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Abstract. Nash equilibria and dominant strategies are two of the major
approaches to deal with selfishness in an automated system (AS), where
each agent is a selfish entity.
In this paper, we consider the scenario when the receiver(s) and the
relay links are both selfish, which generalizes the previous scenario in
which either the relay links are selfish or the receivers are selfish. This
also advances all previous studying in routing by taking into account
the budget balance ratio. We prove that no mechanism can achieve bud-
get balance ratio greater than 1

n
when truthful revealing is a dominant

strategy for each of the relay links and receivers. Here, n is the number
of vertices in the network. In the meanwhile, we also present a mecha-
nism that achieves the budget balance ratio 1

n
and is truthful for both

the receivers and relay links, which closes the bounds. When we relax
the truthful revealing requirement to Nash Equilibrium for relay links,
we present a mechanism that achieves an asymptotically optimal budget
balance ratio.

1 Introduction

More and more research effort has been done to study the non-cooperative games
recently. Among various forms of games, the unicast/multicast routing game [11,
4] and multicast cost sharing game [6, 2] have received a considerable amount
of attentions over the past few years due to its applications in the Internet.
However, both unicast/multicast routing game and multicast cost sharing game
are one folded: the unicast/multicast routing game does not treat the receivers
as selfish while the multicast cost sharing game does not treat the links as selfish.
In this paper, we study the scenario, which we called multicast system, in which
both the links and the receivers could be selfish.

In the first part, we study the α-stable multicast system that satisfies the
following main properties: (1) strategyproofness for both the links and receivers;
and (2) α-budget-balance. To illustrate our approaches, we first focus on the
? The work of X.Y Li was supported in part by NSF under Grant CCR-0311174.

?? The work of X. Chu is partially supported by Hong Kong RGC grants under contract
No. RGC/HKBU215904 and RGC/HKBU210605.



unicast system which is a special case of multicast system. We prove that if we
use the least cost path for unicast routing, then there does not exist an α-stable
unicast system such that α > 1

n , where n is the number of the nodes in the graph.
On the other side, we present an 1

n -stable unicast system, and further extend
this idea to construct an 1

r·n -stable multicast system where r is the number of
receivers in a multicast game.

In the second part, we relax the dominant strategy requirement to Nash
Equilibrium for the links and study the performance of the Nash Equilibria for a
multicast system. Again, we first study the unicast scenario and propose a uni-
cast system that achieves 1

2 -budget-balance factor under any Nash Equilibrium.
We then extend this to the multicast game which results in a multicast system
with budget balance factor 1

2r under any Nash Equilibrium for the links.

2 Technical Preliminaries

2.1 Mechanism Design

A standard model for mechanism design is as follows. There are n agents 1, . . . , n.
Each agent i has some private information ti, called its type, only known to it-
self. The agent’ types define the type vector t = (t1, t2, . . . , tn). Each agent i has
a set of strategies Ai from which it can choose. For each strategy vector a =
(a1, . . . , an) where agent i plays strategy ai ∈ Ai, the mechanism M = (O,P)
computes an output o = O(a) and a payment vector P(a) = (P1(a), . . . ,Pn(a)).
A valuation function v(t, o) assigns a monetary amount to agent i for each pos-
sible output o and t. Let ui(t, o) denote the utility of agent i at the output o
and type vector t. Here, following a common assumption in the literature, we
assume the utility for agent i is quasi-linear, i.e., ui(t, o) = v(t, o) + Pi(a). Let
a|ib denote that every agent j, except i, plays strategy aj , and agent i plays the
strategy b. Let a−i denote the strategies played by all agents other than i.

A strategy vector a? is a Nash Equilibrium if it maximizes the utility of
each agent i when the strategies of all the other agents are fixed as a?

−i, i.e.,
ui(t,O(a?)) ≥ ui(t,O(a?

−i|ia′i)) for all i and all a′i 6= a?
i . A strategy ai is called

a dominant strategy for agent i if it maximizes agent i’s utility for all possible
strategies of the other agents. If a is a dominant strategy vector for agents, then
a is also a Nash Equilibrium.

