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Abstract—A critical function of wireless sensor networks (WSNs) is data gathering. One is often only interested in collecting a specific
function of the sensor measurements at a sink node, rather than downloading all the raw data from all the sensors. In this paper, we
study the capacity of computing and transporting the specific functions of sensor measurements to the sink node, called aggregation
capacity, for WSNs. We focus on randomWSNs that can be classified into two types: random extendedWSN and random denseWSN. All
existing results about aggregation capacity are studied for dense WSNs, including random cases and arbitrary cases, under the protocol
model (ProM) or physical model (PhyM). In this paper, we propose the first aggregation capacity scaling laws for random extendedWSNs.
We point out that unlike random denseWSNs, for random extendedWSNs, the assumption made in ProM and PhyM that each successful
transmission can sustain a constant rate is over-optimistic and unpractical due to transmit power limitation. We derive the first result on
aggregation capacity for random extended WSNs under the generalized physical model. Particularly, we prove that, for the type-sensitive
divisible perfectly compressible functions and type-threshold divisible perfectly compressible functions, the aggregation capacities for
randomextendedWSNswith nodesareof order

�

and
�

, respectively,where� > denotes thepower attenuation
exponent in the generalized physical model. Furthermore, we improve the aggregation throughput for general divisible perfectly
compressible functions to

�

by choosing sensors from a small region (relative to the whole region) as sink nodes.

Index Terms—Wireless sensor networks, data aggregation, aggregation capacity

1 INTRODUCTION

WIRELESS sensor networks (WSNs) are composed of nodes
with the capabilities of sensing, communication and

computation. One important application of wireless sensor
networks (WSNs) is data gathering, i.e., sensor nodes transmit
data, possibly in amulti-hop fashion, to a sink node. Actually,
one is often only interested in collecting a relevant function of
the sensor measurements at a sink node, rather than down-
loading all the data from all the sensors. Hence, it is necessary
to define the capacity of computing and transporting specific
functions of sensor measurements to the sink node. Since
in-network aggregation plays a key role in improving such
capacity for WSNs, we can reasonably call such capacity
aggregation capacity for WSNs.

In this paper, we focus on scaling laws of the aggregation
capacity forWSNs.Gupta andKumar [1] initiated the studyof
capacity scaling laws for large-scale ad hocwireless networks.

The main advantage of studying scaling laws is to highlight
qualitative and architectural properties of the systemwithout
getting bogged down by too many details [1], [2]. Generally,
the capacity scaling laws of a network are directly determined
by the adopted networkmodels, including deployment models,
scalingmodels and communicationmodels, besides the pattern of
traffic sessions. According to the controllability of a network,
Gupta and Kumar [1] defined two types of deployment
models: arbitrary networks and random networks. In terms of
scaling methods, there are two types of scaling network
models, i.e., dense networks and extended networks. Moreover,
the protocol model (ProM), physical model (PhyM) and general-
ized physical model (GphyM, also called Gaussian Channel
model, [3]) are three typical communicationmodels. Following
these models, most works focus on the capacities for different
traffic sessions, such as unicast, broadcast, multicast, anycast,
and many-to-one session, etc. Data aggregation of WSNs
studied in this paper can be regarded as a special case of
many-to-one sessions. The involvement of in-network aggrega-
tion [4]makes itmore complex than the general data collecting
in many-to-one sessions. Naturally, aggregation capacity
scaling laws have characteristics different from the capacity
of any other sessions, which is worth studying.

There exists some literaturedealingwith scaling lawsof the
aggregation capacity for different functions, e.g., [4]–[8]. To
the best of our knowledge, almost all related works, for both
random networks and arbitrary networks, only have consid-
ered the dense network model, and the results are all derived
under fixed-rate communication model [9], including ProM and
PhyM [1]. Hence, in this work, we study aggregation capacity
scaling laws for the random extended WSN, contrary to
existing theoretical results that apply only to dense WSNs.
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Since the basic assumption in ProM and PhyM, i.e., any
successful transmission can sustain a constant rate, is indeed
over-optimistic and unpractical in extended networks,we use
generalized physical model to capture the nature of wireless
channels better.

We design an original aggregation scheme comprised of
the tree-based routing and TDMA transmission scheduling.
This scheme hierarchically consists of local aggregation phase
and backbone aggregation phase. Based on this original aggre-
gation scheme, we adopt two techniques to improve the
aggregation capacity. The first one is to introduce block coding
strategy into the local aggregation phase, by which the
throughput during the local aggregation phase is improved;
the second one is to devise the parallel transmission scheduling,
which can improve the throughputs during both the local
aggregation phase and backbone aggregation phase except
for the bottleneck on the sink node.

Main Contributions:We now summarize major contribu-
tions of this paper as follows:

1. For a special subclass of symmetric functions, called
divisible functions, we design an aggregation scheme,
denoted by A , for the random extended WSN (RE-
WSN), and derive the general result on the achievable
aggregation throughput, depending on the characteris-
tics of specific aggregation functions. Please see the
relations among functions of interest studied in this
paper in Fig. 1. (Theorem 1)

2. For a special subclass of divisible functions, called
divisible-perfectly-compressible aggregation functions
(DPC-AFs), we show that under the scheme A , the
achievable aggregation throughput for RE-WSN is of
order . (Theorem 2)

3. For a special subclass of DPC-AFs, called type-threshold
DPC-AFs, such asmax (ormin), range, and various kinds
of indicator functions, we devise a new aggregation
scheme, denoted byA , by integrating the block coding
[4] into the scheme A . We show that under A the
achievable aggregation capacity for RE-WSN is of order

. (Theorem 3)
4. For two subclasses of DPC-AFs, i.e., type-sensitive DPC-

AFs (e.g., average function) and type-threshold DPC-AFs,
we derive the upper bounds on aggregation capacities,
and prove that our schemes A and A are optimal

for type-sensitive DPC-AFs and type-threshold DPC-
AFs, respectively. Combining the lower bounds (Theo-
rem2 andTheorem3)with the upper bounds (Theorem4
and Theorem 5), we obtain the tight bounds on aggre-
gation capacities for type-sensitive DPC-AFs and type-
threshold DPC-AFs are of order and

