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ABSTRACT
Users increasingly depend on WLAN for business and enter-
tainment. It is well-recognized that wireless links are prone
to errors. Previous work, ER, proposed to use network cod-
ing (NC) for providing more ef�cient MAC-layer retrans-
mission scheme in WLAN. However, it uses inef�cient and
costly reception report scheme and does not consider the ef-
fect of heterogenous and time-varying wireless conditions
and fairness. These issues are critical for getting full bene�ts
of network coding. We show that, without addressing them,
NC may even cause negative effect on the system. In this pa-
per, we present a novel MAC-layer retransmission scheme,
namely XORR, which uses reception estimation without ex-
tra overhead and adopts NC-aware opportunistic scheduling
with maintaining temporal fairness in WLAN. We prove our
NC-aware scheduling algorithm is fair and it will always im-
prove the expected goodput for each wireless clients. We
further verify XORR with extensive simulation as well as
experiment studies and �nd that our scheme outperforms tra-
ditional opportunistic scheduling (without NC) and 802.11
about 25% and 40%, respectively.

1. INTRODUCTION
The proliferation of 802.11 wireless networking products

have encouraged the development of wireless local-area net-
work (WLANs). However, wireless networks are notori-
ous for error-prone natures, because of time-varying chan-
nel fading, interference or collisions. Recent measurement
on IEEE 802.11-based WLAN has revealed that many wire-
less links suffer from moderate to severe frame losses (20-
60%) [1, 4]. For the sake of reliable communication, con-
temporary WLANs use automatic repeat request (ARQ), a
MAC-layer retransmission mechanism, to recover the cor-
rupted frames. Nevertheless, when the channel's quality de-
teriorates for a long period, ARQ-based retransmissions trig-
gered by a missing link-layer ACK become ineffective and
wasteful. In this paper, we focus on utilizing network cod-
ing (NC) for ef�cient retransmission in single-hop wireless
networks, where many mobile stations are communicating
directly with an access point (AP).
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Figure 1: Illustration of Network Coding. (a) The ba-
sic Alice-and-Bob scenario. Here a number in front of a
packet denotes the time-instance when the packet is sent.
(b) Network coding reduces the number of retransmis-
sions in single-hop wireless network.

Network coding (NC) is an emerging technology to in-
crease the utilization of both wired and wireless networks. It
was �rstly proposed in the context of multicast in wired net-
works by Ahlswede et.al. [2]. They showed that having the
intermediate nodes mix information in different messages
can achieve maximum multicast capacity. Recently, network
coding has been adapted to support unicast applications in
wireless networks by exploiting the broadcast nature of the
wireless medium [3,9,15,18,19]. This can be illustrated us-
ing the simple example in Alice-and-Bob scenario [18], as
shown in Fig. 1(a). In this scenario, Alice wants to send
frame p1 to Bob and Bob wants to send p2 to Alice. They
need a relay in the middle to exchange the frames. The
traditional strategy needs total 4 transmissions. With net-
work coding, the relay XORs the two frames and broadcasts
the mixed frame. Accordingly, both Alice and Bob can de-
code the needed frame when receiving coded frame. Thus,
3 transmissions are needed. Network coding improves the
network throughput compared to traditional schemes by re-
ducing the required transmissions from four to three (33%
coding gain).

The above wireless network coding schemes mainly fo-
cus on multi-hop wireless networks. In such coding scheme,
there are no coding opportunities for single-hop path [13].
However, it has been shown in [13, 20] that network cod-
ing can be used for combating frame losses in single-hop
wireless networks. As shown in Fig. 1(b), assume the AP
transmits frame p1 to u1 and p2 to u2. Both frames to u1

and u2 are lost, but u1 overhears p2 and u2 overhears p1.
After getting reception report from the users, the AP can re-
transmit a coded frame, p1⊕p2, instead of any single frame.
Thus, NC can reduce the retransmission by utilizing oppor-
tunistic listening, i.e. a broadcast wireless medium creates
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many opportunities for nodes to overhear packets so that a
node may use overheard frames for decoding. Note that the
opportunistic listening is not necessary for NC in multi-hop
wireless network, but is essential for NC in single-hop wire-
less network. Without opportunistic listening, the retrans-
mitted coded frames cannot be decoded.

Although previous work [13, 20] has demonstrated that
NC can be used to enhance MAC-layer retransmission, three
critical design issues due to the effect of wireless character-
istics have not been considered:
• How to avoid/reduce the burden of reception re-

port? Since the wireless medium is a scare resource,
the signaling overhead of sending reception report is
expensive. Our simulation in Section 5 also shows that
the reception report scheme is inef�cient.

• How to adapt NC to heterogenous and time-varying
wireless environment? To this end, a more recent
work [3] has presented a joint NC and scheduling scheme.
However, their scheduling scheme is not suitable for
NC in single-hop wireless networks. Because [3] omits
the effect of opportunistic listening from their schedul-
ing, but opportunistic listening is essential for applying
NC in single-hop wireless network.

• How to maintain fairness when using NC? Network
coding schemes designed only to maximize the overall
throughput could be unfairly biased. In wireless net-
works, one important fairness concept is the temporal
fairness [10, 11, 16]. However, it is non-intuitive to as-
sign service time for users when they are mixed in a
coded frame. To the best of our knowledge, this is the
�rst attempt to identify the issue of time assignment
when a temporal fairness is applied to an NC sched-
uler.

By addressing above issues, we present a novel MAC-
layer retransmission scheme, namely XOR Rescue (XORR),
which exploits opportunistic scheduling and network coding
in WLAN under temporal fairness constraint. Our main con-
tributions are summarized as follows.

1. The Bayesian learning technique is used for the esti-
mation of the reception status, which incurs no extra
signaling overhead.

2. An opportunistic NC scheduling tailored to MAC-layer
retransmission in single-hop wireless network is de-
signed.

3. We design a NC-aware fair scheduler with a novel fair
service time assignment algorithm for network-coded
frames. We theoretically prove that our scheduling
guarantees temporal fairness and will always improve
the expected throughput for each wireless client.

4. We theoretically characterizing the potential network
coding gain for lossy wireless environment.

5. We evaluate XORR with extensive simulations. Our
results show that XORR can signi�cantly reduce the
number of retransmissions (10-60%) in various situ-
ations with heterogenous and time varying channels.

Thus, XORR improves the network capacity by 10 −
30% compared to the traditional opportunistic schedul-
ing without coding, and over 40% regarding to existing
IEEE 802.11 network.

6. We implement a prototype of XORR and conduct ex-
periments in a real �ve-client wireless test-bed. Our
results show XORR improves goodput by 8% for UDP
traf�c, and 14.5% for TCP traf�c compared to the tra-
ditional opportunistic scheduling without coding.

The rest of the paper is structured as follows. We review
the related work in Section 2. We present an overview of
the design approaches of XORR in Section 3 and detailed
design of XORR in Section 4. The simulation and exper-
imental studies of our protocols are presented in Section 5
and Section 6, respectively. Finally, we conclude our paper
with future works in Section 7.

2. RELATED WORK
XORR builds on prior work on loss resilience, wireless

network coding, and opportunistic scheduling.
Loss Resilience. ARQ, a MAC-layer retransmission mech-

anism, is commonly used to handle unreliability. Due to
the inef�ciency of ARQ in lossy wireless networks, previ-
ous work, like PPR [21], SOFT [23], and Hybrid ARQ [22],
has been proposed to exploit partially correct receptions to
recover the corrupted frames. XORR takes a different ap-
proach from the above work: instead of applying FEC or
physical layer information to frame retransmission, it uti-
lizes network coding to provide a more ef�cient retransmis-
sion scheme.

Wireless Network Coding. Recently, network coding
has been found as an innovative means to enhance the wire-
less communication by taking advantage of the broadcast na-
ture of the wireless medium [9, 18]. In particular, COPE [9]
develops a practical network coding scheme for unicast in
multi-hop wireless networks. It utilizes network coding for
the original transmissions. However, in such coding scheme,
there are no coding opportunities for single hop wireless net-
works [13]. In contract, XORR uses network coding to make
the MAC-layer retransmission more ef�cient in single hop
scenario.