A direct-revelation mechanism is a mechanism in which the only actions
available to each agent are to report its private type. A direct-revelation mecha-
nism is incentive compatible (IC) if reporting valuation truthfully is a dominant
strategy. A direct-revelation mechanism satisfies individual rationality (IR) if
the agent’s utility of participating in the output of the mechanism is at least its
utility if it did not participate the game at all. A direct-revelation mechanism is
truthful or strategyproof if it satisfies both IC and IR properties.

A binary demand game is a game G such that (1) the range of the output
method O is {0, 1}n; (2) the valuation of the agents are not correlated. Binary
demand game has been studied extensively [5, 1, 7, 4] and the type ti of agent i



could be expressed as the cost ci in many applications. Here, if agent i provides
a certain service, then its cost ci ≥ 0; if agent i requires a certain service,
then its cost ci ≤ 0. It is generally known that [5, 1, 7, 4] if a mechanism M is
strategyproof, then O should satisfy a certain monotonicity property: for every
agent i, if it is selected when it has a cost ci, then it is still selected when it
has a cost c′i < ci. If Oi(c) = 0, we require that Pi(c) = 0, which is known as
normalization. If O is monotonic and the payment scheme is normalized, then
the only strategyproof mechanism based on O is to pay κi(c) to agent i if it is
selected and 0 otherwise, where κi(c) is the threshold cost of i being selected.

2.2 Multicast Payment Sharing Mechanism

In this paper, we model a network by a link weighted graph G = (V,E, c), where
V is the set of all nodes and c is the cost vector of the set E of links. For a multi-
cast session, let Q denote the set of all receivers. In game theoretical networking
literatures, usually there are two models for the multicast cost/payment sharing.

Axiom Model (AM) All receivers must receive the service, or equivalently,
each receiver has an infinity valuation [3]. In this model, we are interested in a
sharing method ξ that computes how much each receiver should pay when the
receiver set is R and cost vector is c.

Valuation Model (VM) There is a set Q = {q1, q2, · · · , qr} of r possible
receivers. Each receiver qi ∈ Q has a valuation ηi for receiving the service.
Let η = (η1, η2, . . . , ηr) be the valuation vector and ηR be the valuation vector
of a subset R ⊆ Q of receivers. In this model, we are interested in a sharing
mechanism S consisting of a selection scheme σ(η, c) and a sharing method
ξ(η, c). Here σi(η, c) = 1 (or 0) denotes that receiver i receives (or does not
receive) the service, and ξi(η, c) computes how much the receiver qi should pay
for the multicast service. Let P(η, c) be the total payment for providing the
service to the receiver set. For the notational consistency, we denote the sharing
method and total payment under AM as ξ(η=∞

R , c) and P(η=∞
R , c), where η=∞

R

denotes a valuation vector where each individual valuation is infinity. The utility
of a receiver i is denoted as ui(η, c).

In the valuation model, a receiver who is willing to receive the service is
not guaranteed to receive the service. For notational simplicity, we abuse the
notations by letting σ(η, c) be the set of actual receivers decided by the selection
method σ. Under the Valuation Model, we need to find a sharing mechanism that
is fair according to the following criteria.
1. Budget Balance (BB): For the receiver set R = σ(η, c), P(η, c) =

∑
qi∈Q ξi(η, c).

If α ·P(η, c) ≤ ∑
i∈R ξi(η, c) ≤ P(η, c), for some given parameter 0 < α ≤ 1,

then S = (σ, ξ) is called α-budget-balance. If budget balance is not achiev-
able, then a sharing scheme S may need to be α-budget-balance.

2. No Positive Transfer (NPT): Any receiver qi’s sharing should not be
negative. In other words, we don’t pay the receiver to receive.

3. Free Leaving (FR): The potential receivers who do not receive the service
should not pay anything, i.e., if σi(η, c) = 0, then ξi(η, c) = 0.