, respectively. (Theorem 6)
5. By choosing sensors randomly from a small

region, ofwhich the area is an infinitesimal proportion, i.
e., , of the total area of the RE-WSN, as the sink
nodes, we design a parallel aggregation scheme, de-
noted by A . Under this scheme, we introduce a
technique called parallel transmission scheduling, and
show that for DPC-AFs, the measurements from all
sensors can be aggregated into those sink nodes
at a throughput of order . (Theorem 7)

The rest of the paper is organized as follows. In Section 2,
we introduce the system model. In Section 3, we propose the
specific aggregation schemes for RE-WSNs to derive the
achievable aggregation capacity. In Section 4, we compute
the upper bounds on the aggregation capacities for type-
sensitive divisible perfectly compressible functions and divis-
ible type-threshold perfectly compressible functions, then
obtain the tight capacity bounds for two types of functions.
In Section 5, we make efforts in improving further the aggre-
gation capacity for RE-WSNs by introducing the technique
called parallel transmission scheduling. In Section 6, we
review the related work. In Section 7, we draw some conclu-
sions and discuss the future work.

2 SYSTEM MODEL

Throughout the paper, we mainly consider the events that
happenwith high probability (w.h.p.) as the scale of a network
(the number of sensors in a network) goes to infinity.

2.1 Aggregation Capacity
We consider a random WSN, denoted by N a ,1 where
sensors are placed uniformly at random in a square
A a a a , and a sensor, denoted by , is chosen
as the sink node. Like in most models considered in related
works, every sensor node , periodically gen-
eratesmeasurements of the environment that belong to afixed
finite setMwith M m, and the function of interest is then
required to be computed repeatedly. Intuitively, the capacity
for WSNs depends on the aggregation functions of interest to
the sink node, [4], [8].

2.1.1 Formal Notations
Define the aggregation function of interest to the sink node as

M G ; furthermore, for any , , define the
function of the sensor measurements as M G , where
G is the range of . Suppose that each sensor has an
associated block of readings, known a priori [4]. We define

rounds of measurements from all sensors as a processed
unit. From a practical perspective, only the same round of
measurements, which are usually attached to the same time

Fig. 1. Aggregation functions of interest.

1. The results in this paper also apply to the random network where
the sensors are placed in the region A a a a according to a
Poisson point process of density

a
.
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stamps, are requested and permitted to be aggregated. Please
see the illustration in Fig. 2.Wefirst introduce somenotations.

Aprocessedunit consisting of rounds ofmeasurements
from all sensors is denoted by a matrix

M , where is the thmeasurement
of sensor node , is the th row of , i.e.,
the block of measurements of sensor node , and

is the th column of M , i.e., the set of the
th measurements of all sensor nodes.
For a -vector M , where

M, define .
Given a matrix , , define

.
Anaggregation schemedealingwith the aggregationof
rounds of measurements, denoted byA , determines a
sequence of message passings between sensors and com-
putations at sensors. Under the scheme A , input any

M , output a result at the sink
node .

2.1.2 Capacity Definition
First,wegive thedefinitionof achievable aggregation throughput
for WSNs. All the logs in this paper are to the base 2.

Definition 1. A throughput of bits/s is achievable for a given
aggregation function if there is an aggregation scheme, denoted
by A , by which any M can be aggregated into

at the sink node within A seconds, where
m

A , m M , and m is the total number of
bits representing measurements from each sensor.
Based onDefinition 1, we define the aggregation capacity for

random WSNs.

Definition 2. For a given aggregation function , we say that the
aggregation capacity of a class of random WSNs is of order

bits/s for , if there are constants > and
< < such that

<

2.1.3 Aggregation Functions of Interest
We focus our attention to the symmetric functions, which are
invariant with respect to permutations of their arguments.
That is, for , and for all permutation , it holds that

. Froman appli-
cation standpoint, many natural functions of interest, includ-
ing most statistical functions, belong to this class. Symmetric
functions embody the data centric paradigm [4], [11], where it
is the data generated by a sensor that is of primary impor-
tance, rather than its identity [4]. Furthermore, we limit the
scope of this work to a special subclass of symmetric func-
tions, called divisible functions [4], which can be computed in a
divide-and-conquer fashion. Divisible functions are usually
deemed as the general functions in the study of data aggre-
gation in WSNs.

Next, we introduce other two special subclasses of sym-
metric functions, called type-sensitive functions and type-
threshold functions, respectively.

Type-Sensitive Functions: A symmetric function is
said to be type-sensitive if there exist a constant with < < ,
and an integer , such that for , and any ,
given any subset , there are two subsets of
values and , such
that

For a -vector M , themodeof (i.e., the value that
occursmost frequently), themeanof , themedianof , and
the standard deviation of all belong to the type-sensitive
functions.

Type-Threshold Functions:A symmetric function is
said to be type-threshold if there exists a nonnegativem-vector
, called the threshold vector, such that

m m

for all M , with min signifying element-wise mini-
mum, where is called type-vector that is defined as

m

with .
For a -vector M , the max function, the min func-

tion and the range function of , the th
largest valueof , themean of the largest valuesof , and the
indicator function all belong to type-
threshold functions.

Note that there are indeed some symmetric functions
which are neither type-sensitive nor type-threshold, [4].
Please see the illustration in Fig. 1.

Specially, we focus on an important class of symmetric
functions called divisible-perfectly-compressible aggregation
functions (DPC-AFs).Adivisible function is perfectly compress-
ible if all information concerning the same measurement round
contained in two or more messages can be perfectly aggregated in a
single new packet of equal size (in order sense), [8]. The following
lemma is straightforward.

Lemma 1. For any divisible-perfectly-compressible aggregation
function (DPC-AF) , , it holds that G m ,
where G is the range of the function .

Fig. 2. System model. An aggregation unit consists of measurements.
Each measurement can be indicated by m bits, [10].
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Wemainly consider two subclasses of DPC-AFs, i.e., type-
sensitive DPC-AFs and type-threshold DPC-AFs. A DPC-AF is
type-sensitive (or type-threshold) if it is a type-sensitive function
(or type-threshold function). Please see the illustration in Fig. 1.