Opportunistic scheduling. Opportunistic scheduling has
been proposed to improve the network performance by ex-
ploiting multiuser diversity [8, 10, 11]. It has been demon-
strated in [3] that network coding should be jointly con-
sidered with scheduling to maximize the network capacity.
However, Ref. [3] mainly focuses on characterizing the ca-
pacity region with joint NC and scheduling. No practical
algorithms are presented. Furthermore, due to omitting op-
portunistic listening from the scheduling [3], it is not suit-
able for the NC-aided retransmission in single-hop wireless
networks. XORR presents not only a primary design of an
opportunistic NC scheduling for retransmissions but also a
heuristic algorithm for ef�cient coding selection.

One work most related to XORR is ER [13], which ex-
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tends the COPE algorithm [9] to retransmission scheduling.
ER shares the same idea of using NC for retransmission with
XORR, but with three differences. First, ER relies on peri-
odical reception report, while XORR embraces a probabilis-
tic regime to estimate the reception status without additional
control frame. Second, ER uses a simple scheduling policy
that defers retransmission in a retransmission queue up to a
prede�ned threshold. However, XORR builds up an oppor-
tunistic NC scheduler to exploit the gain of multi-user diver-
sity as well as network coding. Third, XORR ensures the
temporal fairness among users and has a proven property to
always improve the performance of each user in unreliable
networks.

A work is recently proposed about the reliability gain of
NC for reliable multicast in multi-hop wireless networks [5].
Ref. [5] presents an analysis on the expected number of trans-
missions using ARQ, FEC and NC, with tree-based reliable
multicast, and shows NC reduces the need of transmission.
XORR focuses on improving the performance of single-hop
wireless networks with NC-based ARQ. XORR shows sig-
ni�cant performance improvement even for unicast traf�c.

3. OVERVIEW
We introduce XORR, a new retransmission scheduling

based on network coding for single-hop wireless networks.
Table 1 summarizes the terms used in the rest of the paper.

Term De�nition
Native frame A non-coded frame

Coded frame A frame that is XORed from multi-
ple native frames

Original frame A native frame that is �rst being
transmitted

Retransmitted frame
A native that is being retransmitted
or a coded frame that contains only
lost native frames

Coding set A set of native frames that are en-
coded in a Coded frame

Table 1: De�nitions of terms in this paper.

3.1 System model
In this paper, we mainly consider single-hop wireless net-

works. As shown in Fig. 1(b), there is a wireless access point
(AP) and a set of clients U = {u1, u2, · · · , uN} that are as-
sociated to the AP. Clients can only communicate to the AP
directly. Each link between the AP and a client uj is denoted
as lj , which has associated a time-varying transmission rate
rj and a link reliability γj . We consider a packet network,
where the AP transmits data to each user in unit of frame.
We assume that the AP maintains a per client queue, and we
denote pj as the HOL (head-of-line) frame to user uj . We
denote Lj as the size of pj . Therefore, when the AP selects
pj to transmit, the transmission time is Tj = Lj

rj
.

We assume all wireless links are independent, i.e., the
variables ri (1 ≤ i ≤ N ) are independent and γi (1 ≤ i ≤
N ) are independent. Due to the broadcast nature of the wire-
less medium, all clients may overhear the transmissions of
other nodes in the network. When the AP transmits a frame
to a client ui, another client uj can successfully receive the
frame with a probability of γj . When a client successfully
decodes a frame targeting at it, the client would send the AP
an acknowledgement (ACK) to con�rm the reception of the
frame. Upon receiving the ACK from the client, the AP will
remove the frame from the transmission queue and a new
frame will move to the front of the queue.

In this paper, we focus on the downlink traf�c, because
that most of the traf�c in a wireless network is downloading.
Later, we will show in Section 4 that XORR can also be
bene�cial in two-way traf�c scenario.

3.2 Coding and decoding
In this work, encoding a coding-set g, a group of frames,

is to perform XOR operations on these frames and gener-
ate a coded frame pg =

⊕
i∈g pi. The resulted frame pg

has a frame length equal to the maximal frame length of the
coding-set Lg , or Lg = maxi∈g Li.

XORR employs a few principles in coding and decoding.
First, we employ an immediate decoding principle. When
receiving a coded frame, the client tries to decode any na-
tive frame immediately from its past received frames. If
the decoded frame is not for the client itself, it is stored in
a buffer and can be used to decoded the following coded
frames. If the client fails to decode, the coded frame is dis-
carded silently. The second principle we adopt is never en-
code an original frame. A frame is called original if it is
a native frame that has never been transmitted before. So,
if an original frame is XORed with other frames, no client
can decode this coded frame. As a consequence, in XORR,
network coding only happens among the frames which need
retransmission. The �nal principle is that we never XOR two
frames to the same client. This is because a coded frame
XORs of these two lost frames can not be decoded by that
client. Therefore, XORR only encodes retransmissions of
the HOL frames of different clients. Thus, each client in
XORR only needs to keep up to (N − 1) native frames for
decoding, where N is the number of active clients in the net-
work.

3.3 Understanding coding gain
One nature question on XORR is how bene�cial it is. This

section provides some insight into the expected performance
gain of XORR and the factors that affect it. Here, we present
some insights using a simple model where all users in the
network have the same transmission rate r and link reliabil-
ity γ. Assume that all frames are of same size and all users
are always backlogged.

We de�ne the coding gain as the ratio of goodput achieved
by XORR, to that by the current non-coding approaches.
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Clearly, the coding gain of XORR depends on the wire-
less link reliability. If the links are perfect reliable, then
XORR may provide no coding gain since no retransmis-
sion is needed. Obviously, the coding gain of any scheme
is bounded from above by 1

γ .
Let λ denote the expected goodput with the current non-

coding approach. We have λ = γ · r. Now let's consider the
expected goodput with XORR. Here, we assume the AP has
the perfect knowledge on which native frames have been re-
ceived by each user. Hence the AP only selects a coding-set,
which is decodable at every targeted receiver when the client
receives it. The AP starts to recover lost frames when the
number of users waiting for retransmission reach the thresh-
old, denoted by N; otherwise, the AP sends the original
frames. Let K denote the expected coding size (i.e. number
of native frames used to get a coded frame).Theorem 1 char-
acterizes the coding gain of XORR. The proof is outlined in
Appendix.

THEOREM 1. The coding gain of XORR is B = K
1−γ+γK .

According to the previously de�ned coding and schedul-
ing policy, an upper and a lower bound on the expected
coding-set size, K, is presented in Lemma 2. We prove
Lemma 2 in Appendix.

LEMMA 2. The expected coding-set size K satis�es,
N∑

κ=1

1− (1− γ(κ−1)κ)b
N
κ c ≤ K ≤

N∑
κ=1

1− (1− γ(κ−1)κ)m

(1)
where m =

(
N
κ

)
.

As shown in Lemma 2, a larger N results in a larger K.
In other words, a better scheduler can opportunistically de-
fer the retransmission to create more coding opportunities,
so that when doing loss-recovery, it can potentially encode
more frames into one retransmission.

Table 2 presents some numerical results of the expected
lower and upper bounds of XORR coding gain with respect
to different N. We can see with a moderate number of N,
XORR can effectively reduce the retransmissions and thus
improve the system performance.

3.4 Scheduling
The core part of XORR is the scheduling. Whenever a

transmission opportunity occurs, the scheduling discipline
selects a native frame or coded frame to transmit. Previous
schedulers combining with network coding [3, 19] are de-
signed only to maximize the overall throughput. This could
be unfairly biased, especially when there are users with widely
disparate distances from the AP. Therefore, the task of the
scheduling discipline in XORR is to optimize the system
performance under certain fairness constraint. In wireless
networks, one important fairness concept is the temporal
fairness [10,11,16]. Under temporal fairness scheduler, each

N = 10 N = 100 N →∞
γ Lower Upper Lower Upper Lower Upper
0.9 1.08 1.09 1.09 1.11 1.10 1.11
0.8 1.15 1.19 1.18 1.23 1.21 1.23
0.7 1.21 1.29 1.26 1.37 1.32 1.38
0.6 1.26 1.39 1.35 1.52 1.45 1.55
0.5 1.29 1.49 1.41 1.70 1.60 1.78
0.4 1.29 1.54 1.47 1.88 1.73 2.60
0.3 1.24 1.57 1.55 2.08 1.88 2.40
0.2 1.14 1.58 1.59 2.15 2.09 2.78
0.1 1.04 1.32 1.34 1.93 1.84 3.08

Table 2: Numerical results of coding gain.

user may allocate an equal service time (air-time) instead of
throughput.

