
Verifiable Private Multi-party Computation:
Ranging and Ranking

Lan Zhang∗, Xiang-Yang Li,†, Yunhao Liu,‡§, Taeho Jung,†
∗ Department of Computer Science and Technology, TNList, Tsinghua University

† Department of Computer Science, Illinois Institute of Technology
‡ School of Software, Tsinghua University and MOE Key Lab for Information System Security

§ Department of Computer Science and Engineering, HKUST

Abstract—The existing work on distributed secure multi-party
computation, e.g., set operations, dot product, ranking, focus
on the privacy protection aspects, while the verifiability of user
inputs and outcomes are neglected. Most of the existing works
assume that the involved parties will follow the protocol honestly.
In practice, a malicious adversary can easily forge his/her input
values to achieve incorrect outcomes or simply lie about the
computation results to cheat other parities. In this work, we
focus on the problem of verifiable privacy preserving multi-
party computation. We thoroughly analyze the attacks on existing
privacy preserving multi-party computation approaches and
design a series of protocols for dot product, ranging and ranking,
which are proved to be privacy preserving and verifiable. We
implement our protocols on laptops and mobile phones. The
results show that our verifiable private computation protocols
are efficient both in computation and communication.

Index Terms—Verifiability, Privacy, Multi-party Computation,
Ranking, Ranging, Dot Product.

I. INTRODUCTION
Privacy preserving multi-parity computation is widely used

in different areas. For example, similarity calculation in social
networks [8], private voting and auction [9], private data
aggregation in sensor networks [6], [7], [12], [17], ranking [10]
and oursourced computation [14], [19]. A trusted central server
is a simple way to address this problem. The trusted central
server will collect the private inputs of all parties, compute the
result and disseminate the result to required parties through
the secure communication channel. However the server may
not always be accessible for all users due to the absence of
Internet connection or server failure. Frequent communications
with server will cause high expense and security vulnerability.
Recently the cracking of databases of some famous online
sites causes severe leakage of users’ privacy. As a result,
many users may not want to reveal their private data even
to a server, which also hinders the wide adoption of cloud
computing. So there is a strong motivation to design distributed
privacy preserving multi-party computation protocols. Note
that theoretically, this has been addressed by Secure Multi-
party Computation (SMC), which was first introduced in [15].
SMC enables parties to jointly compute a function over their
individually held private inputs without any party learning
information beyond what can be deduced from the result.

Although theoretically beautiful, generic SMC protocols are
extremely expensive. Many successive work, like [3] and [8],

provide practical solutions for private multi-parity computation
(e.g. set intersection, dot product) based on homomorphic en-
cryption and secret sharing. These existing approaches concen-
trate on the privacy protection, while the verifiability of user
inputs and outcomes are neglected. The correctness of most
protocols is based on the assumption that the involved parties
will follow the protocol honestly. In practice a malicious
adversary may simply forge his/her input value to produce
an incorrect result or lie about the outcome of computation
[2]. In this way, the malicious adversary can cheat other
parties to accept the incorrect result and even compromise
other parties’ privacy. For example, in a social networking
system, an unverifiable private similarity calculation protocol
may allow a malicious user to get others’s trust by inputting
fake attributes or lying about similarity calculation results.

In this work, we focus on the important but neglected
problem of verifiable private multi-party computation in an
insecure environment without a long-term trustable server. The
computation is conducted in a distributed manner, and a trusted
server is only occasionally contacted to authenticate the inputs
of users. Specifically, we discover two potential attacks on
existing protocols for private multi-party computation. We then
design verifiable private multi-party threshold-based ranging
protocols and ranking protocols suitable for different appli-
cations. We prove that these protocols are privacy preserving
and verifiable for both input and output values. We thoroughly
analyze the performances of our protocols and evaluate them
with implementations on laptops and mobile phones. Most of
our protocols cost less than 0.5 second on both laptop and
mobile phone. Our most expensive protocol (verifiable two-
way ranging) takes only 2.56 seconds on laptop and 3.22
seconds on mobile phone, and the largest message size is 3.5
KB. The results show that our verifiable protocols are efficient
in both computation and communication.