Intuitively, the value of a type-sensitive function cannot be
determined if a large enough fraction of the arguments are
unknown, whereas the value of a type-threshold function can
be determined by a fixed number of known arguments. A
representative case of type-sensitive DPC-AFs is the average
function; while, the typical type-threshold DPC-AFs include
max (or min), range, and various kinds of indicator functions.

2.2 Communication Model
A communication model can be defined as a interference-safe
feasible family [12] in which each element is a set consisting of
the links that can transmit simultaneously without negative
effects, or in order sense, on each other in terms of link rate.
Generally, there are two types of communication models in
the research of capacity bounds: adaptive-rate communication
model and fixed-rate communication model.

2.2.1 Adaptive-Rate Communication Model (ACM)
Under the adaptive-rate communication model, the reliably trans-
mission rate is determined based on a continuous function of
the receiver’s SINR (Signal to Interference plus Noise Ratio).
Generally, any communication pair can establish a
direct link, over a channel of bandwidth , of rate

. When > , the receiver
can achieve the maximum rate that meets a given BER require-
ment under a specific modulation and coding scheme. When

, the adaptive-rate channelmodel is also called generalized
physicalmodel (GphyM) [3], [13]. It ispractically assumed that all
nodes are individually power-constrained under GphyM, i.e.,
for any node , it transmits at a constant power

, where and are some positive constants. The
receiver receives the signal from the transmitter with
strength , where indicates the path loss
between and . Any two nodes can establish a direct
communication link, over a channel of bandwidth , of rate

where > is the ambient noise power at the receiver, and
is the set of nodes transmitting concurrently with . The

wireless propagation channel typically includes path loss with
distance, shadowing and fading effects. As in [3], [9], [13], [14],
weassume that the channel gaindependsonlyon theEuclidean
distance between a transmitter and receiver, and ignore sha-
dowing and fading.

2.2.2 Fixed-Rate Communication Model (FCM)
To simplify the analysis of the system, Gupta and Kumar [1]
defined the fixed-rate communication model as the abstraction of
the wireless communication model, under which if the value
of a defined conditional expression is beyond some threshold,
the transmitter can send successfully to the receiver at a
specific constant data rate; otherwise, it can not send any,
i.e., the transmission rate is assumed to be a binary function.

The protocol model (ProM) and physical model (PhyM) defined
in [1] both belong to the fixed-rate channel model. The
former’s conditional expression is the fraction of the dis-
tances from the intended transmitter and other ones to a
specific receiver; the latter’s conditional expression is SINR.
Obviously, the validity of FCM is based on the following
assumption.

Assumption 1. Any successful transmission can sustain the rate
of a fixed constant order.

2.3 Network Scaling Model
We clarify the differences between the random extended WSN
(RE-WSN) and random dense WSN (RD-WSN).

2.3.1 Criteria of Scaling Patterns
In the research of network capacity scaling laws, there are two
typical models in terms of scaling patterns of the network:
extended scaling model and dense scaling model [2], [13], [15]. The
major difference between the engineering implications of these
two scaling models is related to the classical notions of
interference-limitedness and coverage-limitedness. The dense net-
works tend to have dense deployments so that signals are
received at the users with sufficient signal-to-noise ratio (SNR)
but the throughput is limited by interference among the
simultaneous transmissions. That is, all nodes can communi-
cate with each other with sufficient SNR, and the throughput
can only be interference-limited. While, the extended networks
tend to have sparse deployments so that the throughput is
mainly limited by the ability to transmit signals to the users
with sufficient SNR. That is, the source and destination pairs
are at increasing distance from each other, so both interference
limitation and power limitation can come into play.

Recall that a given random network N a is con-
structed by placing uniformly at random sensors in a square
deployment region A a a a . Next, we examine
the scaling characteristics ofN a as , according to
the relation between a and .

First, we recall some existing results about random Euclid-
ean Minimum Spanning Tree (EMST) from [16]–[21]. Let
T a denote the length of the longest edge of EMST built
on the set of nodes in the random networkN a . For the
randomvariable T a , according to a related result proven
in [16], Li et al. [20], [21] proposed the following lemma.

Lemma 2. ([20], [21]). For the random variable T a , and for
any real number , it holds that

T a

a

where is the natural logarithm to the base .
Based on Lemma 2, let , we get that

T a a , i.e., a with high probability,
e.g., ; and let , we obtain that
T a a with high probability, e.g., at least

. Hence, we have

T a a
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Now, we can define the criterion of the extended scaling
versus dense scaling networks according to the order of the

length of T a , i.e., a .

Definition 3. Given a random network N a , it is dense
scaling if a , i.e., a , with high

probability; it is extended scaling, if a , i.e.,
a , with high probability.

2.3.2 RE-WSN vs. RD-WSN
The extended network and dense network are the representative
cases of the extended and dense scaling models, respectively.
They are specialized into the cases of a and a ,
respectively, i.e., they can be denoted by N and
N , respectively. A random dense WSN (RD-WSN) re-
presents the scenario where the monitoring region is fixed,
and the scale of a network is expanding as the density of
sensors is increasing; while, a random extended WSN (RE-
WSN) represents the scenario where the density of sensors is
fixed, and the scale of the network is expanding as the area of
monitoring region is increasing.

Denote the sets of all sensors in the RE-WSN and RD-WSN
by S and S , respectively. Furthermore, denote S S

, where is the sink node and
( ) denotes the sensor node.

2.3.3 Communication Models in Scaling Models
Now,we analyze the combinations of communicationmodels
and scaling models, and make a choice of communication
model for this paper. Following the setting in [13], the channel
power gain is given by in the extended
scaling network; and it is given by in the dense
scaling network. Here, is the Euclidean distance
between two nodes and , > denotes the power atten-
uation exponent [13].

