELETON

A. Gabriel Graph (� = 1)

Gabriel Graph is a special case of�-skeleton with� = 1. We
construct a set ofn points whose Gabriel graph has spanning ratio
exactly

p
n� 1 as follows.

1) LetA1A0 be the diameter of a unit circleC1.
2) We then generate a pointAk from Ak�1 andAk�2 for k � 2.

Draw a circleCk�1 usingAk�1 andAk�2 as diameter, and let
sin\AkAk�1Ak�2 = sin\�k�1 = 1p

n�k+1
.

Figure 2 (a) illustrates such construction. We notice that the graph
is divided into two parts, all points with the odd index and all points
with the even index. It is not difficult to prove the following properties
of the constructed point set.

1) AkAk+2 =
1p
n�1

, for 0 � k � n� 2.

C
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n

A3
A2

A0A

A5

An−1

A4

αα
α

α
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α
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β
β
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β
β
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A

(a) Gabriel Graph (b) Relative Neighborhood Graph

Fig. 2. Point sets that achieve the upper bounds of the spanning ratios.

2) Let�k = \Ak�1AkAk+1. Thensin�k = 1p
n�k and\�k �

\�k+1. For every1 � k � n � 2, \Ak�2AkAk+2 = �
2
+

\�k +
�
2
� \�k+1. Thus,\Ak�1AkAk+1 <

�
2

.
3) For everyAiAj , if ji � jj 6= 2 thenAiAj is not in the Gabriel

Graph. Thus, the Gabriel graph are formed by these edges
AiAi+2, 0 � i � n� 3, andAn�2An�1.

Obviously, the spanning ratio of this graph isDG(A0A1)
kA0A1k =

n�1p
n�1

=
p
n� 1.

B. Relative Neighborhood Graph (� = 2)

For Relative Neighborhood Graph, the lower bound of the spanning
ratio isn��. We review the example used in [10], illustrated by Figure
2 (b).

Here,� = 60Æ � Æ and� = 60Æ + 2Æ. Notice that all triangles are
similar. Assume that = sin�

sin�
. Then in triangleAk�1AkAk+1, 1 �

k � n�1, we haveAk�1Ak = k�1,Ak�1Ak+1 = AkAk+1 = k.
Thus,DG(A0A1) = n�1 +

Pn�1
i=1 

i. When is sufficiently close
to 1, we haveDG(A0A1) is sufficiently close ton � 1. Thus, the
spanning ratio of the relative neighborhood graph is sufficiently close
to n� 1.

C. 1 > � > 0 case

When� 2 [0; 1], Eppstein [12] presents a fractal construction that
provides a non-constant lower bound on the spanning ratio, and his
result is summarized below:

Theorem 3: For anyn = 5k+1, there exists a set ofn points in the
plane whose�-skeleton with� 2 (0; 1] has the spanning ratio
(nc),
wherec = log5

5
3+

p
2+2�

and� =
p
1� �2.

In this paper, we give a different construction that achieves a better
lower bound. Suppose that� = arccos(

p
1� �2), and� = � � �.

Then for anyn = 2k+1, letP (�; k) be a path of2k segment (defined
along our construction). Figure 3 illustrates our construction of�-
skeleton forn points, which is described as follows.

1) If k = 1, construct a triangle4ABC such that\ABC =
\ACB = ���

4
, so\BAC = �+�

2
. ThenP (�; 1) is segments

BAC. Call segmentBC thesupporting segment of P (�; 1).
2) If k � 1, first constructP (�; 1) = BAC. Then construct two

P (�; k�1), scale the supporting segments to lengthkABk, and
align their supporting segments toAB andBC respectively.
Notice there are two possible ways to placeP (�; k � 1), we
should choose the way such thatP (�; k � 1) lies inside the tri-
angle�ABC.

Lemma 1: If \BAC � �+�
2

, thenP (�; k) is a�-skeleton of its

points, where� = � � arccos(
p
1� �2).
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Fig. 3. Constructing�-skeleton with large spanning ratio for� 2 [0; 1].

TABLE I
LOWER AND UPPER BOUNDS FOR SPANNING RATIONS OF�-SKELETONS.