Paper Organization: The rest of the paper is organized
as follows. We define our problem and present the adversary
model in Section II. In Section III and Section IV, we
respectively present our verifiable private multi-party compu-
tation protocols for threshold-based ranging and ranking. We
report our analysis and evaluation results in Section V, review
the related work in Section VI, and conclude the paper in
Section VII.

TABLE I
THE FAST VARIANT OF PAILLIER’S CRYPTOSYSTEM

Choose two prime numbers p and q.
Public key:
modulus n = pq and base g ∈ Z∗

n2

Private key:
λ = LCM(p− 1, q − 1)
Encryption:
c = E(m, r) = gm+nr mod n2

Decryption:

m = D(c) =
L(cλ mod n2)

L(gλ mod n2)
mod n, L(x) = x−1

n

Homomorphic:
E(m1, r1)E(m2, r2) mod n2 = E(m1 +m2, r1 + r2) mod n2

E(m1, r1)m2 mod n2 = E(m1m2, r1m2) mod n2

Self-blinding:
D(E(m1, r1)) = E(m1, r1 + r2)

II. PROBLEM DEFINITION AND PRELIMINARY
A. Verifiable Private Multi-party Computation

There are n parties P = {P1, . . . , Pn}, where each party
Pi holds a private value vi. n parties wish to compute
f(vi, v2, . . . , vn) = (y1, y2, · · · , yn) by communicating a-
mong themselves, without giving away any information about
their own values. We say a multi-party computation protocol
is verifiable, if a malicious party cannot cheat other parties to
accept an incorrect result. The verifiability of the computation
result is usually neglected in existing protocols. In this work,
we focus on the verifiable private computation which resists
forged inputs and manipulation of computation results as well
as preserves the privacy of input values.

B. Homomorphic Encryption

Homomorphic encryption allows specific types of computa-
tions to be carried out on cipher text and obtains an encrypted
result which is the cipher text of the computation result of the
plain text. In this work, we use the fast variant of Paillier’s
cryptosystem which is additively homomorphic as an example.
The detail is presented in Table I.

Let the public key of the user Pi be Pki and the private
key be Ski. We denote the encryption with Pi’s public key
as EPki(·), encryption with private key as ESki(·). Similarly,
DPki(·) and DSki(·) denote the decryption operations with
Pi’s keys. For simplicity, when no confusion caused, Ei

stands for EPki and Di stands for DSki using the Paillier’s
cryptosystem.

C. Adversary Models

Many attacks are extensively studied in related private
multi-party computation work, e.g. [3], [8]. Here, we discover
two potential attacks (the compressive sensing based privacy
reconstruction and fake signature) to the state-of-art private
multi-party computation schemes, which haven’t been well
studied yet.

1) Compressive Sensing Based Privacy Reconstruction: In
social networks, considering a user’s attributes or relationship
as a vector, private dot product is a typical way for profile
matching and proximity calculation. However, a user’s vector
can be reconstructed via multiple rounds of proximity com-
putation. Let vk be the M -dimension private attribute vector

of a user. Each dot product result gives one linear constraint
on vk. In a traditional way as stated in [2], an adversary
needs M linearly independent constraints to reconstruct the
victim’s private vector vk. Indeed, vk is usually K-sparse
(it has at most K non-zeros) and K ≪ M . Based on the
research in the compressive sensing [1], an adversary can
recover the K-sparse length-M user private vector vk from
only R ≥ cK log(M/K) ≪ M dot-products, here c is a small
constant.

So we suggest that, to achieve privacy preserving dot prod-
uct in sparse-vector systems like social networks, a protection
is needed to resist o(K logM) queries from the same user or
a collusive attack of a group of adversaries.

2) Fake Signature: Most existing work of SMC are based
on homomorphic encryption systems. Encrypted private values
are input, and a series of computation are conducted homomor-
phically on these encrypted values to generate the encryption
of the computation result on these values. A few methods like
[2] propose to use a signature of encrypted input from a trusted
third party PT to ensure the authenticity and consistency of
the input value. However, we find that if the trusted third party
PT directly signs the encrypted value Ei(vi) and the digital
signature generation system are homomorphic, the party Pi is
able to generate a fake signature for value k · vi or vki without
contacting PT . Here k is a constant picked by Pi. As a result,
Pi can use k · vi as the input of a multi-party computation
for arbitrary k,to cheat other parties to believe an incorrect
conclusion.