FCM in Dense Scaling Networks: Gupta and Kumar [1]
only defined the FCM, including protocol model and
physicalmodel, in dense networks underwhichAssump-
tion 1 is convincing because the large enough SINR
(generally of order ) can be obtained. Thus, most
results of the aggregation capacity [4], [5], [22], [23]
derived under FCM are reasonable for dense networks.
GphyM inDense Scaling Networks: In dense networks,
FCM can be regarded as a perfect abstraction of the
generalized physical model (GphyM). Indeed, the capac-
ityderivedunderGphyMcanbe equallyderivedbyusing
FCM, and vice versa.
FCM in Extended Scaling Networks: In extended net-
works, according to Definition 3, under any routing
scheme for a random network N a , there must be,
w.h.p., a link of distance of order a , i.e., . By
Equation (1), the SINR of such a link is too small to
contribute to a constant rate. In other words, Assumption
1 is over-optimistic for random extended networks.
GphyM in Extended ScalingNetworks: TheGphyM can
appropriately embody the continuous link rate in extend-
ed networks, which is the reason why most existing
studies on the capacity for extended networks are im-
plemented under GphyM, [3], [9], [13], [24].

3 LOWER BOUNDS ON AGGREGATION CAPACITY

To simplify the description, we define a notion called network
lattice that is frequently used in the design of aggregation
schemes and the analysis of network characteristics.

Definition 4. (NetworkLattice). For a networkN a , divide
the deployment region A a into a lattice consisting of
subsquares (cells) of side length l, we call the generated lattice
network lattice, and denote it by L a l .
From now on, we focus on the RE-WSN N .

3.1 Aggregation Scheme for General Divisible
Functions

Our aggregation scheme, denoted byA , is designed based
on the network lattice L L . To simplify the
description, we ignore the details about the integers, and
assume that the number of rows (or columns) is always

an integer, which has no impact on the results due to the
characteristics of scaling laws issue. Taking the cell in top left
corner as the origin with a 2-dimensional index (0,0), we give
each cell in L an index in the order from left to right and from
top to bottom, i.e., the index of the cell in bottom right corner is

, where . By using VC Theorem

(Theorem 25 in [3]), we have the following result,

Lemma 3. For all subsquares of side length l in the
deployment region A , the number of sensors in those cells is
uniform w.h.p., within < < .

Theproof of Lemma3 is very similar to that of Lemma18 in
[20] (based on VC theorem [25]). Note that the involved
constants in Lemma 3, i.e., and 8, do not change the final
scaling laws of aggregation capacity indeed.

3.1.1 Aggregation Routing Scheme
The aggregation routing tree is divided into two levels, i.e., the
aggregation backbones and local aggregation links.

Aggregation Backbones: In the network lattice L , from
the cells, except for that one containing , we randomly
choose one sensor from each cell, and obtain a set, denoted
by B consisting of nodes (sensors). Then, define
the set B B as backbone set. We call the nodes in B as
aggregation stations, or simply as stations.

We assume that the sink is located in the cell . By
connecting the adjacent aggregation stations in the same
rows, as illustrated in Fig. 3(a), we construct the horizontal
backbones of the aggregation routing; by connecting the adja-
cent stations in th column, we build the vertical backbone. For
the general case in terms of the location of sink , we
introduce the extending method as follows: Assume that
is located in the cell , the difference in the construction of
routing backbone is that the vertical backbone is built in th
column, instead of in th column, as illustrated in Fig. 3(b). In
fact, we can build a multihop path between the station in cell

and the sink in , as illustrated in Fig. 3(c). It can be
proven that any such path is definitely not the bottleneck
throughout routing. In words, the location of does not
change scaling laws of the aggregation capacity.

Local Aggregation Links: In each cell of L , all sensors,
except for the station, communicatewith the station in a single
hop. Please see the illustration in Fig. 4(a).
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3.1.2 Aggregation Scheduling Scheme
In a global perspective, the aggregation scheduling scheme is
divided into two phases: local aggregation scheduling and
backbone aggregation scheduling. In both phases, all scheduled
senders transmit with a same fixed power . In
first phase, each aggregation station collects the measure-
ments from the sensors in its assigned cell in L . In second
phase, the data in the aggregation stations are collected into
the sink node (not simply level by level). Recall thatwemake a
group of rounds of measurements from all sensors as a
processed unit, denoted by a matrix (Please refer to
Section 2.1.1).

Local Aggregation Scheduling: Firstly, we use a 4-TDMA
scheme to schedule the cells in L , as illustrated in Fig. 4(a). In
this phase, only the links completely contained in some cells
are scheduled. From Lemma 3, the number of all links in each
cell isw.h.p., notmore than . Then,we can further divide
each slot of the 4-TDMAscheme into subslots, bywhich
we can ensure that all links can be scheduled once during a
scheduling period that consists of subslots.

Backbone Aggregation Scheduling: In this phase, the
aggregated data are sent to the sink in a pipelined fashion
[4], [8], and are aggregated on the way in each aggregation
station. The backbone aggregation scheduling consists of two
phases: horizontal backbone phase and vertical backbone phase.

First, the data are horizontally aggregated into the stations in
th column; then the data are vertically aggregated into the
sink node in the cell .

In the initial state of horizontal scheduling, for all and ,
the aggregation station in cell , denoted by , holds
aggregation functions values of rounds of measurements
fromall sensors in that canbedenoted byamatrix .
Denote those aggregation functions by

By this time, denote all rounds of data held by all
stations as a matrix .

During the horizontal backbone phase, denote the set of
and all its descendants by , thus the cardinality of is

. Then, the aggregation function
value of the th round of data at station is denoted by

b

Here, b , for .
In the initial state of the vertical backbone phase, all

stations hold aggregation function values of rounds
of data from the stations , , i.e., b , .

Fig. 3. Construction of aggregation backbones. (a) The case that we mainly focus on in this paper. (b) The general case in terms of the location of .
(c) The additional path from our final station to the sink .