4. Consumer Sovereignty (CS): For any receiver qi, if ηi is sufficiently large,
then qi is guaranteed to be an actual receiver. In other words, fix any η−i,
there must exist a valuation x for qi such that ∀y ≥ x, σi((y, η−i), c) = 1.

5. Group-Strategyproof (GS): Assume that η is the valuation vector and
η′ 6= η. If ui(η′, c) ≥ ui(η, c) for each qi ∈ η, then ui(η′, c) = ui(η, c).
A sharing mechanism S that is α-budget-balance and satisfies the remaining

criteria (i.e., NPT, FR, CS, GS) is α-fair. It is generally known that if a sharing
method ξ satisfies cross-monotonicity and NPT under Axiom Model, one can
explicitly construct a fair sharing mechanism S̃ = (σ̃, ξ̃) as shown in [6, 2].

2.3 Problem Statement

Assume there is a graph G = (V,E), where V = {v1, v2, . . . , vn} and E =
{e1, e2, . . . , em}. Let c be the cost vector of the links, i.e., c(ei) = ci and c =
(c1, c2, . . . , cm). Given a source s and a set of receiver Q, multicast first chooses
a receiver set R ⊆ Q, and then constructs a tree rooted at s that spans the
receivers set R. In this paper, we focus on the least cost path tree (LCPT),
which is the union of the least cost paths from the source to each receiver,
due to the reason that LCPT is most widely used in practice. Let LCPT(R, c)
be the LCPT when the cost vector is c and the actual receiver set is R. We
are interested in a multicast system Ψ = (M,S) consisting of a mechanism
M = (O,P) and a sharing scheme S = (σ, ξ). A multicast system Ψ = (M,S) is
α-stable if it satisfies that (1) M is strategyproof (2) S = (σ, ξ) is α-fair for some
α. For any Nash Equilibrium (NE) b̃ for links, if α · P(η, b̃) ≤ ∑

qi∈Q ξi(η, b̃) ≤
P(η, b̃), for some given parameter α ≤ 1, then S = (σ, ξ) is α-NE-budget-
balance. Comparing with definition of α-budget-balance, we replace the actual
cost vector c with any NE b̃ for the links. Similarly, we have the definition Nash
Equilibrium Consumer Sovereignty (NE-CS).

A sharing scheme S is NE-strategyproof if ηi− ξi(η, b̃) ≥ η′i− ξi(η|iη′i, b̃′) for
any receiver i, any valuation η′i = ηi, and any NE b̃ for the links under η and
any NE b̃′ for the links under η|iη′i. In other words, receiver qi can not increase
its utility by falsely declaring its valuation to affect the NE of the links under
any circumstance. S is α-NE-fair if it is NE-strategyproof and satisfies NE-CS,
NPT and FR. A multicast system Ψ = (M,S) is α-NE-stable if it satisfies that
(1) there exists a NE for the links; (2) S is α-NE-fair under any NE b̃. If there
is only one receiver, which we assume to be q1, then it is a unicast system, which
is a special case of multicast system.

Following we present some notations that are used in this paper.
Notations: The path with the lowest cost between two odes s and t is

denoted as LCP(s, t, c), and its cost is dented as |LCP(s, t, c)|. Given a simple
path P in the graph G with cost vector c, the sum of the cost of links on path
P is denoted as |P(c)|. For a simple path P = vi Ã vj , if LCP(s, t, c)

⋂
P =

{vi, vj}, then P is called a bridge over LCP(s, t, c). This bridge P covers link ek

if ek ∈ LCP(vi, vj , c). Given a link ei ∈ LCP(s, t, c), the path with the minimum



cost that covers ei is denoted as Bmin(ei, c). We call the bridge Bmm(s, t, c) =
maxei∈LCP(s,t,c) Bmin(ei, c) the max-min cover of the path LCP(s, t, c).

A bridge set B is a bridge cover for LCP(s, t, c), if for every link ei ∈
LCP(s, t, c), there exists a bridge B ∈ B such that ei ∈ LCP(vs(B), vt(B), c). The
weight of a bridge cover B(s, t, c) is defined as |B(s, t, c)| = ∑

B∈B(s,t,c)

∑
ei∈B ci.