Our XORR follows the temporal fairness concept. Un-
like prior work which only selects a single frame to trans-
mit, XORR may select a set of users and XOR their HOL
frames into one transmission. We denote U t

g as the utility if
a set, g, is selected to code and transmit at time t, |g| ≥ 1.
We assume U t(.) is non-negative and bounded. We denote
~U t = {U t

g}, g ∈ 2U the performance vector of all possible
sets at time t. XORR scheduling can be de�ned in Eq. (2).

ĝt = arg max
g

U t
g, s.t. αi = αj , i 6= j, (2)

where αi is the average service time allocated to user i, and
the arg max means ĝ is the set that maximizes the utility.
Note that the traditional scheduling disciplines can be re-
garded as a special case of the preceding model, where g
always contains only one user.

Before delving into the details of XORR in Section 4,
we brie�y outline three issues that challenge the design of
XORR, which are not mentioned or fully addressed in pre-
vious NC approaches.

(a) Reception Estimation: Obtaining reception informa-
tion is crucial for the success of coding because the AP needs
to ensure a high likelihood that the coded frame can be de-
coded by multiple clients. In ER the AP knows explicit re-
ception status by getting periodic reports from users. How-
ever, through our simulations, such reception report mecha-
nism causes the following problems: 1) The signaling over-
head for reception report offsets the coding gains. 2) Using
larger period of report can alleviate the burden of signaling
overhead, but results in less coding ef�ciency. 3) The period
is dif�cult to adjust because the optimal period depends on
the sending rate, the link quality and the number of users,
which are normally time-varying in wireless networks. The
mis-chosen period may even degrade performance severely.
Therefore, in this work, we propose a Bayes-based approach
to estimate the up-to-date reception status without additional
feedback.

(b) Coding-set Selection: Previous design, ER, simply
chooses a set of frames that contains maximum frames and
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is decodable by all destinations. Such coding-set selection
may not be optimal or even degrade the performance because
different frames may have different size; instantaneous wire-
less links also have heterogeneous reliability and transmis-
sion rate, referred to as multiuser diversity. Similar obser-
vation has also been reported in [3]. However, the schedul-
ing in [3] cannot be applied to XORR directly because op-
portunistic listening, the essential source of network coding
opportunities for retransmission in single-hop wireless net-
works, is omitted from the scheduling. Thus we design a
scheduling algorithm for selecting coding-sets which con-
siders varying link rate, link reliability and the impact of
frame size. Furthermore, owing to our estimation scheme
for reception status, the AP only has the probability of the
reception status. Hence, the coding-set selection in XORR
should be designed based on this probabilistic framework.

The following example explains how network coding can
be bene�cial with this probabilistic framework. Assume all
have a data rate r = 1, a frame size 1, and a delivery prob-
ability of γi = 70%. Assume the AP transmits frame p1 to
u1 and p2 to u2 and both frames to u1 and u2 are lost. In-
stead of getting feedback from u1 and u2, the AP estimates
that u2 and u1 may overhear p1 and p2 with a probability of
70%, respectively. Then the probability that u1 can recover
its frame when sending a coded frame, p1⊕p2, is (0.7)2, be-
cause it should receiver both p2 and p1 ⊕ p2. Same happens
to u2. Thus, the expected goodput by sending this coded
frame is (0.7)2 + (0.7)2 = 0.98, while the expected good-
put by sending any native frame is 0.7. Hence, sending the
coded frame, p1 ⊕ p2, has about 40% coding gain.

(c) Fairness: With temporal fairness, one important task
of AP is to assign equal service time to all clients. However,
with network coding, it becomes non-intuitive to count ser-
vice time for clients when they are mixed in a coded frame.
For example, if two frames p1 and p2 are encoded and trans-
mitted, how much time is served for u1 and u2, respectively.
One naive solution may evenly distribute the transmission
time between these two clients. But in fact, this strategy
causes signi�cant unfairness, because different users may
have different decoding ability. Consider an example as fol-
lows. The link reliability of u1 and u2 is 0.8 and 0.6, re-
spectively. AP transmits p1 and p2 and both of them get
lost. Then, AP XORs p1 and p2 to opportunistically recover
both losses. This is reasonable since the expected recovered
frames are 0.82 + 0.62 = 1, larger than any single retrans-
mission. But u1 and u2 may have different probability to
decode the frame, since u1 has higher probability to have p2

than u2 has p1. Consequently, equally distributing the trans-
mission time of the XORed frame among these two users
brings unfairness to u2. Thus, u2 may even have less good-
put than in non-coding cases, or even be starved in some
cases as veri�ed in our simulations.

4. XORR DESIGN

4.1 Opportunistic scheduling framework
XORR maximizes the network performance under tem-

poral fairness constraint. To provide a bounded short-term
temporal fairness among all clients, XORR follows a credit-
based approach as in [11] that assigns a state variable, credit,
to control the fairness property, but XORR extends the frame-
work to support network coding. Denote Ki as the credit of
client ui.

As aforementioned, when a coded frame is transmitted, it
needs a service time assignment to distribute the actual trans-
mission time to all users that are encoded. Assume A is a
service time assignment algorithm that determines the frac-
tion of service time for each member when a coded frame is
served. Let g be the coding-set. A (g, i) = δi is the fraction
of assigned service time for ui, i ∈ g. Algorithm A should
satisfy

∑
i∈g δi = Tg, where Tg is the overall transmission

time for that coded frame pg.
The �de�cit� of each user in the coding-set g can be cal-

culated as ∆i = δi −Ki. We further de�ne the �de�cit� of
the coding-set g as the maximum of all its member users, or
∆g = maxi∈g ∆i.

Then, XORR scheduler is de�ned as follows:
ĝt = arg max

g
U t

g −∆t
g, (3)

where U t
g is the utility to transmit the coding-set g.

Eq. (3) balances the transmission utility and the fairness
constraint. It tries to select a coding-set (possible with only
one frame) that maximizes the utility while has minimal ser-
vice time �de�cit� to ensure the fairness. A user accumulates
its credit when it is not scheduled (selected in a coding-set).
Following the scheduling decisions, all backlogged users up-
date their credits as described via pseudo-code in Fig. 2.

1: function UpdateCredit(g)
2: for uj ∈ g do
3: Kj ← Kj − δj

4: end for
5: if ∆g > 0 then
6: for all uj ∈ U do
7: Kj ← Kj + ∆g

8: end for
9: end if

Figure 2: Pseudo-code to update credits.

After a set g is selected and the coding frame is transmit-
ted, all members in g will decrease their credits by the frac-
tion of service time assigned to them (Line 2-4). If any user
has de�cit (∆g > 0), then all users will adjust its credits by
adding ∆g (Line 6-8). Through this, other unscheduled users
may accumulate their credits and all users get non-negative
credit values.

Let αi(t1, t2) be the allocated service time of client ui

during time interval [t1, t2). We show with following Theo-
rem 3 that the scheduling discipline de�ned in Eq. (3) achieves
bounded temporal fairness. We outline its proof in Appendix.
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THEOREM 3 (TEMPORAL FAIRNESS). Under XORR sched-
uler, for any two users ui and uj that are continuously back-
logged over any interval [t1, t2), we have

|αi(t1, t2)− αj(t1, t2)| ≤ max
t

Lt
i

rt
i

+ max
t

Lt
j

rt
j

+ 2Umax,

where Lt
i is the frame size of ui at time t and rt

i is the trans-
mission rate of ui at time t.