HERE THE CONSTANTS USED AREc1 = 1� log5(3 +
p
2 + 2�1),

c2 = 1
2
� 1

2
log2(1 + �1), c3 = 1

2
� 1

2
log2(1 +

q
�1+1
2

), AND

c4 = 1� 1
2
log2(�2 + 1). AND �1 =

p
1� �2 AND �2 = (2 � �)=�.

� 2 (0; 1) � = 1 � 2 (1; 2) � = 2

OldLower 
(nc1) 
(
p
n) 
(

p
n) 
(n)

OldUpper O(nc2) O(
p
n) O(n) O(n)

OurLower 
(nc3)
p
n� 1 
(

p
n) n� 1

OurUpper O(nc2)
p
n� 1 O(nc4) n� 1

PROOF. In order to show thatP (�; k) is the�-skeleton, we prove
that for any pair of no-adjacent pointsu andv, they do not belong to
the�-skeleton. Obviously there must exist somei < k such thatu
andv belong to the different copy of adjacentP (�; i), assume thatA
is the common point of these two copies, then\uAv � \DAE =
�+�
2

� 2 � ���
4

= �, which finishes our proof. Notice that the�-
skeleton is still a connected graph. Thus, all line segments constructed
belong to�-skeleton.

Obviously, if the length of the supporting segment is normalized to
1, the spanning ratio is the total length of segments inP (�; k).

Theorem 4: For any � 2 [0; 1], there exists a�-skeleton of
n = 2k + 1 points such that its spanning ratio is
((n �
1)

1
2
� 1

2
log2(1+

q
�1+1

2
)), where�1 =

p
1� �2.

This theorem can be enhanced such that we can construct examples
for any integern, but with a small constant degradation of the spanning
ratio. For Gabriel Graph, from previous result by Eppstein [12], we
get a spanning ratio of
(nc) for 0:077 < c < 0:078, and applying
Theorem 4, we get a spanning ratio of
(nc2) for 0:114 < c2 <
0:115, which is bigger than previous lower bound, but is still much
smaller than the tight bound�(n

1
2 ). In general, for� 2 [0; 1], our

lower bound is always better than the previous one, which is discussed
in the full version of the paper.

IV. CONCLUSION

We studied the spanning ratio of�-skeletons with� ranging from0
to 2. This class of proximity graphs includes the Gabriel graph and the
relative neighborhood graph. Table I summarizes our results compared
with the previously best known results. For� > 2, �-skeletons are not
guaranteed to be connected. Thus, the spanning ratios leap to infinity.

Several open problems remain for investigation. It would be inter-
esting to close the gap between our lower bound and the upper bound
for � 2 (0; 1) and� 2 (1; 2). We conjecture that our lower bound for
� 2 (0; 1) is already tight.
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V. A PPENDIX

In subsection II-C, we show that the�-skeleton,� 2 [1; 2], has
spanning ration at most(n� 1) , where = maxf1� 1

2
log2(�2 +

1); g(�2)g, �2 = (2 � �)=� 2 (0; 1]. We then show that1 �
1
2
log2(�2 + 1) � g(�2).

Let f(x) = (�
1=x
2 + 1)2x. For any�2 2 [0; 1], it is easy to verify

that both�1=x2 + 1 anda2x(a � 1) are increasing on[0; 1], wherea is
a fixed constant. Thus,f(x) increases over[0; 1]. With f(0) = 1 �
1 + �2 andf(1) = (1 + �2)

2 � 1 + �2, the equation(�
1

g(�2)

2 +
1)2g(�2) = 1 + �2 has exactly one solutiong(�2) over [0; 1]. In fact,

any solution to the inequality(�
1

g(�2)

2 +1)2g(�2) � 1+�2 is an upper
bound.

Now we compare the the value of1 � 1
2
log2(�2 + 1) and

g(�2), which is equivalent to compare the value off(�2) =

(�

1

1� 1
2
log2(1+�2)

2 + 1)2�log2(1+�2) and1 + �2 for �2 2 [0; 1]. Fig-
ure 4(a) shows thatf(�2) � 1 + �2, which means for�2 2 [0; 1]
 = maxf1 � 1

2
log2(�2 + 1); g(�2)g = 1 � 1

2
log2(�2 + 1). See

full version of the paper for arithmetic proof.
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Fig. 4. (a) The upper bound for� 2 [1; 2] can be simplified. (b) Our lower
bound for� 2 [0; 1] is strictly better than previous result.