So we suggest to avoid using homomorphic encryption to
directly sign the encrypt value in private multi-party compu-
tation.

In the following part of this paper, we will focus on
the verifiable private multi-parity computation resisting the
adversaries of fake input and outcome, which are ignored by
most existing work.

3) Fake Input and Fake Outcome:
Definition 1 (Fake Input Adversary): In the private multi-

party computation, an adversary cheats by inputting an arbi-
trary value to deviate the result from its true value.

Definition 2 (Fake Outcome Adversary): In the private
multi-party computation, a malicious party knowing the true
result tells a wrong conclusion to trick other parties.

D. Certificate

In this work, we suppose that there is a trusted third party
PT who is only involved to authenticate the input values
of participants. So there is no requirement for long-term
involvement by PT . Each participant Pi can contact PT to au-
thenticate his/her encrypted values. PT signs the authenticated
values and hands Pi his/her certificate consisting the following
content and other information in a typical certificate:

C(Pi, vi) = ⟨Sig(IDi),EPki(vi), Sig(EPki(vi)), Pki, PkT ⟩

Note that the signature algorithm by the trusted authority is
not homomorphic.

Protocol 1: One-way Threshold-based Ranging Protocol

1) P1 sends E1(θ, r1) and the certificate C(P1,V1) to P2.
Here certificate C(P1,V1) = ⟨Sig(ID1), E1(V1,R1),
Sig(E1(V1,R1)),Pk1, PkT ⟩.

2) P2 randomly picks a certificate C(P2, δ1V2), where
C(P2, δ1V2) = ⟨Sig(ID2), E2(δ1, r2), E2(V2,R2),
E2(δ1V2,R2), Sig(E2(δ1, r2)), Sig(E2(δ1V2,R2)),
Pk1, PkT ⟩, and another arbitrary number δ2. For ranging
computation, P2 computes{

e1 = E1(δ1V1 ·V2 + δ2, δ1R1 ·V2 + r2),

e2 = E1(δ1θ + δ2, δ1r1 + r2)

For verification purpose, P2 computes
e3 = E1(R2 ·V1 + r2,R1 ·R2 + r2),

e4 = E1(r2θ + r2, r1r2 + r2),

e5 = E2(δ2, r2),

P2 sends e1,e2,e3,e4 to e5 and the certificate to P1.
3) P1 compares d1 = D1(e1) and d2 = D1(e2) to determine the

ranging result. P1 verifies the value in C(P2,V2). P1 computes
d3 = D1(e3) and d4 = D1(e4) to get the information of
random number, then P1 computes and checks the equations:{

E2(δ1V1 ·V2 + δ2,R2 ·V1 + r2) = E2(d1, d3),

E2(δ1θ + δ2, r2θ + r2) = E2(d2, d4).

If they are not all true, P1 learns that P2 is cheating.

III. VERIFIABLE THRESHOLD-BASED RANGING
PROTOCOL

In this section, we present our two-party threshold-based
ranging protocol which is the first privacy preserving ranging
protocol supporting verifiability for both input and outcome.

First, we define the threshold-based ranging computation.
Definition 3 (Threshold-based Ranging): P1 holds private

value v1, and P2 holds private value v2. There is a polynomial
function f(v1, v2) and a threshold θ. Users P1 and P2 can only
determine whether f(v1, v2) > θ or not.

In the verifiable private threshold-based ranging, only the
1-bit comparison result will be exposed to them. This compu-
tation can provide better privacy and be widely used in many
applications, like [7], [12].

A. Protocol Design

Our verifiable private threshold-based ranging computation
is based on the following observation.