Notice that a link may be counted multiple times here. A bridge cover B is a
minimal bridge cover (MBC), if for each bridge B ∈ B, B − B is not a bridge
cover. A bridge cover is a least bridge cover (LB), denoted by LB(s, t, c), if it
has the smallest weight among all bridge covers that cover LCP(s, t, c).

3 Dominant Strategies and Multicast Systems

In this section, we study how to design a multicast system that is α-stable with
large α. We present some results on both the negative and positive sides.

3.1 α-stable Unicast System

Unicast routing [9] may be one of the introductory problems that bring algorithm
mechanism design to the attention of the computer scientists. Fortunately, the
unicast routing problem is solved by using the celebrated VCG mechanism in the
seminal paper [9] by Nisan and Ronen. However, one important question that
has not been addressed in any previous literatures is who is going to pay the
payments to the agents. By assuming that the unicast routing is receiver-driving,
the very naive way is that the receiver should pay the payment.

We use PUVCG to denote the VCG payment for unicast under AM. The pay-
ment to a link ek ∈ LCP(s, q1, c) according to VCG mechanism is PUVCG

k (η=∞
1 , c) =

|LCP(s, q1, c|k∞)|−|LCP(s, q1, c|k0)|. The payment to link that is not on the LCP
is 0. Simply applying the sharing scheme S̃ obtains the unicast system ΨV CG

as follows: first computing PUVCG(η=∞
1 ,d), q1 is charged PUVCG(η=∞

1 ,d) and re-
ceives the service if η1 ≥ PUVCG(η=∞

1 ,d); q1 is charged 0 and does not receive the
service otherwise. Each link receives its VCG payment if q1 receives the service
and 0 otherwise. Regarding the unicast system ΨVCG, we have:

Theorem 1. For unicast system ΨVCG = (MVCG,SVCG), SVCG is fair. However,
MVCG is not strategyproof.

Proof. Obviously, SVCG is fair. We then show that MVCG is not strategyproof by
giving a counter example in Figure 1. Consider the graph in Figure 1 in which
ci = 1 for 1 ≤ i ≤ k, ck+1 = a ·k and the valuation for receiver q1 is a ·k+1. The
VCG payment to link ei is a · k − k + 1 for 1 ≤ i ≤ k and the total payment to
all links is k(a ·k−k +1). Thus, if every link ei reveals its true cost, the receiver
will reject the service. Consequently, every link receives payment 0 and has a
utility 0. Consider the scenario when link e1 reports its cost as a · k + 1− ε for a
small positive ε. The total payment to all links is a · k + 1 when ε = 1

k−1 . Then,
receiver q1 accepts the service and pay a · k + 1. Consequently, link e1 receives a
payment k + 1, and its utility is k. This violates the IC property. Thus, MVCG

is not strategyproof.
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Fig. 1. MVCG is not strategyproof: link e1 can lie to increase its utility.

If we take both the links and the receiver q1 into account as agents, then
the unicast system is still a binary demand game. Thus, we have the following
lemma which is a simple application of the binary demand game [5, 1, 7, 4].

Lemma 1. If Ψ = (M,S) is a unicast system that is α-stable, then

1. There exists a function ζ(c) such that (a) σ1(η1, c) = 1 if and only if η1 ≥
ζ(c), (b) ξ1(η1, c) = ζ(c) when σ1(η1, c) = 1,

2. If cj < c′j < PUVCG
j (q1, c), then ζ(c) ≤ ζ(c|jc′j).

The proof of this lemma is omitted due to space limit. Based on Lemma 1,
the following theorem reveals a negative result of α-stable unicast system.

Theorem 2. If Ψ = (M,S) is an α-stable unicast system, then α ≤ 1
n .