Recall that, for traditional non-coding transmission sched-
uler, the goodput of a client is linearly decided by the service
time received by the client. Thus, service time fairness im-
plies certain goodput fairness among clients. We later will
design a service-time allocation scheme such that temporal
fairness in the network-coding transmission scheduler also
implies goodput fairness. To the best of our knowledge, this
is the �rst attempt to address this issue in the literature.

4.2 Reception Estimation
In XORR, the AP does not require its clients to explicitly

acknowledge every native frame that they have overheard,
instead the AP estimates the probability that a client has cer-
tain native frames, based on its link reliability. Note that a
client may still acknowledge the reception of its own frame
if it successfully receives one. In our analysis, we always
assume that ACKs will never get lost. The AP maintains
a statistic on the reliability1 γt

i to each client ui. This in-
formation is already available for most of existing wireless
networks. In XORR, the AP also maintains a score-table Y
that has N×N entries. Each entry yi,j records the probabil-
ity for ui to have the HOL native frame of client uj . We then
discuss in detail how the AP updates Yt+1 for current time
t + 1 from the information (Yt and results of transmission)
at time t.

The table initially contains all zeros. When the AP trans-
mits an original frame pj (and pj is lost), it will update the
column j of its score-table accordingly,

yi,j = γi, 1 ≤ i ≤ N.

Such estimation will be updated once a frame is sent (either
a native frame pj or a coded frame that contains pj).

If pj is directly sent, then the probability that ui does not
have pj after the transmission is the union of two events: ui

has no pj before the transmission and ui does not receive the
retransmission neither. Thus, we have

yt+1
i,j = 1− (1− yt

i,j)(1− γi), i 6= j. (4)

However, when a coded frame pg is sent, the estimation
of yi,j is a little bit subtle. We consider two cases separately.
A client is in the set g or not. For the �rst case that clients
are not contained in the set, i.e. ui, i 6∈ g, they may decode
a native frame in g, if possible. Then, the probability that ui

1For simplicity, we may omit the dependence on time t when no
confusion occurs.

(i 6∈ g) does not have pj after the transmission is the union
of two events: ui has no pj before the transmission and ui

fails to decode pj . Therefore, we have

yi,j = 1−(1−yi,j) ·

(1− γi) + γi(1−

∏

q∈g\j
yi,q)


 . (5)

The equation enclosed in the square-bracket re�exes the prob-
ability that ui fails to decode pj , which happens either due to
fail of reception (the �rst term) or because it misses enough
native frames to decode the coded frame (the second term).

The second case is to update yk,j for the clients that are in
the set, i.e. uk, k ∈ g. Certainly, if the AP receives an ACK
from uk, it means that uk has successfully decoded its frame
pk from pg. This implies that uk should have all other native
frame pq , q ∈ g \ k. Thus, the AP will update

yt+1
k,q = 1.

Otherwise, uk fails to acknowledge. It may be because either
uk fails to receive the transmission or it does not have all
needed native frames to decode. Thus, the new yk,j , j ∈
g \k is estimated based on the Bayes-law. We denote yk,j =

1−yk,j and Pr
(
ACKt+1

k

)
the probability that uk does not

acknowledge at current time t + 1. Then, we have

yt+1
k,j =

yt
k,j

Pr
(
ACKt+1

k

)
.

Note Pr
(
ACKt+1

k

)
= (1 − γk) + γk(1 − ∏

q∈g\j yk,q).
Thus,

yt+1
k,j = 1− 1− yt

k,j

(1− γk) + γk(1−∏
q∈g\j yt

k,q)
. (6)

When a client successfully decodes its own frame, it should
immediately send an ACK to the AP. Upon receiving the
ACK of pi, the AP removes pi from the head of queue for ui

and is ready to transmit the next frame to ui. Since pi will
never be sent again, its estimations are removed from the
score-table. The corresponding column is cleaned to zero
to record the estimations of the next frame to ui. Note that
with this ACK, a client can piggyback the information of its
received native frames to further facilitate XORR recovery.
Then, if the AP receives an ACK that piggybacks such infor-
mation, it may update the corresponding estimation to one.

4.3 Coding-set Selection
Unlike transmitting a native frame pj , whose expected

goodput is rjγj , the goodput achieved by transmitting a coded
frame pg depends on how well the coded frame can be de-
coded by its clients.

DEFINITION 1 (DECODING ABILITY). The decoding abil-
ity Ag

i , i ∈ g is the probability that user ui can decode its
frame pi from a coded frame pg over a set g of frames.
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The decoding ability can be estimated from the score-
table maintained at the AP. For a user ui, Ag

i can be cal-
culated using the following equation, Ag

i =
∏

j∈g\i yi,j ,
where yi,j is an element of the score-table that records the
estimated probability that ui has the native frame pj .

We then derive the expected goodput (i.e., the expected
number of bits, targeted to it, are received per unit of time)
of a client in a coding-set g. We denote pg as the coded
frame for pj , j ∈ g. Let Lg be the size of pg. Then, we have
Lg = maxj∈g Lj . Let rg be the transmission rate to send
the coded frame, pg. We have rg = minj∈g rj . Thus, to
transmit frame pg, the air time consumed is Tg = Lg

rg
. Then,

for every ui ∈ g, the expected goodput χg
i is

χg
i =

Li

Tg
· γi ·Ag

i , (7)

where γi is the reliability to ui, and Ag
i is the decoding abil-

ity of ui for the coded frame pg. Then, the expected goodput
of the coding-set g is

χg =
∑

i∈g

χg
i . (8)

From the above derivation, one can �nd the expected good-
put of a coding-set can be low if it fails to be decoded by
many members. In XORR, we only focus on the coding-
set that improves the system goodput. In other words, we
only select the coding-set that has higher expected goodput
compared to transmission of any of its members. We call
a coding-set g satis�ed this condition as a valid coding-set.
Hereafter, unless otherwise mentioned, a coding-set is re-
ferred as a valid coding-set. The proof of the following the-
orem simply follows the de�nition of the valid coding-set.

THEOREM 4. Let g be a valid coding-set. χg ≥ ri ·
γi, i ∈ g.

To �nd the optimal coding-set that has the maximal ex-
pected goodput is complex. Denote Ψ as the set of users that
are waiting for retransmission. We then have the following
theorem, whose proof is in Appendix.

THEOREM 5. Finding an optimal coding-set g at time t is
NP-hard and cannot be approximated within |Ψ|1−ε unless
NP=ZPP, for arbitrary small ε > 0.

Thus, we propose a heuristic coding-set selction algorithm
in Section 4.5.

4.4 Service Time Assignment
When transmitting a coded frame, the transmission time

is shared among the members in the coding-set. It is critical
to distribute this transmission time among them. If not prop-
erly assigned, some users may have signi�cant performance
degradation. Our goal is to design a service time assignment
algorithm, so that for any user, it will have performance im-
provement with XORR (compared with non-coding). We

call any service time assignment that achieves this goal as
fair service time assignment.

We de�ne the relative coding edge ψg
i of ui in a coding-

set g as the ratio of the expected goodput of ui when being
coded to that without coding. That is ψg

i = χg
i

ri·γi
. We can

see that 0 < ψg
i ≤ 1. This is because for a user ui, when

being encoded, it may take longer time to transmit (Tg ≥ Ti)
and it may still not be able to decode even if it received the
coded frame.

We propose that the distribution of the transmission time
of Tg among the members of the set should be proportional
to the relative coding edge of each member. We denote δg

j as
the service time that is assigned to uj , when pj is encoded
in a set g. Then we have

δg
i = Tg · ψg

i∑
j∈g ψg

j

. (9)

THEOREM 6. Given a coding-set g. De�ne λj , the effec-
tive goodput of uj served in this transmission of in a coding-
set g, as

λj =
χg

j · Tg

δj
. (10)

If the service time assignment strategy is de�ned as Eq. (9),
for every user in a coding-set, its effective goodput should be
no less than that when its native frame is being transmitted
alone, i.e. ∀ui ∈ g. λj ≥ riγi.

PROOF. By de�nition, λj =
χ

g
i

ψ
g
i
·Pj∈g ψg

j = ri ·γi ·
P

j∈g ψg
j .