Theorem 1: Given a large integer n, two arbitrary positive
numbers δ1, δ2, (δ1f(v1, v2) + δ2 mod n) > (δ1θ + δ2
mod n) ⇔ f(v1, v2) > θ if δ1f(v1, v2) + δ2 ∈ [0, n − 1]
and δ1θ + δ2 ∈ [0, n− 1].
Specifically, a party can choose δ1 ≤

√
n and δ2 ≤

√
n, if

f(v1, v2) ≤
√
n.

1) One-way Protocol: We first consider the one-way
situation that P1 wants to conduct the query, but P2

doesn’t need the result. Protocol 1 is the first verifi-
able private threshold-based ranging protocol. It uses a

Protocol 2: Two-way Threshold-based Ranging Protocol

1) P1 sends P2 a randomly picked certificate C(P1, δ11V1).
2) P2 computes E1(θ) by himself/herself.

The rest of this step is same as Step 2 in Protocol 1, with the
only difference that here we use δ21 and δ22 for P2’s parameters.

3) P1 compares d1 = D1(e1) and d2 = D1(e2) to determine the
ranging result, and verifies the result as in Step 3 in Protocol
1. If the verification fails, P1 learns that P2 is cheating and
terminates the protocol. Otherwise, P1 computes

m1 = E2(δ11d1 + δ12),

m2 = E2(δ11d2 + δ12),

m3 = E1(δ12),

and sends them to P2. As in Protocol 1 the encrypted informa-
tion for random numbers by Pk2 are also sent to P2.

4) P2 can compare dm1 = D2(m1) and dm2 = D2(m2) to deter-
mine the ranging result. P2 verifies the value in C(P1, δ11V1),
then P2 decrypts the encrypted information of random number.
P2 verifies the result if the following equations are true to
determine if P1 cheating.{

E1(δ11V1 · δ21V2 + δ11δ22 + δ12) = E1(dm1),

E1(δ11δ21θ + δ11δ22 + δ12) = E1(dm2).

practical partial homomorphic encryption, the Paillier’s en-
cryption. Each Pi needs to acquire a series of certifi-
cates C(Pi, δkvi) = ⟨Sig(IDi),Ei(δk),Ei(vi),Ei(δkvi),
Sig(Ei(δk)), Sig(Ei)(δkvi)), Pki, PkT ⟩, from a trusted au-
thority PT by giving PT a set of random numbers {δk} chosen
by Pi and EPki(vi) before the protocol launches. Pi can
update the certificates once he/she can contact PT . Although
the function f(v1, v2) in Protocol 1 can be any combination of
addition and multiplication. W.l.o.g., we use the dot product
f(V1,V2) = V1 ·V2 of two private vectors as an example in
the protocol statement. Ri, ri are random vector and number
chosen by Pi as the required input of the Paillier’s encryption.

2) Two-way Protocol: In the two-way situation, there is
a common threshold θ. P1 and P2 both need the verifiable
result. A change is required to enable the two-way verifiable
ranging. The values δ11 and δ12 are secretly chosen by P1 and
δ21 and δ22 are secretly chosen by P2. A straightforward way
is to repeat the Step 2 in the Protocol 1 to have P1 compute
E2(δ11V1 · V2 + δ12) and E2(δ11θ + δ12) on the encrypted
E2(V2) homomorphically. However, since V2 could be a large
vector, a simple extension will cost expensive computation.
We design a more sophisticated solution and present Protocol
2 to reduce the computation cost. In the Step 3 of Protocol 2,
we convert the homomorphic dot product computation on the
ciphertext to a simple multiplication between two plain scalars
which significantly simplifies the computation. According to
our proof (omitted due to limited space), the input random
number of Paillier’s encryption won’t affect the verifiability
of the computation. For simplicity, we ignore the process
of random numbers in the statement of Protocol 2 and the
following protocols.

Protocol 3: Participant Comparison Protocol

1) P1 sends certificate C(P1, v1) to P2.
2) P2 randomly picks a certificate C(P2, δ1v2) and another arbi-

trary number δ2. P2 computes
e1 = E1(δ1v1 + δ2),

e2 = E1(δ1v2 + δ2),

e3 = E2(δ2),

and sends them with the certificate and the encrypted informa-
tion of random numbers by Pk1 to P1.

