
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. , NO. , 1

False Negative Problem of Counting Bloom Filter
Deke Guo, Member, IEEE, Yunhao Liu, Senior Member, IEEE, Xiangyang Li, Senior Member, IEEE,

and Panlong Yang, Member, IEEE,

Abstract —Bloom filter is effective, space-efficient data structure for concisely representing a data set and supporting approximate
membership queries. Traditionally, researchers often believe that it is possible that a Bloom filter returns a false positive, but it will never
return a false negative under well-behaved operations. By investigating the mainstream variants, however, we observe that a Bloom
filter does return false negatives in many scenarios. In this work, we show that the undetectable incorrect deletion of false positive items
and detectable incorrect deletion of multi-address items are two general causes of false negative in a Bloom filter. We then measure
the potential and exposed false negatives theoretically and practically. Inspired by the fact that the potential false negatives are usually
not fully exposed, we propose a novel Bloom filter scheme which increases the ratio of bits set to a value larger than one without
decreasing the ratio of bits set to zero. Mathematic analysis and comprehensive experiments show that this design can reduce the
number of exposed false negatives as well as decrease the likelihood of false positives. To the best of our knowledge, this is the first
work dealing with both the false positive and false negative problems of Bloom filter systematically when supporting standard usages
of item insertion, query, and deletion operations.

Index Terms —Bloom filter, False negative, multi-choice counting Bloom filter.

✦

1 INTRODUCTION

A Bloom filter (BF) [1] is a space-efficient data struc-
ture for representing a set and supporting membership

queries. It outperforms other efficient data structures such
as binary search trees and tries, as the time needed to add
an item or check whether an item belongs to the set is
constant irrespective to the cardinality of the set. For these
advantages, BF has been extensively used in database as well
as networking applications [2], [3], web cache sharing [4]
and routing on overlay networks [5], [6], [7]. Moreover, BF
has great potential to summarize streaming data in the main
memory [8], store the states of a large number of flows in the
on-chip memory of the routers [9], and speed up the statistical-
based Bayesian filters [10]. To make it more effective and
efficient, BF has been improved from different aspects for a
variety of applications. Some important variations include the
compressed Bloom filter [11], counting Bloom filter (CBF) [4],
distance-sensitive Bloom filter [12], space-code Bloom filter
[13], spectral Bloom filter [14], generalized Bloom filter [15],
and Bloomier filter [16].

Despite the aforementioned benefits offered by BF, a BF
may yield afalse positivedue to hash collisions, for which it
wrongly determines that an item belongs to a data set when
the item is actually not. The cause is that all bits related

• D. Guo is with the Key laboratory of C4ISR Technology, National
University of Defense Technology, Changsha, China, 410073. E-mail:
guodeke@ieee.org.

• Y. Liu is with the Computer Science Department, Hong Kong University
of Science and Technology, Hong Kong, China. E-mail: liu@cse.ust.hk.

• X. Li is with Institute of Computer Application Technology,Hangzhou
Dianzi University, Hangzhou, PRC, and Department of Computer Science,
Illinois Institute of Technology, Chicago, USA. E-mail: xli@cs.iit.edu.

• P. Yang is with the Institute of Communication Engineering,P.L.A
University of Science and Technology, Nanjing Jiangsu, China. E-
mail:plyang@computer.org.

to the item were previously set to1 by other items in the
data set. A possible way to deal with hash collisions is to
design perfect hash functions. This is only possible for a static
data set without item insertion and deletion after deployment.
In reality, however, BF and its variants are widely used to
represent both static and dynamic data sets. That said, the data
set is often unknown in advance, therefore, it is impossible
to design perfect hash functions. Thus, the false positive is
unavoidable in a BF and its variants, and hence many efforts
were made to reduce the probability of false positive during
the past years [17], [18], [19], [20].

For a static data setX , it is not allowed to perform data
insertion or deletion operations after we represent it as a BF.
Thus the bit vector of a filter always reflects the data set
correctly. The membership queries based on BF never produce
a false negative in this scenario. By handling a dynamic data
set, a deletion operation might hash an item to be deleted
and resets the related bits to 0. It may set a location to 0 to
which is also hashed by other items in the setX . In such a
case, the filter no longer reflects the data set correctly, thus
producing a false negative. To address the problem, Fan et
al. propose the CBF [4], in which each entry is not a single
bit but rather a small counter consisted of several bits. When
an item is added (or deleted), the corresponding counters are
incremented (or decremented respectively). By assuming that
false negativesrarely happen for a CBF, researchers thus pay
less attention to false negative problem of CBF. In this work,
we reveal that a CBF indeed can result in false negative items
in many networking applications. In many cases, the false
negative is more serious than the false positive, because it
wrongly decides that an item does not belong to a data set
when it does, and rejects desired objects, leading to intolerable
consequences [8], [21], [22].

To the best of our knowledge, we are the first to explore the
root cause of the false negative problem of CBF in standard



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. , NO. , 2

usage of item insertion, query and deletion operations. We also
measure the potential and exposed false negative items from
the aspects of theory and practice. We propose two principles
to minimize the number of exposed false negative items. We
also design a variant of CBF to reduce the number of exposed
false negative items. The main contributions of this paper are
as follows:

1) We show that a false positive can trigger a deletion of a
false positive item, and result in at least one multi-address
item. Both of the two cases cause an incorrect item
deletion operation, and lead to potential false negative
items.

2) We reveal that the resulting false negative items are
usually not fully exposed in consequent queries. We also
measure the potential and exposed false negative items
caused by an incorrect item deletion operation.