Proof. We prove it by presenting an example graph in Figure 1. Consider the
cost vector c(1) = c|1(ak − k + 1 − ε). From Lemma 1, the sharing by q1 is
ξ1(η1, c) = ζ(c) and

ζ(c) ≤ ζ(c(1)) (1)

Recall that for any valuation η1 ≥ ζ(c(1)), σ1(η1, c(1)) = 1, i.e., the LCP be-
tween LCP(s, q1, c(1)) is selected. Since mechanism M is strategyproof, the pay-
ment to link ei is a threshold value [4] κi(η1, c

(1)
−i ) which does not depend on

ci. Now we prove by contradiction that κi(η1, c
(1)
−i ) ≤ PUVCG

i (η=∞
1 , c(1)). For the

sake of contradiction, assume that κi(η1, c
(1)
−i ) > PUVCG

i (η=∞
1 , c(1)). Recall that

PUVCG
i (η=∞

1 , c(1)) = |LCP(s, q1, c(1)|i∞)| − |LCP(s, q1, c(1)|i0)|. However, when
we set the cost of ei as ĉi = |LCP(s, q1, c(1)|i∞)| − |LCP(s, q1, c(1)|i0)|+ δ for a
sufficiently small positive value δ < κi(η1, c

(1)
−i )−PUVCG

i (η=∞
1 , c(1)), ei is still on

path LCP(s, q1, c(1)), which is a contradiction. Thus, for graph shown in Figure 1,
κi(η1, c

(1)
−i ) ≤ 1+ε for 2 ≤ i ≤ k and κ1(η1, c

(1)
−1) = a·k−k+1. Since Ψ is a binary

demand game, Pi(η1, c
(1)) = κi(η1, c

(1)
−i ). Thus, the total payment to all links is

P(η1, c(1)) =
∑

ei
Pi(η1, c(1)) ≤ a · k− k + 1 + (k− 1) · (1 + ε) = a · k + (k− 1) · ε.

Recall that S is α-budget-balance, then ζ(c(1)) ≤ P(η1, c(1)) ≤ a · k + (k− 1) · ε.
By combining Inequality (1) and the above inequality, we have ζ(c) ≤ ζ(c(1)) ≤
a · k + (k− 1) · ε. Similarly, let cost vector c(i) be c|i(a · k + 1− ε) for 1 ≤ i ≤ k.
Let χ be a large positive number such that χ ≥ max1≤i≤k ξ(c(i)). Consider the
cost vector c and receiver valuation χ, we argue that κi(χ, c−i) ≥ ak− k + 1− ε



for any 1 ≤ i ≤ k. Considering any link ei, 1 ≤ i ≤ k, if it reports its cost
as ak − k + 1 − ε, then the cost vector is c(i). From the way we choose the
valuation χ, the receiver q1 will receive the service. Thus, ei is also selected.
From IR, κi(χ, c−i) = Pj(χ, c) = Pj(χ, c(i)) ≥ ak − k + 1 − ε. Therefore,
P(χ, c) =

∑
ei
Pi(χ, c) ≥ k · (ak − k + 1− ε). This obtains that

α ≤ ζ(c)
P(χ, c)

≤ ak + (k − 1) · ε
k · (ak − k + 1− ε)

.

Let ε → 0, a →∞ and k = n, then α ≤ 1
n . This finishes our proof.

Theorem 2 gives an upper bound for α for any α-stable unicast system Ψ.
It is not difficult to observe that even the receiver q1 is cooperative, Theorem 2
still holds. Following we present an 1

n -stable unicast system that is based on the
max-min cover of the LCP.

Algorithm 1 An 1
n -stable unicast system ΨDU = (MDU,SDU).

1: Compute LCP(s, q1,d), and set φ = ω(Bmm(s, t,d),d).
2: if η1 ≥ φ then
3: Each link ek ∈ LCP(s, q1,d) is selected and receives a payment PUVCG

k (η=∞
1 , c);

all other links are not selected and get a payment 0.
4: Receiver q1 is granted the service and charged φ.
5: else
6: All links are not selected and each link receives a payment 0.
7: Receiver is not granted the service and is charged 0.