3) P1 compares d1 = D1(e1) and d2 = D1(e2) to determine
the comparison result. P1 verifies the value in C(P2, v2), then
decrypts the information of random number and checks the
following equations:{

E2(δ1v1 + δ2) = E2(d1),

E2(δ1v2 + δ2) = E2(d2).

If they are not all true, P1 learns that P2 is cheating.

IV. VERIFIABLE RANKING PROTOCOL
Here we propose privacy-preserving verifiable ranking pro-

tocols in both participants model and aggregator model.

A. Ranking Problem Definition

Definition 4 (Participant Ranking): A party P1 queries the
rank of his own private value v1 among n parties’s private
values V = (v1, v2,vn). At the end, P1 only learns the
ranking result R(P1, P), which is an integer. Here R(P1, P) =
K is v1 is the K-th smallest in V .

Definition 5 (Aggregator Ranking): An aggregator Pa

wants to rank all n parties’s values V = (v1, v2,vn). At the
end, Pa only learns the ranking result ⟨IDr1, IDr2, . . . IDrn⟩
where IDri is the ID of the user whose data is ranked i-th.

In both models, all participants’ values are kept private and
only the initiator learns the result.

B. Protocol Design

1) Participant Model: Comparison between two parties is
the basic operation of participant ranking. First, we present our
verifiable private comparison protocol (Protocol 3) between
two participants. In the end of Protocol 3, P1 only learns the
verifiable comparison result of v1 and v2, and P2 learns noth-
ing. Based on the verifiable private comparison, P1 computes
the rank R(P1, P) by comparing v1 with each party separately,
and counting the values larger than v1 to conclude the rank
R(P1, P).

2) Aggregator Model: In the aggregator model, we first
design the protocol to compare two parties’ private value for
the aggregator Pa. It requires that, both P1 and P2’ values are
kept private and at the end of the protocol only the aggregator
gets the verifiable comparison result. It is challenging when
every party can eavesdrop all the communication. We present
our design as Protocol 4.

By Protocol 4, the aggregator is able to get the verifiable
comparison result between any pair of parties. Then we
leverage the merge sort mechanism to design a parallel scheme

Protocol 4: Aggregator Comparison Protocol

1) Pa launches the comparison by sending P1 and P2 his/her
public key Pka.

2) P1 randomly picks a certificate C(P1, δ1v1). P1 sends the
certificate and m1 = E2(Ea(δ1v1)) to P2.

3) P2 randomly picks a certificate C(P2, δ2v2). P2 sends the
certificate and m2 = E1(Ea(δ2v2)) to P1.

4) P1 verifies the value in C(P2, v2). P1 decrypts m2, then
computes the following value and sends them with key Pk1
and the encrypted information of random numbers by Pka to
Pa:

e11 = Ea(δ1δ2v2),

e12 = Ea(E2(δ1δ2v1)),

e13 = Ea(E2(δ1δ2v2)).

Here e12 is calculated based on E2(δ2) in C(P2, δ2v2) and e13
is calculated based on E2(δ2v2) in C(P2, δ2v2).

5) P2 verifies the value in C(P1, v1). P2 decrypts m1, then
computes the following value and sends them with key Pk2
and the encrypted information of random numbers by Pka to
Pa:

e21 = Ea(δ1δ2v1),

e22 = Ea(E1(δ1δ2v2)),

e23 = Ea(E1(δ1δ2v1)).

Here e22 is calculated based on E1(δ1) in C(P1, δ1v1). e23 is
calculated based on E1(δ1v1) in C(P1, δ1v1).

6) Pa compares d1 = Da(e11) and d2 = Da(e21) to determine the
comparison result. Then Pa decrypts the information of random
numbers and checks the equations:{

E2(d1) = Da(e13),E1(d1) = Da(e22),

E1(d2) = Da(e23),E2(d2) = Da(e12).

If they are not all true, Pa learns that there’s a party cheating.

for ranking. Only O(log n) rounds of comparisons will be
launched by the aggregator. With the parallel steps 2) to 5)
of Protocol 4, time complexity will be reduced compared to
a serial scheme. Total O(n log n) comparisons are required in
the worst case.