Let ĵ = arg maxj∈g rj · γj . We haveX
j∈g

ψg
j =

X
j∈g

χg
j

rj · γj
≤
X
j∈g

χg
j

rĵ · γĵ

=
1

rĵ · γĵ

·
X
j∈g

χg
j

From Theorem 4, we have χg =
P

j∈g χg
j ≥ rĵ ·γĵ . Therefore,P

j∈g ψg
j ≥ 1. Thus, the theorem is proven.

Next theorem (whose proof is in Appendix) shows that our
scheme achieves better expected goodput. Note our schedul-
ing achieves temporal fairness.

THEOREM 7. Given any scheduling disciplineL that achieves
temporal fairness, denote λXORR

i and λLi the goodput of ui

with and without XORR. If the service time assignment strat-
egy is de�ned as Eq. (9),

E(λXORR
i ) ≥ E(λLi ).

4.5 Put Everything Together
We �rst present the scheduling �ow of XORR. And then

we present a few remaining components for our NC-aware
scheduling.

XORR scheduling �ow. The pseudo-code of XORR op-
eration is shown in Fig. 3. In XORR, the AP classi�es the
users into two groups: TxGroup and RetxGroup. If the
HOL frame of a user ui is an original frame, ui is put into
the TxGroup queue. If a frame is detected to be lost, the
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AP moves its corresponding user to the RetxGroup queue.
A queue in RetxGroup is moved back to TxGroup once
its HOL frame is acknowledged. The scheduling function
takes a loop which examines the best scheduling candidates
in TxGroup and RetxGroup. In TxGroup, the candidate
set is always one original frame; while in RetxGroup, a
coding-set may contain multiple frames. As we shown in
Theorem 5 that �nding an optimal coding-set is NP-hard,
we will propose a heuristic algorithm for function Select-
CodingSet below. According to Eq. (3), the scheduler selects
the best set to encode (if needed) and transmit (Line 9). The
pseudo-code of function UpdateCredit is shown in Fig. 2.

Coding opportunity. XORR introduces a new coding op-
portunity to reduce the retransmission. Therefore, it is rea-
sonable to defer the recovery of a lost frame for a while to
pursue the potential coding possibility. To do so, we arti-
�cially bias for choosing an original frame to transmit by
multiplying a factor on the expected goodput. More speci�-
cally, we calculate χ∗g using following equation,

χ∗g =
{

θχi, if pi is an original frame
χg, otherwise (11)

where θ > 1 is a tunable parameter that gives bias to schedul-
ing original frames to increase the coding opportunities. Then,
the utility of the selected set is calculated using χ∗g in Eq. (12).

Utility function. We de�ne the utility of a coding-set g
as a function of the expected goodput of g. The utility Ug

is an increasing function of χg and is bounded, as de�ned in
Eq. (12).

Ug = β · Tmax · (1− e−
χg

rmax ), (12)
where Tmax ≤ maxi Li

mini ri
is the maximum transmission time

of a frame, and rmax = maxi ri is the maximum possi-
ble transmission rate. Obviously, Ug is upper-bounded by
βTmax. β is a parameter that can be tuned to balance the
opportunistically improved system performance and the fair-
ness bound [11]. This de�nition also has a nice property that
Ug is maximized when χg is maximized by choosing a set g,
i.e., g maximizes the expected goodput of all clients.

Heuristic coding-set selection. Function SelectCodingSet
as shown in Fig. 4 uses a greedy algorithm to select the best
coding-set in RetxGroup. The algorithm starts to search the
coding-set with only one user and �nd the one which has the
maximal utility minus time de�cit. This user is selected in
the group. Then, the algorithm tries to search again in the re-
maining users in RetxGroup and �nd another user to form a
better coding-set. This process continues until no more such
users can be found or all users in RetxGroup is selected.

4.6 Discussion
XORR can be easily extended to support proportional tem-

poral fairness, where each user may have a weight φi such
that αi

φi
= αj

φj
for i 6= j. Here αi is the expected service time

for user i. Denote Φ = {φ1, φ1, · · · , φn}. Then, XORR

1: function scheduling
2: loop
3: gtx ← arg maxj∈TxGroup Uj −∆j

4: grx ← SelectCodingSet (RetxGroup)
5: if Ugtx

−∆gtx
< Ugrx

−∆grx
then

6: gtx ← grx

7: end if
8: EncodeAndTransmit(gtx)
9: UpdateCredit (gtx)

10: end loop
11: end function

Figure 3: Pseudo-code for XORR scheduling.

1: function SelectCodingSet(RetxGroup)
2: g ← ∅
3: repeat
4: ĵ ← arg max

j∈RetxGroup\g
Ug
S

j −∆g
S

j

5: ĝ ← g
⋃

ĵ
6: if Uĝ −∆ĝ < Ug −∆g then
7: break
8: else
9: g ← ĝ

10: end if
11: until (g == RetxGroup)
12: return g
13: end function
Figure 4: Pseudo-code for heuristic coding-set selection
scheduler is de�ned by

ĝ(t) = arg max
g

Ug(t)−∆∗
g(t), (13)

where ∆∗
g(t) = ∆g(t)

φg
. Here φg is the weight of the coding-

set g, which is de�ned as φg = mini∈g φg. Accordingly,
the credit updates de�ned in line 7 in Fig. 2 also changes to
scale with each user's weight as Kj ← Kj + φj · ∆∗

g. The
scheduling policy de�ned in Eq. (13) achieves the propor-
tional temporal fairness among any two users in the network
αi

φi
= αi

φi
. For simplicity, we omit the proof in this paper.

XORR is also applicable with two-way traf�c to further
reduce the retransmissions, assuming clients can overhear
each other (e.g. WLAN). For example, when ui retransmits
an up-link frame pu

i , it can apply XORR to recover another
lost down-link frame pj if ui overhears the prior transmis-
sion of pj by transmitting pu

i ⊕pj . If uj happens to overhear
pu

i , it can decode pj from the coded frame. Note that the
AP can always decode the uplink frame as it already has all
downlink frames already. Scheduling two-way traf�c fol-
lows the same scheduling policy as presented. Due to the
space limitation, we omit the details.

5. PERFORMANCE EVALUATION
5.1 Simulation setup

In our simulations, we generate network topologies con-
sisting of an AP and a varying number of users. The trans-
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mission rates of each link can be 1, 2, 5.5 and 11 Mbps, as
speci�ed by IEEE 802.11b. In all simulations, the size of
the data frame is 1500 bytes. The ACK and feedback frames
are transmitted with the base rate (2 Mbps) with the size of
50 bytes. We �rst present the results under static wireless
channel, where the channel condition does not change over
time. Then, we evaluate the XORR performance under more
realistic time-varying channels.

In our simulation, we compare the performance differ-
ence with four schemes: 1) XORR. 2) Opportunistic schedul-
ing (labeled Opp). It takes the same scheduling strategy as
XORR, except each time only one native frame is allowed
to be selected to transmit. 3) IEEE 802.11-based WLAN.
This is a base-line for existing WLAN, where a shared FIFO
queue is used for all users and retransmission immediately
happens once a loss is detected. 4) ER. This is a prior NC-
aided MAC-layer retransmission scheme [13]. Unlike XORR,
ER does not adopt the opportunistic scheduling with tem-
poral fairness constraint. Furthermore, ER relies on the re-
ceiver to send feedback for obtaining the reception status.
We implement their sort-by-time coding algorithm and use
25 as the threshold for the retransmission queue. Unless oth-
erwise mentioned, the default number of users is 10 and the
transmission rate is 5.5Mbps.

We use goodput, reduced retransmission ratio and good-
put gain to qualify the performance of different retransmis-
sion schemes. Goodput is de�ned as the total data success-
fully transmitted over time. The reduced retransmission ra-
tio is de�ned as the difference of the retransmission rate 2 of
target retransmission scheme and that of 802.11 divided by
that of 802.11. The goodput gain is de�ned as the difference
of the goodput of target retransmission scheme and that of
802.11 divided by that of 802.11.