Fig. 4. Local aggregation. (a) A 4-TDMA scheme is adopted. Each slot is further divided into subslots that are assigned to all links in the cell.
(b) 4-TDMA scheme guarantees that the distance between any receiver and the nearest unintended transmitters is of at least l .
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By this time, denote rounds of data holden by all
stations as a matrix . Denote the set of and all its
descendants by , then the cardinality of is

. During the vertical backbone
phase, the value of the aggregation function of the th round
of data at station is denoted by

b

Here, b b , for .
We adopt a 9-TDMA scheme to schedule the horizontal

backbones, as illustrated in Fig. 3(a), and adopt a 3-TDMA
scheme to schedule the vertical backbone. We design Algo-
rithm 1 and Algorithm 2 to schedule the horizontal and
vertical backbone aggregations in a pipelined fashion, respec-
tively. Implementing two algorithms once,we can compute
aggregation function values of rounds of measurements at
the sink node. Before presenting these two algorithms, we
define two sequences of sets:

For and , define

H

for , define V .

Algorithm 1. Horizontal Backbone Aggregation

Input: at all stations, i.e., .

Output: b at all station .

for do

;

if > then ;

else for do

for do

for do

All H are permitted to transmit; if it
holds that , and
1. , , has already received b from

, and
2. has not received b from ,then

sends b to ; else if , and has
not received b , i.e.,
from ,then sends b to .

3.1.3 Aggregation Capacity Analysis
Aggregation capacity depends on the type of functions of
interest. We propose a general method in the analysis of
aggregation throughput, although we mainly focus on the
divisible-perfectly-compressible functions (Section 2.1.3).
Due to the hierarchical structure of our scheme, we carry out
the analysis phase by phase.

Local Aggregation Phase: In this phase, since it is guaran-
teed that each link is scheduled at least once out of
time slots, Lemma 4 intuitively holds.

Lemma 4. In the local aggregation phase, if each scheduled
link can achieve the rate of bits/s, then each link can
sustain an average rate of bits/s. Thus, it takes
at most

m m

seconds to finish the aggregation of rounds of measurements
from sensors, i.e., a processed unit, at stations.

During the local aggregation phase, when block coding [4]
is not adopted, since all data to be transmitted are the original
measurements instead of the aggregated data, the throughput
in this phase is independent of the type of aggregation func-
tions. Next, we commence deriving the rate .

Lemma 5. During the local aggregation phase, every scheduled
link can achieve the rate of order

Proof. Consider a given active cell, say , in a time slot
under the 4-TDMA scheme. Please see illustration in
Fig. 4(b). First, we find an upper bound for the
interference at the receiver (station). We notice that the
transmitters in the eight closest cells are located at
Euclidean distance at least l from the receiver
(station) in . The transmitters in the 16 next closest cells
are at Euclidean distance at least l, and so on. By
extending the sum of the interferences to the whole
plane, this is bounded as follows:

l

From > , converges to a constant. Then,
.

Next, we find a lower bound on the strength of signal
received from the transmitter. Since all links are limited
within the same cells, the link length is atmost l. Thus,
the signal at the receiver can be bounded by

l

Hence, .
Finally, combining the fact that

and , we obtain a lower bound on the
rate of scheduled link as

which completes the proof. ◽

Hence, according to Lemma 4 and Lemma 5, we have the
following result,

Lemma 6. When the technique of block coding is not used, the time
cost of the local aggregation for rounds of measurements is of
order
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Backbone Aggregation Phase: First, we consider the hori-
zontal backbone phase.

Lemma 7. In the horizontal backbone phase, if each scheduled link
can achieve the rate of bits/s, then all horizontal backbones
can sustain a rate of .

Proof. According to Algorithm 1, each horizontal backbone
can be scheduled in order at least times out of

time slots. Thus, the lemma
holds. ◽

Now, we start to derive the link rate .

Lemma 8. During the horizontal backbone phase, every scheduled
link can achieve the rate of order

Proof. This lemma can be proven in a similar procedure to
that of Lemma 5. ◽

Lemma 9. To finish the horizontal backbone aggregation for
rounds of measurements, it takes at most

seconds, where

with G , and G is the range of .

Proof. In this phase, the aggregation function value of the th
round of data at station is

b

Since the technique of block coding is not adopted here,
the load of station , denoted by , is

G

Hence, in the horizontal backbone phase, the time cost
of the aggregation for rounds ofmeasurements is atmost

which completes the proof. ◽

Next, we analyze the vertical backbone phase in a similar
method to the horizontal one. For concision, we omit some
similar proofs.

Lemma10. In vertical backbone aggregation phase, the rate of each
scheduled link is of order , and the vertical
backbone can sustain a rate of order

Proof. In this phase, a 3-TDMA scheme is adopted. By using
the similar approach to Lemma 5 and Lemma 8, we can

prove that . In Algorithm 2, the
vertical backbone can be scheduled at least times
out of time slots, which proves the
lemma. ◽

Lemma 11. To finish the vertical backbone aggregation for
rounds of measurements, it takes at most

seconds, where

with , and is the range of .

Proof. In this phase, the aggregation function value of the th
round of data at station is

b

Since block coding is not used here, the load of station
, denoted by , is . Hence, to finish the

vertical backbone aggregation for rounds of
measurements, it takes

which completes the proof. ◽

Algorithm 2. Vertical Backbone Aggregation

Input: b at all station .

Output: at the sink node .

for do

;

if > then ;

else for do

for do

All V are permitted to transmit;

if it holds that , and
(1) , , has already received b from

, and
(2) has not received b from ,

then sends b to ;

else if , and has not received

b , i.e., b , from ,

then sends b to .

According to Definition 1, we obtain Theorem 1.
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Theorem 1. The aggregation throughput under the scheme A
with is of order

where and are defined in Lemma 9 and Lemma 11,
respectively.

Proof. First, we consider the total time cost, say A ,
during which the aggregation functions of rounds of
measurements from sensors are computed at the sink
node. It holds that A , and
the aggregation throughput under the scheme A is of
order

m

Based on Lemma 9 and Lemma 11, for ,
i.e., , it holds that

CombiningwithLemma6,we canprove this theorem.◽
From the analysis above, and depend on the

types of aggregation functions indeed. Consequently, we
instantiate the general result in Theorem 1 to a special case,
i.e., the case of divisible perfectly compressible functions.