V. ANALYSIS AND PERFORMANCE EVALUATION
A. Protocol Analysis

Theorem 2: If the Paillier’s cryptosystem is semantically
secure, Protocol 1 to 3 are privacy preserving.
Note that, in the Protocol 1, because the threshold θ is chosen
by P1, P1 may launch a binary search by adjusting θ to narrow
down the value range of f(v1, v2). So we suggest that, a
threshold may be given by the system or the query time should
be limited.

Theorem 3: If the Paillier’s cryptosystem is semantically
secure, the Protocol 4 is privacy preserving, when neither
P1 nor P2 colludes with Pa even if the P1, P2 and Pa can
eavesdrop all the communication.
However, if one of the party colludes with Pa, they can learn
the value of the other party.

Theorem 4: Protocol 1 to 3 are verifiable: P2 cannot cheat
P1 to accept an incorrect result, and vis versa.

TABLE II
PERFORMANCE OF EACH PROTOCOL WITH REAL IMPLEMENTATION.M=30

Protocol Party
Computation(s)
(Verification)

Computation(s)
(All) Communication

Laptop Phone Laptop Phone (KB) (Times)

1 P1

P2

0.30
no

0.36
no

0.41
2.05

0.49
2.72

1.5
3.25

1
1

2 P1

P2

0.30
0.30

0.36
0.37

2.56
2.35

3.22
3.09

3.25
3.25

2
1

3 P1

P2

0.23
no

0.26
no

0.23
0.12

0.26
0.14

1.25
3.25

1
1

4
P1

P2

Pa

no
no

0.45

no
no

0.51

0.46
0.46
0.45

0.52
0.52
0.51

3.5
3.5
0.25

2
2
1

Theorem 5: Protocol 4 is unconditionally verifiable when
at most one party cheats. And when both parties cheat indi-
vidually without collaboration, Pa can verify the result with a
quite high probability.
However, when P1 and P2 collude, they can cheat the aggre-
gator to believe an incorrect result.

All the proof are omitted here due to the space limitation.

B. Performance Evaluation

Our protocols are designed based on the fast variant of the
Paillier’s cryptosystem, as in Table I. As in most implemen-
tations, we assume that n is 1024-bit, λ is 160-bit and the
random number is 900-bit. We evaluate our protocols on both
laptop and mobile phone. The laptop is Think Pad X1 with
i7 2.7GHz CPU and 4GB RAM. The mobile phone is HTC
G17 with 1228Hz CPU, and 1GB RAM. Table II presents the
computation and communication cost of each protocol when
the dimension of the vector is 30. The result shows that our
protocols are practical in both laptop and mobile phones.

VI. RELATED WORK
Secure multi-party computation (SMC) was initially intro-

duced in [15]. One line of work on SMC is based on oblivious
polynomial evaluation (OPE), e.g. [3], [8], [17]. Another line
is based on oblivious pseudo random functions (OPRF), e.g.
[5]. In all these approaches, both the input value and output
result are not verifiable. The true result is only revealed to
one party, who can cheat other parties by a forge result. Dong
et al. [2] propose the fist scheme supporting verifiable private
dot product between two parties.

There are some work leveraging Verifiable Secret Sharing
(VSS) [13] to conduct multiparty computation of secret inputs
when a majority of the players are honest, e.g. [11]. Secure
computation based on VVS needs to share each secret input
among n parties and requires at least t parties cooperate to
produce the computation result. It results in high communica-
tion and computation cost.

Cloud computing enables the computational resource limit-
ed users to outsource their workload to the cloud. However,
treating the cloud as an untrusted computing platform, privacy
and verifiability are two of the main obstacles of its wide
adoption. Recently, many work are dedicated to the privacy-
assured outsourced computing e.g. [14], [18] and cloud data
access [19]. There are also some efforts on the verification of
the outsourced computation result, e.g. [4].

VII. CONCLUSION
In this paper, we analyze the potential attacks to the

state-of-art secure multi-party computation schemes. Previous
protocols focus on privacy protection, usually leaving the
verifiability neglected. we propose the first verifiable privacy
preserving protocols for threshold-based ranging and ranking
in different situations, which can resist cheating on both input
and outcome. We implement them on phones and laptops. The
results show the efficiency of our protocols.