5.2 Impact of parameters
XORR has two tunable parameters, β and θ. β is used to

balance the fairness bound and the system performance gain
[11]; while θ decides how much priority should be given to
original frames than retransmissions. Fig. 5(a) shows the
goodput of XORR with respect to different β. All users are
transmitted using 5.5Mbps and the reliability is randomly
chosen from 0.4 to 0.6. As expected, the network goodput
is increased with β. With a larger β, the scheduler trades
more fairness for performance by assigning more service
time to better users. Such tradeoff has been suf�ciently dis-
cussed in literature [11]. In the following evaluation, we
choose β = 50, which achieves good balance in our sce-
nario. Fig. 5(b) depicts the goodput of XORR with the in-
crease of θ. A larger θ gives the AP more favor to trans-
mit original frames and defer the retransmission for potential
coding opportunity. As shown in Fig. 5, a small θ would be
enough for coding opportunity. In the following evaluation,
we set θ = 2.
2The retransmission rate is de�ned as the ratio of total number of
retransmissions to that of transmissions.
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Figure 5: (a) Goodput with different values of β. θ = 2(b)
Goodput with different values of θ. β = 50.
5.3 Impact of heuristic selection

We have proven that �nding the optimal coding-set is NP-
hard in Theorem 5. Therefore, a practical heuristic coding-
set selection algorithm is proposed in section 4.5. In order to
verify the effectiveness of our heuristic algorithm, we com-
pare it with an exhaustive search algorithm, which is guar-
anteed to give an optimal solution but computationally very
expensive. As shown in Fig. 6, our heuristic algorithm is ef-
�cient because it only slightly degrades the performance but
reduces drastically the complexity of the exhaustive search.
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Figure 6: Comparing Goodput performance with vari-
ous reliability between heuristic and exhaustive coding-
set seleciton.

5.4 Static channel
(a) Impact of link reliability XORR improves the network
throughput by effectively reducing the retransmissions. There-
fore, in the �rst study, we evaluate XORR's performance un-
der different link reliability scenarios. We let all users have
the same reliability, which varies from 0.9 (most reliable)
to 0.1 (most unreliable). Fig. 7 and Fig. 8 show the good-
put gain and reduced retransmission ratio over 802.11 with
different link reliability for XORR, Opp, and ER with the re-
port period of 10, 20, 50 and 200 ms. We make the following
observation:

1) As shown in Fig. 7, in the homogeneous case, 802.11
has the same goodput as Opp. This is reasonable since all
users have exactly same transmission rate and reliability and
thus no multi-user diversity gain can be utilized.

2) XORR and ER take advantage of network coding to re-
duce the retransmissions, as demonstrated in Fig. 8. When
the link reliability is larger than 80%, over 60% of retrans-
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missions are saved. When the link reliability is low, the per-
centage of saved retransmission by the coding schemes is re-
duced. This is because when the link reliability is low, each
station will have less native frame received, which results in
less coding opportunities.

3) With the decrease of the reliability, more frames are
lost. XORR thus increasingly improves the network good-
put by reducing more retransmissions as depicted in Fig. 7.
When the reliability is around 0.5, the goodput gain of XORR
is near 25%. However, when the reliability further decreases,
the improvement bends down. This is because XORR relies
on reception estimation to select coding-set when retrans-
mitting. When there are signi�cant losses, the accuracy of
the estimation decreases due to less feedback piggybacked
in ACKs.

4) The coding ef�ciency of ER heavily depends on the
feedback information carried by the reception report. Thus
ER with shorter period of reception report can reduce more
retransmissions as shown in Fig. 8. However, when con-
sidering the signaling overhead, frequently sending report
degrades the goodput performance severely. In Fig. 7, the
goodput of ER with the period of 10 ms is even worse than
that of 802.11 when the link reliability is high. Furthermore,
the period is dif�cult to adjust because the optimal period de-
pends on the data transmission rate and link quality, which
are normally time-varying. In contrast to ER, XORR esti-
mates the reception status without signaling overhead and
thus outperforms ER.
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Figure 7: Goodput gain with various link reliability in
static channels.

(b) Impact of the number of users
Fig. 9 and 10 demonstrate the goodput gain and reduced

retransmission ratio over 802.11 with different number of
users for XORR and ER with the report period of 50 ms,
when the link reliability is 0.2, 0.5 and 0.8, respectively. As
the number of users increases, the reduced retransmission
ratio also increases in XORR and ER. This is a predictable
behavior since the coding opportunity increases as the num-
ber of the users increases. However, the slope of the in-
crease quickly slows down with only moderate number of
users (e.g. 10). This actually suggests the network coding
opportunity is already signi�cant when there are only mod-
erate number of users and further increasing the users does
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Figure 8: Reduced retransmission ratio with various link
reliability in static channels.

not increase the coding opportunity greatly. Since reducing
retransmissions improves the goodput, the goodput gain of
XORR also increases as the number of users increases, as
shown in Fig. 9. However, the goodput gain of ER bends
down when the number of users is greater than 10. This is
due to the overhead for sending reports. More users intro-
duce more feedback frames, which overwhelms the coding
gain in ER.
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Figure 9: Goodput gain with different number of users
in static channels.
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(c) Heterogeneous wireless links
We evaluate XORR with more general scenario where users

may have heterogeneous reliability. To realistically model
channel condition is beyond the scope of the paper. In this
simulation, we randomly choose user's reliability from [γmin, γmax].

Fig. 11(a) compares the goodput of four schemes. In this
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Figure 11: (a) Goodput in heterogeneous and static chan-
nels, where E(γ) = 0.5. (b) Individual goodput gain.
simulation, we �x the mean of the link reliability as E(γ) =
0.5, while change ∆γ = γmax − γmin from 0 to 0.8. When
different users have different channel conditions, Opp yields
better system performance than 802.11. When ∆γ is large,
the system goodput of 802.11 dramatically decreases. This
is because Opp always allocates equal service time to all
users. Its total throughput remains unchanged with the vary-
ing ∆γ. However, 802.11, which maintains goodput-based
fairness, allocates more channel time to users with worse
channel conditions [16].

ER also adopts goodput-based fairness as 802.11 does.
Therefore, its system goodput performance also decreases
as ∆γ increases. On the other hand, XORR maintains tem-
poral fairness as Opp does. In all cases, XORR improves the
overall system goodput as it effectively suppresses retrans-
missions. The goodput of XORR drops slightly with the in-
crease of ∆γ. This is because when ∆γ is large, most of
retransmissions are targeted to low reliability users. Hence,
the effective coding opportunity is reduced. Fig. 11(b) gives
a close view of goodput gain of each individual user with
XORR in the same simulation case. The user index is sorted
with their link reliability. We can see XORR indeed im-
proves the goodput of all users (from 10% to 25%) compared
to Opp.

5.5 Time-Varying Channel
In practice, wireless channel is time-varying. The speed

of the channel condition change is generally characterized
with the channel coherence time, within which the channel
may be considered as �static� [6]. The coherence time is re-
lated to the mobility of users or surrounding environment.
We assume the channel is stationary. Therefore, we use (γ̄i,
σγ,i) and (r̄i, σr,i)3 to characterize the time-varying relia-
bility and transmission rate of link li, respectively. In our
simulation, the mean of the reliability of each user is ran-
domly chosen from [0.3, 0.7]. The coherence time is 24.45
ms, corresponding to a fast walking speed (5 m/s) [14]. The
transmission rate is �xed to 5.5 Mbps.

Fig. 12 plots the Cumulative Distribution Function (CDF)
of the network goodput when σγ = 0.1 (large variance) and
3In network like IEEE 802.11, there are only a small set of trans-
mission rate that can be used. Therefore, we actually use the trans-
mission rate index instead of transmission rate directly.
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Figure 12: Goodput in time-varying channel with static
and homogenous transmission rates. γ̄i is randomly cho-
sen from [0.3, 0.7]. Coherence time is 24.57 ms. r̄ =
5.5Mbps. σr = 0.