3.2 Aggregation Throughput for Divisible-Perfectly-
Compressible Functions

From the characteristic of divisible-perfectly-compressible aggre-
gation functions (DPC-AFs, Lemma 1), by Theorem 1, we have
the following result,

Theorem 2. For DPC-AFs, the achievable aggregation throughput
under the scheme A with is

.

Proof. By Lemma 1, for DPC-AFs,

G m

Similarly, m . Recall that m , the
theorem can thus be proven by using Theorem 1. ◽

3.3 Aggregation Scheme for Type-Threshold
DPC-AFs

Sensing measurements are periodically generated, so the
function of interest is required to be computed repeatedly.
Hence, the technique, called block coding [4], is permitted.
The technique of block coding combines several consecutive
function computations, and can significantly improve the
throughput for type-threshold functions [4] in the collocated
network whose interference graph is a complete graph.
For a given round of measurements, denoted by a -vector

M , the max function, the min function and the
range function of , the th largest
value of , the mean of the largest values of , and the

indicator function are all type-
threshold functions. We first refer to a result of [4] (Part of
Theorem 4 in [4]).

Lemma 12. ([4]). Under the protocol model, the aggregation
capacity for type-threshold functions in a collocated network
of vertices is of order .
Under our schemeA , in each cell of the scheme latticeL ,

the communication graph can be regarded as a collocated
network of vertices, because any two links in a cell
can not be scheduled simultaneously during the local aggre-
gation phase. Then, it is possible to improve the throughput
by introducing the block coding into the scheme A . The
main question to be solved is how to extend the result of
Lemma 12 to that under the generalized physical model.
Analyze the proof of Lemma 12: Let , and under
the assumption that each successful transmission can
achieve a constant rate, prove that it takes time
slots to finish the aggregation for rounds of measurements.
Thus, since during the local aggregation phase of A , each
successful transmission can sustain a rate of order
instead of a constant order, we have the following result,

Lemma 13. Under generalized physical model, by block coding
with , for type-threshold DPC-AFs, the time cost
of the local aggregation for rounds of
measurements is of order .

Proof. For the communication graph in each cell, we
implement the local aggregation by using block coding
with length . Similar to Lemma 12, the time
cost of aggregating rounds of measurements is of

. By partitioning rounds of
measurements into blocks of length , we prove the
lemma. ◽

Lemma 12 holds when which does not con-

tradictwith the condition that inTheorem1and

Theorem 2. Then, we can modify the scheme A by intro-
ducing the block coding in the local aggregation phase.
Denote this scheme by A . Finally, we propose,

Theorem 3. For type-threshold DPC-AFs, the achievable
aggregation throughput under the scheme A with

is of order

Proof. By using block coding, A
. According to Definition 1,

we can complete the proof. ◽

4 UPPER BOUNDS ON AGGREGATION CAPACITY

In this section, we compute the upper bounds on aggregation
capacities for type-sensitive divisible perfectly compressible aggre-
gation functions (type-sensitive DPC-AFs) and type-threshold
divisible perfectly compressible aggregation functions (type-
threshold DPC-AFs) over RE-WSN.

4.1 Upper Bounds for Type-Sensitive DPC-AFs

Theorem4. The aggregation capacity for type-sensitiveDPC-AFs
over RE-WSN is of order .
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Proof. By Equation (2), in any aggregation tree, there exists,
w.h.p., a link of length , say . The capacity of
such a link is upper bounded by

where > is a constant. According to the characteristics
of type-sensitiveDPC-AFs, it takes at least
transmissions to finish the aggregation of rounds of
measurements from every sensor, where > is a
constant that has no impact on the final results in order
sense. By a similar procedure to Lemma 3 (based on VC
theorem [25]), we get that each cell in the network lattice
L must make at least
transmissions, where < < . Since the arena-bounds
[26] for the generalized physical model is of order

, [27], the total aggregation rate of those
transmissions can be upper bounded of order

when the data from the senders of these
transmissions are aggregated into receivers,

where . For any aggregation tree, consider
the cells in L , from the farthest (in hop-
distance) cell to that contains the sink node, theremust be a
scenario where , because all data will converge to
the sink node. In this case, transmissions share the
total link rate of , and it takes
slots to finish the aggregation. Thus, the aggregation
capacity is bounded by . ◽

4.2 Upper Bounds for Type-Threshold DPC-AFs

Theorem 5. The aggregation capacity for type-threshold DPC-
AFs over RE-WSN is of order .

Proof. For type-threshold DPC-AFs, by a similar procedure
to Theorem 4 and according to Theorem4 of [4], each cell in
the network lattice L must make at least

transmissions, when each sensor produces
rounds of measurements, where > are some
constants. By a similar argument to Theorem 4, there
must be a level of aggregation that takes at least

, which completes

the proof. ◽

Combining the lower bounds (Theorem 2 and Theorem 3)
with upper bounds (Theorem 4 and Theorem 5), we get that

Theorem 6. The aggregation capacities for type-sensitive DPC-
AFs and type-threshold DPC-AFs over RE-WSN are of order

and , respectively.

5 IMPROVING CAPACITY BY MULTIPLE SINKS

According to Theorem 1, Theorem 2 and Theorem 3, we learn
that even by using block coding, the bottleneck still lies in the
local aggregation phase. More specifically, the size of each
collocated network, i.e., the number of nodes in each cell, is
still too large. Consequently, we resort to reducing the size of
the collocated networkwithout diminishing the link rate. As a
solution, we exploit a technique called parallel transmission
scheduling [9].

5.1 Parallel Aggregation Scheme A
According toLemma3, in any cell of thenetwork latticeL , the
number of nodes is w.h.p. within . Hence,
intuitively, when we randomly choose stations from
each cell in L , there are backbones in each row (or
column). However, the rate of each backbone does not exceed
that of the backbone in the scheme A because of the
nondecreasing interference to each link. Thereby, we attempt
to simultaneously schedule multiple backbones in each row
(or column), without impairing the rate of every backbone,
that is, with sustaining the rate of order . We
denote the new schemewith parallel scheduling byA . Like
A , the scheme A also consists of two phases: local
aggregation phase and backbone aggregation phase; and the back-
bone phase is further divided into two subphases: horizontal
backbone phase and vertical backbone phase.