ACKNOWLEDGMENT
The research is supported in part by National High-Tech R&D Pro-

gram of China (863) under grant No. 2011AA010100, National Basic
Research Program of China (973) under grant No. 2012CB316200
and the NSFC program under Grant No.61103187, No.61272426,
No.61202359, No.61272429. The research of Xiang-Yang Li is
partially supported by NSF CNS-0832120, NSF CNS-1035894, NSF
ECCS-1247944, National Natural Science Foundation of China under
Grant No. 61170216, No. 61228202, China 973 Program under Grant
No.2011CB302705.

REFERENCES
[1] BARANIUK, R. Compressive sensing [lecture notes]. Signal Processing

Magazine, 2007, pp. 118–121.
[2] DONG, W., DAVE, V., QIU, L., AND ZHANG, Y. Secure friend discovery

in mobile social networks. INFOCOM, 2011.
[3] FREEDMAN, M., NISSIM, K., AND PINKAS, B. Efficient private

matching and set intersection. Advances in Cryptology-EUROCRYPT ,
2004, pp. 1–19.

[4] GENNARO, R., GENTRY, C., AND PARNO, B. Non-interactive verifiable
computing: Outsourcing computation to untrusted workers. Advances in
Cryptology–CRYPTO, 2010, pp 465–482.

[5] HAZAY, C., AND LINDELL, Y. Efficient protocols for set intersection
and pattern matching with security against malicious and covert adver-
saries. Theory of Cryptography, 2008, pp. 155–175.

[6] XIANG-YANG LI, YAJUN WANG, AND YU WANG. Complexity of Data
Collection, Aggregation, and Selection for Wireless Sensor Networks.
IEEE Transactions on Computers, 2010, pp. 386–399.

[7] HE, W., LIU, X., NGUYEN, H., NAHRSTEDT, K., AND ABDELZAHER,
T. Pda: Privacy-preserving data aggregation in wireless sensor networks.
INFOCOM , 2007.

[8] LI, M., CAO, N., YU, S., AND LOU, W. Findu: Privacy-preserving
personal profile matching in mobile social networks. INFOCOM, 2011.

[9] PENG, K., BOYD, C., DAWSON, E., AND VISWANATHAN, K. Robust,
privacy protecting and publicly verifiable sealed-bid auction. Information
and Communications Security, 2002, pp. 147–159.

[10] QI, Y., AND ATALLAH, M. Efficient privacy-preserving k-nearest
neighbor search. ICDCS, 2008.

[11] RABIN, T., AND BEN-OR, M. Verifiable secret sharing and multiparty
protocols with honest majority. STOC, 1989.

[12] SHENG, B., AND LI, Q. Verifiable privacy-preserving range query in
two-tiered sensor networks. INFOCOM, 2008.

[13] CHOR, B., GOLDWASSER, S., MICALI, S., AND AWERBUCH, B. Veri-
fiable secret sharing and achieving simultaneity in the presence of faults.
FOCS, 1985.

[14] WANG, C., REN, K., YU, S., AND URS, K. Achieving usable and
privacy-assured similarity search over outsourced cloud data. INFO-
COM, 2012.

[15] YAO, A. Protocols for secure computations. FOCS, 1982.
[16] YE, Q., WANG, H., AND PIEPRZYK, J. Distributed private matching

and set operations. Information Security Practice and Experience, 2008,
pp. 347–360.

[17] JUNG, T. AND MAO, X.F. AND LI, X.Y AND TANG, S.J. AND GONG,
W. AND ZHANG, L. Privacy-preserving data aggregation without secure
channel: multivariate polynomial evaluation. INFOCOM, 2013.

[18] LI, X.Y. AND JUNG, T. Search me if you can: privacy-preserving
location query service. INFOCOM, 2013.

[19] JUNG, T. AND LI, X.Y AND WAN, Z. AND WAN, M. Privacy preserving
cloud data access with multi-authorities. INFOCOM, 2013.