σγ = 0.01 (small variance), respectively. In Fig. 12(a), Opp
has slight improvement compared to 802.11. This is because
the channel variance is very small, so that little multi-user di-
versity can be exploited. In contrast, when the channel varies
largely, as shown in Fig. 12(b), Opp scheduling improves
the system throughput greatly by opportunistically schedul-
ing users with better channel condition. Since ER does not
use opportunistic scheduling to exploit multi-user diversity,
the goodput of ER is not improved when the channel varies
largely. Nevertheless, XORR provides not only coding-gain,
but also multi-user diversity. As a consequence, XORR out-
performs ER and traditional opportunistic scheduling about
10− 25% and 20− 25%, respectively. Moreover XORR has
around 30− 40% performance gain compared to 802.11.

As shown in Fig. 13(a), we further demonstrate the good-
put performance when multiple transmission rates are used
and the transmission rate of user varies over time. Each user
has a random mean of the transmission rate among 2, 5.5 and
11Mbps, and the transmission rate varies between one level
around the mean value. In this case, Opp achieves higher
performance gain as the channel condition varies very large
in terms of both reliability and the transmission rate. On
the other hand, ER performs worse than 802.11. As illus-
trated in [3], the coding gain is deducted because of the in-
appropriate coding scheduling which does not consider the
link condition. Thus ER not only cannot exploit the gain of
multi-user diversity, but also loses the coding gain. How-
ever, XORR again, by exploiting both multi-user diversity
and the network-coding, outperforms all the other schemes.

5.6 Service time assignment
As aforementioned, when transmitting an encoded frame,

the service time assignment is critical. A naive assignment
will cause signi�cant unfairness and some users would have
much worse performance with network-coding compared to
that without coding. With simulation, we validate that XORR
not only maintains the fairness but also improves the per-
formance of each user. We randomly choose the link re-
liability for each wireless link from [0.2, 0.9]. Fig. 13(b)
shows the individual goodput gain of each user over Opp
for XORR and XORR with a naive service time assignment,
which evenly distributes the transmission time among the
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Figure 13: (a) Goodput in time-varying channel with
time-varying transmission rates. Each user has a ran-
dom mean transmission rate among 2, 5.5 and 11 Mbps.
σγ = 0.1, γ̄i is randomly chosen from [0.3, 0.7]. The co-
herence time is 24.57 ms. The number of users is 12. (b)
Starvation of XORR with naive service time assignment.

coded users. We sort the user with their link reliability.
Clearly, the naive service time assignment causes signi�-
cant performance degradation for less reliable users with net-
work coding, although the overall system performance is im-
proved. However, XORR ensures the performance improve-
ment for every individual user.

5.7 Impact of estimation error
XORR relies on reception estimation to select coding-

sets. To estimate the reception of native frame for each
user, the AP further needs to estimate the link reliability.
Many existing wireless system already maintains such statis-
tics (e.g. WLAN [17]). We now evaluate XORR if reliabil-
ity estimation contains error. To model this, we arti�cially
add a noise in the link reliability estimation, γe = γc + e,
where e is a random variable following normal distribution
N (0, σe). Fig. 14 summarizes CDF of network goodput un-
der two different coherence times, 6.14 (vehicle speed) and
24.57ms (walk speed), respectively. When there presents an
estimation error, the network goodput of XORR does have
slightly degradation. But overall, the impact of estimation
error is limited, especially when the channel is not varying
very fast. It is interesting to note that XORR is less sensitive
to estimation error compared to Opp as shown in Fig. 14(a).
It may be because the network coding actually could average
this error out. Therefore, it is less signi�cant a user misses
the transmission due to estimation error, as it may get a cod-
ing opportunity later in the waiting queue.

5.8 Impact on delay
In XORR, the scheduler may defer the retransmission for

potential coding opportunity. This might cause additional
delay in frame delivery. We de�ne the frame transmission
delay (FTD) as the interval between a frame coming to the
head of the queue and the time when it is successfully re-
ceived. Fig. 15 plots CDF of frame delay measured with
different scheduling policy. 802.11 has relative long FTD
as the AP will continue retransmitting a lost frame even the
channel is bad, so that it causes HOL blocking. In contrast,

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

Fr
ac

tio
n

2000 3000 4000

Goodput (Kbps)

e=0 e=0.1 e=0.2

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

Fr
ac

tio
n

2000 3000 4000

Goodput (Kbps)

XORR Opp 802.11

(a) Coherence time 6.14 ms. (b) Coherence time 24.57 ms.
Figure 14: Goodput with estimation error in time-
varying channel model where, σγ = 0.1, γ̄i is randomly
chosen from [0.3, 0.7].
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Figure 15: CDF of frame transmission delay in time-
varying channel model where, σγ = 0.1, γ̄i is randomly
chosen from [0.4, 0.8]. Coherence time is 24.57 ms.

Opp does not have this HOL blocking issue as the scheduler
always tries to select the user in a good channel condition ir-
respective of the retransmission states. Therefore, the curve
of Opp has a shift to the left. A large portion of frames in
XORR has an even shorter FTD, i.e. 70% of frames has FTD
less than 5ms. This is because XORR signi�cantly reduces
the number of retransmissions. Note that XORR has slight
longer tail compared to Opp. This is because XORR favors
transmissions on original frames and such induces more de-
lay for retransmission.

6. TEST-BED EXPERIMENTS
We have prototyped XORR and preliminarily evaluated

its performance on real wireless test-bed. Our implementa-
tion is based on Atheros AR5212 wireless NIC in Windows
platform. We use broadcast to emulate all transmissions and
rely on software to generate ACKs. The test-bed contains
6 VIA EPIA mini-ITX boxes, each of which has a Netgear
WAG511 802.11a/b/g card. One machine works as an AP
that directly communicates with 5 other machines. We con-
duct the experiments in a typical of�ce environment. We
�x the transmission rate to 11Mbps. The links between the
AP and stations have an average reliability of 80%. Table 3
shows a summary of goodput gain in our test-bed with both
UDP and TCP �ows. Note that Opp does not have much gain
compared to 802.11 because in our environment the channel
condition is rather stable. The results show that XORR does
improve the network goodput compared to both 802.11 and
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XORR/802.11 Opp/802.11 XORR/Opp
UDP 10.7% 2.5% 8.0%
TCP 15.7% 1.0% 14.5%

Table 3: Goodput improvement in test-bed experiments.
XX/YY means the goodput improvement of XX over YY.
Opp. The coding gain XORR obtained over Opp is 8.0%
with UDP �ows and 14.5% with TCP �ows. It is interesting
to note that XORR has more performance gain with TCP. It
is because TCP is more sensitive on frame losses due to its
congestion control scheme. As XORR signi�cantly reduces
the frame losses, it improves TCP performance more signif-
icantly.

7. CONCLUSION
In this paper, we presented XOR Rescue (XORR), an ef-

�cient NC-aware scheduling for MAC retransmission. We
conducted extensive simulations and test-bed experiments to
study the performance of XORR. Our results showed that,
by exploiting both multi-user diversity as well as network
coding, XORR has a consistent improvement over the non-
coding schemes (802.11 and traditional opportunistic schedul-
ing); while prior NC-combined MAC retransmission scheme
sometimes even causes negative effect and thus performs
worse than 802.11. Furthermore, in the theoretical proof and
simulations, we showed that XORR scheduler achieves fair-
ness while at the same time results a better goodput for each
user in the system, compared with traditional opportunistic
schedulers. Our scheme can be generalized for the scenario
of uplink traf�c, and a mixture of downlink and uplink traf-
�c. The detailed scheme is omitted due to space limit.
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APPENDIX
A. Proof of Theorem 1

PROOF. After sending a coded frame with average coding size
K, the average number of ACKs is: αr = γ ·K. Since the ACKed
frames are removed from retransmission queue, there are αr va-
cancies in the retransmission queue. Consequently, the AP sends
original frames for αr users individually until the average retrans-
mission queue reaches N. Thus the average number of sent orig-
inal frames for αr users is X = αr ×

P∞
i=1 γi−1(1− γ) · i =

γK
1−γ

. Since αr frames are not ACKed after sending X original
frames, it can be inferred that the number of consequent ACKs
is αn = X − αr = γ2K

1−γ
. In summary, the total transmissions

in one retransmission period include one retransmission and X
original frame transmissions, i.e., 1 + X . And the total ACKs
should be αr +αn. Therefore the expected goodput with XORR is
λXORR = 1+X

αr+αn
·r = γK

1−γ+γK
·r. So the coding gain of XORR

is B = K
1−γ+γK

.