Backbone Aggregation Phase: Denote the stations in the
cell of L by , . Then, we construct the
horizontal backbones in the following method (Please see
illustration in Fig. 5): In each row , ,

when is even, for and , con-
nect the station to ;
when is odd, for and , con-
nect the station to .

Similarly, we can build the vertical backbones in column
and column . Note that not all cells contain the station.

For the convenience of description, we assume that is
even without loss of generality. During the horizontal back-
bone phase, the data are aggregated into the stations on the
vertical backbones in two columns; during the vertical back-
bone phase, the data are aggregated to the stations in the cells

and . When is odd, the data are finally aggre-
gated into the stations in the cells and .

Now, the key question is how to schedule the backbones to
improve the total rate. To schedule the horizontal backbones,
we adopt a 4-TDMA scheme, denoted by . Under the
scheme , as illustrated in Fig. 6(a), a scheduling unit (SU)
consists of cells. Since there are only four cells that

Fig. 5. Parallel aggregation backbones. Black cycles denote aggregation
stations. Black squares denote sink nodes that are deployed
randomly in a small region (shaded) of area . In each row (or
column and column ), there are horizontal (or vertical)
backbones.
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contain stations and need to be scheduled in each SU, we can
complete the scheduling of each SU once in a period of four
time slots. Similarly, we can use a 4-TDMA scheme, denoted
by and described in Fig. 6(b), to schedule the vertical
backbones. we iterate that for both and , the key
technique to improve the throughput is to permit stations
in a scheduled cell to transmit simultaneously.Next,weprove
the improvement in the total rate of backbones.

Lemma 14. Under the scheduling scheme H (or V ), every
horizontal (or vertical) backbone can still sustain a rate of order

.

Proof. Let us consider any scheduled link of horizontal
backbones. The interferences at the receiver of the link
are produced by those stations in the cell
containing the intended transmitter and ones in other
scheduled cells. Since the length of the link is at least of
l , the sum of interferences at the receiver can be
bounded by

. The latest limitation converges when > .
Since the distance of every hop is at most l, we have
the signal at the receiver can be bounded as

. Then, .
since as , the scheduled link can
achieve the rate of . Since all
horizontal backbones are scheduled once in four time
slots, every horizontal backbone can sustain a rate of

, which proves the result on horizontal backbones.
In a similar way, we get the result on vertical backbones. ◽
Local Aggregation Phase: Now, we discuss how to effi-

ciently collect the measurements into those stations. We still
set the scheduling unit as a cluster of cells, like in Fig. 6
(a). Denote a scheduling unit by that consists of the cells

, , , , , ,
, and , if any. The parallel routing and

scheduling scheme can be described as follows. To simplify
the description, let : ⇛ represent that all mea-
surements from nodes in are evenly aggregated into the

stations in during time slots . It takes 128 time
slots to schedule all links in :

⇛
⇛
⇛
⇛
⇛
⇛
⇛
⇛

Under the above scheduling scheme, the hop-length of
every link is of order . From the analysis in Lemma
14, we can schedule simultaneously links in each sched-
uled cell, ensuring that the rate of every link is of order

. On the other hand, it takes at most
16 time slots to schedule all links fromone cell to the stations in
other cell, because links can be simultaneously scheduled
while there are at most nodes in each cell.

5.2 Throughput under Aggregation Scheme A
First, for the local aggregation phase, we have the following
result,

Lemma 15. Under the parallel scheduling scheme, the time cost of
the local aggregation for rounds of measurements is of order

.

Proof. Since in the local phase, each link canbe scheduledonce
out of 128 time slots, then the average rate of each link can
sustain of order , i.e., .
And, each sensor has a load of measurements to
transmit into the corresponding station, thus, the total
time cost is m , which completes the
proof. ◽

Next, we consider the backbone phase. Under the scheme
A , define the set of and all its descendants as
for all , and ; and define the set of and all its
descendants as for all , and . Since there
are stations that contribute the burden-sharingof each cell,
then it holds that

Then, in the horizontal phase and vertical phase, the load
produced by th round of measurements on station is

G and G ,
respectively. Then, we further define

Thus, in a similar procedure to the proofs of Lemma 9 and
Lemma 11, we can obtain

Lemma 16. Under the parallel scheduling scheme, to finish the
backbone aggregation for rounds of measurements, it takes at
most

seconds, where and are defined in (14).
Combining Lemma 15 and Lemma 16, we get that,

Theorem 7. Under the parallel aggregation scheme A with
, the measurements from all sensors can

be aggregated into sink nodes in a small region of which
the area is an infinitesimal proportion, i.e., , of the whole
deployment region, at a throughput of

For the DPC-AFs, such achievable throughput is of order
.

Fig. 6. Parallel backbone scheduling. The stations in each scheduled
cell can transmit simultaneously.
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5.3 Implications of Theorem 7
5.3.1 Elimination of Interference-Limitedness
According to Lemma 2, for any aggregation tree, there must
be a link of length , which leads to the network
throughput is limited to the rate of such a link, i.e., the order

due to coverage-limitedness (Section 2.3.1). From
Theorem 7, this upper bound can be indeed achieved by
choosing randomly sensors from a small region
(relative to the whole deployment region) of area .

5.3.2 Gains of Multiple Sinks
It is straightforward that choosingmultiple sinks can possibly
improve the network throughput. While, some potential
questions might be asked:

1. Why not we choose uniformly at random sensors from the
whole network as sink nodes? The reason is two-fold:
(1) Since each sink usually connects with a processing
station (e.g., computer) via a reliable link (even a wired
link), and it should be always guaranteed with a stable
power supply, it is easy to understand that the smaller
the region contained sink nodes is, the more convenient
the network management is. (2) It cannot improve the
order of throughput indeed when we choose uniformly

sink nodes. An intuitive (but not rigorous)
explanation is as following: divide the network into

subregions, choose one sensor from each sub-
region as a sink node that takes charge of data gathering
in this subregion. By doing so, the throughput of each
subregion is also of the same order as that of the whole
region with a single sink node, because the area of the
subregions (then, the number of sensors), i.e., , is
still too large to ease the bottlenecks in the whole
network.