Theorem 3. Unicast system ΨDU = (MDU,SDU) is 1
n -stable.

The proof is omitted here due to space limit. Theorem 3 closes the gap
between the upper and lower bound by presenting a tight bound 1

n for the
budget balance factor α for unicast.

3.2 Multicast System

In Section 3.1, we consider how to construct a unicast system Ψ = (M,S) such
that M is strategyproof and S is α-budget-balance with a large budge balance
factor α. In this section, we discuss how to construct a multicast system. Un-
der Axiom Model, Wang et al. [11] gave a strategyproof multicast mechanism
MLCPT = (OLCPT,PLCPT). For a link ek ∈ LCPT(R, c), they compute an inter-
mediate payment PUVCG

k (η=∞
i , c) = |LCP(s, qi, c|k∞)| − |LCP(s, qi, c|k0)| to link

ek based on each downstream receiver qi of ek on the LCPT tree. The final pay-
ment to a link ek ∈ LCPT(R, c) is PLCPT

i (η=∞
R , c) = maxqj∈R PUVCG

i (η=∞
j , c),

where η=∞
R is the valuation vector such that ηi = ∞ if qi ∈ R and 0 otherwise.

They also present a payment sharing scheme based on MLCPT that is reasonable



[10]. By generalizing the unicast system ΨDU, we present a multicast system ΨDM

(illustrated in Algorithm 2) based on the tree LCPT. Here, DM stands for the
multicast system with dominant strategy requirement for the links.

Algorithm 2 Multicast system ΨDM = (MDM,SDM) based on tree LCPT.

1: Compute path LCP(s, qj ,d) and set φj =
ω(Bmm(s,qj ,d),d)

r
for every qj ∈ Q.

2: Set ODM
i (η,d) = 0 and PDM

i (η,d) = 0 for each link ei 6∈ LCP(s, qj ,d).
3: for each receiver qj do
4: if ηj ≥ φj then
5: Receiver qj is granted the service and charged ξDM

j (η,d), set R = R ∪ qj .
6: else
7: Receiver qj is not granted the service and is charged 0.
8: Set ODM

i (η,d) = 1 and PDM
i (η,d) = PLCPT

i (η=∞
R ,d) for each link ei ∈ LCPT(R,d).

Theorem 4. The multicast system ΨDM = (MDM,SDM) is 1
r·n -stable, where r

is the number of receivers.

The proof of this theorem is omitted here. Recall that the unicast system is
a special case of multicast system. Thus, for any multicast system Ψ = (M,S)
that is α-stable, the budget balance factor is at most 1

n . In this section, we
propose a multicast system ΨDM that achieves a budge balance factor 1

r·n . It is
of interests to find some multicast system Ψ = (M,S) that achieves a larger
budget balance factor while M is strategyproof and S is α-fair. Our conjecture
is that the upper bound of α is also Θ( 1

rn ).

4 Nash Equilibrium and Multicast Systems

In light of the inefficiency of the multicast/unicast mechanism that is strate-
gyproof for both links and receivers, it is natural to relax the dominant strategy
to a weaker requirement – Nash Equilibrium. In this section, we study how to
design multicast/unicast system that is α-NE-stable with a small additive ε.

4.1 Unicast Auction in Axiom Model

In this section, we disregard the receiver valuation and show how to design a
mechanism that can induce some Nash Equilibria for links that can pay com-
parably smaller than the strategyproof mechanism does. Notice that, in [8],
Immorlica et al. showed that if we simply pay whatever the link reports, which
is known as the first price auction, there does not exist Nash Equilibrium. Due
to the non-existence of the Nash Equilibrium, they propose a modified first price
auction that can achieve ε-Nash Equilibrium with a small additive value. With
further modification of the auction rules, we obtain a unicast auction that in-
duces efficient Nash Equilibria. The high level idea of our unicast auction is as



follows. We require the agents to bid two bids instead of one: the first bid vector
b is used to find the LCP, the second bid vector b′ is used to determine the
payment. In the meanwhile, we also give a small ”bonus” to all links such that
each link ei gets the maximum bonus when it reports its true cost, i.e., bi = ci.