B. Proof of Lemma 2
PROOF. Assume ĝ is the selected decodable set. Then the aver-

age size of the set is K =
PN

κ=1 κ · Pr(|ĝ| = κ) =
PN

κ=1 Pr(|ĝ| ≥ κ).
Assume gκ

i is a decodable set with κ users, where |gκ
i | = κ. On

the other hand, gκ
i is an undecodable set with κ users. Note that gκ

i
may be part of larger set with more than κ users. Accordingly, it can
be inferred that Pr(gκ

i ) = 1− Pr(gκ
i ) = 1− γ(κ−1)κ. Thus, we

have Pr(|ĝ| ≥ κ) = Pr
�Sm

i=1 gκ
i

�
= 1− Pr

�Tm
i=1 gκ

i

�
, where

m is total number of sets with κ users, m =
�

N
κ

�
. Since there
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are overlaps among undecodable sets, the joint probability can be
bounded as Pr

�Tm
i=1 gκ

i

� ≥ Qm
i=1 Pr(gκ

i ) = (1 − γ(κ−1)κ)m.
Thus the upper bound is proven.

Assume there is an inef�cient XORR scheme that the AP groups
N users into several coding-sets so that there is no overlap among
the grouped sets, i.e. there are bN

κ
c sets, and κ users in each set,

where κ = 1, 2, · · · , N. the AP later selects a decodable set among
those un-overlapped sets as a coding set. It can be inferred that
K ≥ Kl, where Kl is the expected size of the coding-set in the
inef�cient XORR scheme. Since there is no overlap among sets
in the inef�cient scheme, the joint probability is Pr

�Tm′
i=1 gκ

i

�
=

(1 − γ(κ−1)κ)m′ , where m′ = bN
κ
c. Therefore, the lower bound

is proven.
C. Proofs of Theorem 3

LEMMA 8. For any �ow i and for any schedule time t, the
credit counter value is always bounded as

0 ≤ Ki ≤ max
t

Lt
i

rt
i

+ Umax,

where Umax is the maximal value of utility function.
PROOF. According to the credit update in Figure 2, Ki ≥ 0.
For the right part of the inequality, the proof is separated into

two cases according to ∆t
g is greater to zero or not. When ∆t

g > 0

and i 6∈ gt, then from Eq. (3) we have U t
i −(T t

i −Kt
i ) ≤ U t

g−∆t
g.

According to the credit update, we have Kt+1
i = Kt

i +∆t
g ≤ T t

i +

U t
g−U t

i ≤ maxt
Lt

i

rt
i

+Umax. Similarly, when ∆t
g > 0 and i ∈ gt,

we have Kt+1
i = Kt

i −δt
i +∆t

g ≤ maxt
Lt

i

rt
i

+Umax. On the other
hand, when ∆t

g ≤ 0 and ∀i, the updated credit is Kt+1
i ≤ Kt

i ≤
maxt

Lt
i

rt
i

+ Umax. Considering both cases, Lemma 8 holds.

Proof of Theorem 3
PROOF. It has been shown in [11] that, for any �ow i con-

tinuously backlogged during [t1, t2), Kt1
i − Kt2

i = α(t1, t2) −Pt2−1
t=t1

max
�
0, ∆t

g

�
. Accordingly, the service discrepancy can be

derived as following

|αi(t1, t2)− αj(t1, t2)| =
��Kt1

i −Kt2
i − (Kt1

j −Kt2
j )
��

≤
��max (Kt1

i , Kt2
i )
��+ ��max (Kt1

j , Kt2
j )
��

≤ max
t

Lt
i

rt
i

+ max
t

Lt
j

rt
j

+ 2Umax

Thus Theorem 3 is proven.

D. Proofs of Theorem 7
Assume our system is stationary process and γt

i , rt
i and Lt

i are
independent random variables. In order to prove Theorem 7, we
�rst present the supporting lemmas.

LEMMA 9. Given any two scheduling disciplines L andN that
achieve temporal fairness, where the service discrepancy in any
time interval is bounded by θL and θN , respectively. For any group
of users that is continuously backlogged over interval (t1, t2), we
have
αNi (t1, t2)−(θL+θN ) ≤ αLi (t1, t2) ≤ αNi (t1, t2)+(θL+θN ),

where αLi (t1, t2) and αNi (t1, t2) are the service time for any user
i in the group, respectively.

PROOF. Assume a group of users, U , is continuously backlogged
in (t1, t2). Thus for any two users i and j in the group U , we have
t2−t1
|U| − θL ≤ αLi (t1, t2) ≤ t2−t1

|U| + θL. This can be proven
as follow: if ∃αLi (t1, t2) > t2−t1

|U| + θL, then ∀j, αLj (t1, t2) ≥

αLi (t1, t2)− θL = t2−t1
|U| . Accordingly,

P
i∈U αLi (t1, t2) > t2 −

t1, which contradicts to our assumption. We can have similar bound
for for the fair schedulerN . Combining both bounds, the lemma is
proven.

LEMMA 10. Given two scheduling disciplines L and N that
achieve temporal fairness, with and without network coding. If in
each scheduling time the coding effective goodput can satisfy

χg
j Tg

δi
≥ γiri, (14)

then the expected goodput of ui in (t1, t2) is

E[λLi (t1, t2)] ≥ E[λNi (t1, t2)]− ε,

where ε = E[γi]E[ri](θ
L+θN )

t2−t1
and θL and θN are the fairness

bounds for the scheduling disciplines L and N , respectively.

PROOF. Let QLi and QNi be the set of scheduling time for ui

in (t1, t2) in the scheduler with and without coding, respectively.

Then, E[λLi (t1, t2)] =

P
t∈QL

i
E[χ

g
i (t)·T t

g ]

t2−t1
=

E[Li]E[γi]
P

t∈QL
i

E[A
g
i (t)]

t2−t1
.

In addition, E[λNi (t1, t2)] =

P
t∈QN

i
E[γt

i Lt
i ]

t2−t1
. On the other hand,

based on Eq. (14), we have αLi (t1, t2) = E
hP

t∈QLi
δt

i

i
≤ E[Li]

E[ri]
×P

t∈QLi
E[Ag

i (t)]. By applying Lemma 9 to the above equation,
we get E[Li]

E[ri]

P
t∈QLi

E[Ag
i (t)] ≥ αNi (t1, t2)− (θL+ θN ). Since

αNi (t1, t2) =
P

t∈QNi
E
h

Lt
i

rt
i

i
, we have

E[Li]E[γi]
X

t∈QLi

E[Ag
i (t)] ≥

X
t∈QNi

E[γt
iL

t
i]−E[γi]E[ri](θ

L+θN ).

Hence, the lemma is proven.

Proof of Theorem 7
PROOF. Since XORR coding scheme adopts the service time

assignment in Eq. (9), Theorem 6 can satisfy the assumption of
Lemma 10. Consequently, the results of Lemma 10 can be applied
to XORR coding scheme. Therefore, Theorem 7 is proven.

E. Proof of Theorem 5
PROOF. We will reduce the NP-complete clique problem to the

problem of �nding optimal coding-set maximalizing the expected
goodput. For a graph G = (V, E), we de�ne a coding-set selection
problem as follows. The set of clients is V . Let γi = 1, Li = 1
and ri = 1 for each i ∈ V . Furthermore, at current time t, a client
i has the packet pj (i.e., yi,j = 1) iff edge (vi, vj) ∈ E. It is easy
to showt that �nding an optimal coding-set in such setting is equiv-
alent to solving the maximum clique problem in G. In addition,
since maximum clique is not approximable within O(|V |1−ε) for
any ε > 0 unless NP=ZPP [7], coding-set selection problem is also
not approximable within O(|Ψ|1−ε).
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