2. Can we improve further the aggregation throughput by more
sink nodes? It can definitely improve the network
throughput when we choose uniformly a large enough
number of sensors as sink nodes. An extreme case is that
all sensors are chosen as sink nodes. Of course, it makes
no sense. It can be straightforwardly inferred that the
throughput under such parallel aggregation schemes
can be increased by timeswhen sinks
are chosen from a subregion of area ,
where and . Finally, we con-
jecture that the throughput derived in Theorem 7 is
indeed optimal if the number of sink nodes is limited
to the number of . We leave the rigorous valida-
tion to future work.

5.4 Challenges in Practical Implementation
Thiswork fallswithin the scope of scaling laws, i.e., scaling of
the network performance in the limit when the network gets
large, [4]. We aim to investigate the qualitative and funda-
mental properties of WSNs in terms of aggregation capacity,
[4], [10], [28], [29]. The proposed schemes provide some
architectural guidelines on how to design the practical ag-
gregation schemes for WSNs that scale well. It should be
emphasized that when implementing the specific schemes
under the proposed architecture, we need to take into ac-
count some technique details, e.g., the tuning of many

parameters and optimization of some pre-constants in the
system throughput, [10], [29].

6 LITERATURE REVIEW

The issueof capacity scaling laws forwireless adhocnetworks
[1] has been intensively studied under different models. The
firstworkaboutaggregationcapacityscalinglawsofWSNwas
done by Marco et al. [5]. They considered the capacity of
random dense WSNs under the protocol model [1]. In [4],
Giridhar and Kumar also focused on denseWSNs, and inves-
tigated the more general problem of computing and commu-
nicating symmetric functions of the sensor measurements.
They showed that for type-sensitive functions and type-threshold
functions, the aggregation capacities for random dense WSNs
under the protocol model are of order and ,
respectively. Ying et al. [30] studied the optimization problem
of the total transmission energy for computing a symmetric
function, subject to the constraint that the computation isw.h.
p., correct. Moscibroda [8] derived the aggregation capacity
scaling laws of divisible perfectly compressible functions for
worst-case networks. They showed that under the protocol
model and physical model [1], the capacity for worst-case
networks is of order and , respectively. Zheng
et al. [31] proposed an Attribute-aware Data Aggregation
mechanism using Dynamic Routing (ADADR) that can make
packets with the same attribute convergent as much as possi-
ble and therefore improve the efficiency of data aggregation.
Under the cooperative paradigm, Zheng and Barton [7] dem-
onstrated that the upper bound of the capacity of data collect-
ing for extended WSNs is of order and
when operating in fading environmentswith power path-loss
exponents that satisfy < < and > , respectively. The
work considered the aggregation functions without no in-
network aggregation [32], e.g., data downloading problem [4]. It
might be interesting to merge this technique into our scheme
to improve the results under the cooperative paradigm.

Note that unlike all other works mentioned, including our
work, the result in [7] is information-theoretic bounds instead of
networking-theoretic bounds. (Section 2.1). In [33], Wang et al.
studied the capacity, delay and their tradeoffs in -source
converge-cast networks. They showed that the essential key
controlling the capacity is the redundancy, with inverse
relationship. In [29], [34], by introducing the visual MIMO
techniques, Fu and Wang et al. designed two different coop-
erative schemes for static and mobile ad hoc wireless net-
works, respectively. Servetto [35] constructed a structured
class of asymptotically optimal quantizers for the problem of
rate/distortion with side information available only at the
decoder. He showed that there exist quantizers whose per-
formance comes arbitrarily close to Wyner¡¯s bound [36].
Guleryuz and Kozat [37] studied an important class of sensor
networks where the ultimate goal is not necessary to collect
each individual measurement but rather a potentially smaller
set of statistics. They determined how the flow of information
emanating from the sensors should be managed, yielding
optimal routing algorithms and jointly optimized networks.

Some work focused on the data transmission in mobile
WSNs where the sensors and/or sinks are mobile. In [38],
Chen et al. proposed to use multihop forwarding to form a
cluster around the expected position of amobile sink, in order
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to guarantee packet delay andminimize energy consumption.
Park et al. [39] designed a simple routemaintaining algorithm
to support the sink mobility of conventional routing proto-
cols. The algorithm does not use the flooding method and
does not require the information on the geometric location of
sensor nodes. In [40], Gao et al. formulated the problem of
jointly improving the amount of data collected and reducing
the energy consumption as an integer linear programming
problem, and proposed a corresponding data collection
scheme based on optimizing the assignment of sensor nodes.

7 CONCLUSION

We emphasize that for random extended WSNs (RE-WSNs),
the basic assumption of the protocol model and physical
model [1] that any successful transmission can sustain a
constant rate is over-optimistic and unpractical. We derive
the first result on scaling laws of the aggregation capacity for
RE-WSNs under generalized physical model. We show that,
for general divisible perfectly compressible aggregation func-
tions (DPC-AFs), the achievable aggregation throughput of
RE-WSNs is of order ; and for type-sensitive
DPC-AFs and type-threshold DPC-AFs, aggregation capaci-
ties are of order and ,
respectively. Furthermore, by introducing the parallel trans-
mission scheduling,we prove that the achievable aggregation
throughput for DPC-AFs is of order by choosing

sink nodes in a small region.
There are some interesting directions left to study: (1) An

interesting future work is to derive the aggregation capacity
scaling laws for mobile WSNs consisting of mobile sensors or
mobile sinks with energy limitations. (2) It is worth deriving
the aggregations capacity of WSNs for more general aggre-
gation functions. (3) Itwould be interesting to investigate how
real-world wireless propagation, such as shadowing, path
loss and multipath fading, affects the aggregation capacity of
WSNs by introducing more realistic communication models.
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