Algorithm 3 FPA Mechanism MAUC = (OAUC,PAUC).
1: for each link ei ∈ G do
2: Set PAUC

i (η=∞
1 , eb) = fi(s, q1,b), where fi(s, q1,b) = τ ·h

bu · (n · bu −
P

ej∈G−ei
bj)− h2

i
2

i
. Here, bu is the maximum cost any

link can declare.
3: Every link sends a unit size dummy packet and PAUC

i (η=∞
1 , eb) for every link ei ∈ G

ρ = τ · (n · bu −
P

ei∈G

bi).

4: Compute the unique path LCP(s, q1,b
′) by applying certain fixed tie-breaking rule

consistently.
5: for each link ei do
6: if ei ∈ LCP(s, q1,b

′) then

7: Set OAUC
i (η=∞

1 , eb) = 1 and PAUC
i (η=∞

1 , eb) = b′i.
8: else
9: Set PAUC

i (η=∞
1 , eb) = AUC

i (η=∞
1 , eb)− γ · (bi − b′i)

2.

Algorithm 3 sends the data along LCP(s, q1,b) and broadcasts something to
the network with a probability ρ. Following theorem (its proof is omitted here)
reveals the existence and several properties of Nash Equilibria.

Theorem 5. There exists NE for FPA mechanism MAUC and for any NE b̃ =
〈b,b′〉 we have (1) b = c; (2) LCP(s, q1, c) = LCP(s, q1,b′); (3) For any ei ∈
LCP(s, q1, c), |LCP(s, q1,b′)| = |LCP(s, q1,b′|i∞)|.

Theorem 6. Assume that b̃ = 〈b,b′〉 is a NE of MAUC and ε is a fixed
positive value, then by properly setting the parameter τ , |LB(s, q1, c)| + ε >

PAUC(η=∞
1 , b̃) ≥ |LB(s,q1,c)|

2 . Moreover, the inequalities are tight.

4.2 Unicast and Multicast System in Valuation Model

Based on the Auction Mechanism ΨAUC, we design a unicast system that is 1
2 -

NE-stable with small additive ε as follows: (1) Execute Line 1− 2 in Algorithm
3; (2) Compute LB(s, q1,b), and set φ = |LB(s,q1,b)|

2 ; (3) If φ ≤ η1 then set
σAU

1 (η1, b̃) = 1 and ξAU
1 (η1, b̃) = φ. Every relay link on LCP is selected and

receives an extra payment b′i. (4) Set PAU
i (η1, b̃) = PAU

i (η1, b̃)− γ · (b′i − bi)2 for
each link ei 6∈ LCP(s, q1,b′).

Theorem 7. The unicast system ΨAU = (MAU,SAU) has Nash Equilibria for
links, and ΨAU is 1

2 -NE-stable with ε additive, for any given ε.



With the unicast system ΨAUC, we can simply extend the unicast system to
a multicast system by treating each receiver as a separate receiver and applying
the similar process as in the unicast system ΨAU. Notice that the bid vector
is b̃ = (b,b(1)′,b(2)′, . . . ,b(r)′). The details are omitted here due to the space
limit. For more details, please refer [12].

5 Conclusion

In this paper, we study the multicast system in networks consisting of selfish,
non-cooperative relay links and receivers. We first prove that no unicast system
can achieve α-stable when α > 1

n . We then present a unicast system that is 1
n -

stable, which closes the bounds of the budget balance factor. We extend this idea
to a multicast system that is 1

rn -stable where r is the number of the receivers.
We also consider how to relax the strategyproofness requirement for the links
and propose the FPA mechanism in Axiom Model that provably reduces the
inevitable overpayment by achieving Nash equilibrium for the relay links. Based
on the FPA mechanism, we propose a unicast system and a multicast system
that are 1

2 -NE-stable with ε additive and 1
2r -NE-stable with ε respectively.
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