3) We propose two fundamental principles to make potential
false negatives unexposed whenever possible. Our design
is able to increase the ratio of bits set to a value larger
than one in a BF without decreasing the ratio of bits set
to zero.

4) We propose an enhanced BF scheme which can reduce
about 50 − 80% of exposed false negative items in
BF. Through comprehensive experiments and mathematic
analysis, we show that our design achieves desired prop-
erties.

The rest of this paper is organized as follows. Section 2
briefly introduces the BF and related work, and discusses the
root cause of false negative items in a CBF. Section 3 measures
the potential and exposed false negatives. Section 4 presents
a variant of CBF. We discuss our experimental methodology
and evaluate this design in Section 5, and conclude the work
in Section 6.

2 PRELIMINARIES

We first review some related concepts of Bloom filers and
then discuss why false negative items can happen in counting
Bloom filers. Some related work are also briefly reviewed.

2.1 Bloom filter and counting Bloom filter

A set X of n items is represented by a BF using a vector of
m bits which are initially set to0. A BF usesk independent
random hash functionsh1, h2, · · · , hk with a range{1, ..., m}.
When inserting an itemx to X , all bits of a Bloom filter
addressBfaddress(x) (consisted ofk addresseshi(x) for 1 ≤
i ≤ k) will be set to1. To answer a membership query for any
itemx, users check whether all bitshi(x) are set to1. If not, x
is not a member ofX . If yes, we assume thatx is a member of
X , although we might be wrong in some cases. Hence, a BF
may yield afalse positivedue to hash collisions, in which all
bits of Bfaddress(x) were set to1 by other items in setX [1].
In BF, no item deletions are allowed. CBF [4] provides a way
to implement a delete operation on a BF without regenerating
the filter afresh. In a CBF each item of its bit vector is extended
from being a single bit to being aL-bits counter, andL=4

usually suffices1. The operation of item insertion is extended
to increment the value of each respective counter (defined by
hi(x)) by one. The operation of item deletion decrements the
value of each respective counter by one.

Once a data setX is represented as a BF, user can determine
whether an itemx belongs toX by querying the filter instead
of setX . A membership query based on BF produces one of
the following results.

1) The judgment always matches the fact. In other words,
if x ∈ X , then∀i ∈ {1, 2, ..., k} we havehi(x) 6= 0; and
if x /∈ X then∃i ∈ {1, 2, ..., k} such thathi(x) = 0.

2) Althoughx does not belong toX , the judgment returns a
reversed result, called afalse positivejudgment. In other
words, if x /∈ X then ∀i ∈ {1, 2, ..., k} satisfying that
hi(x) 6= 0. Here, the itemx is called afalse positive
item.

3) Althoughx belongs toX , the judgment returns a reversed
result, called afalse negativejudgment. In other words, if
x ∈ X then∃i ∈ {1, 2, ..., k} satisfying thathi(x) = 0.
Here, the itemx is called afalse negative item.

Let n be the number of items in the setX , andp denote
the probability that a random bit of the corresponding BF is0.
By assuming that all hash functions produce values uniform
randomly from[1, m], clearlyp = (1 − 1/m)kn ≈ e−n×k/m,
as n × k bits are randomly selected, with probability1/m
in the process of adding each item. The probability that a
random bit is 1 is therefore1 − (1 − 1/m)kn. Now we test
membership of an itemx1 that is not in theX . Each of the
k bits of theBfaddress(x1) is 1 with a probability as above.
The probability of all of thek bits being 1, which would cause
a false positive, is then

f(m, k, n) = (1 − p)k ≈ (1 − e−k×n/m)k. (1)

These results about the membership query based on BF also
hold for the membership query based on CBF. Recall that the
basic component of a CBF is a counter instead of a bit. Unless
explicitly stated, we use the notations defined for BF to explain
the same concept in CBF in the rest of this paper.

2.2 Related work

It is well known that false negative items do not arise at all
in a BF if the BF always correctly reflects the membership
information of a data set represented by it. Unfortunately,this
essential condition is often destroyed by many non-standard
behaviors.

A BF is replicated by multiple nodes to support efficient
protocols in distributed systems. The replicas might become
stale because the changes of a BF cannot be spread quickly to
all replicated BFs. Hence, false negative items are produced.
The false negative and false positive in the stale replicas of a
BF are analyzed in [22].

BF is widely used to represent stream data since the
allocated space is rather small compared to the size of the
stream. When a large number of items arrive, the false positive

1. Whenk is chosen as optimalln 2 ·
m

n
, L = 4 suffices since the average

load of a counter isln 2 and the probability that a counter has load15 = 24
−1

is around6.8 × 10−17 .



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. , NO. , 3

rate increases to an unreasonable value quickly. To address
this issue, the stable BF [8] attempts to drop the older data by
randomly evicting some information from it even they do not
know which part is stale.

Based on the following two assumptions, the retouched BF
[21] removes entire false positives or partial serious false
positives by resetting individually chosen bits to0. First,
all false positives and those serious ones can be identified
after the BF has been constructed. Second, the application
can tolerate false negative items. The retouched BF decreases
or avoids false positives, but actively produces many false
negative items. Note that it is uncommon for applications to
satisfy these two assumptions, especially the second one.

In summary, the stable BF and retouched BF adopt spe-
cific bit cleaning operations to deal with application-specific
problems, yet introduce many false negative items. These are
essentially non-standard usage of BF. If those applications use
CBF instead of BF, the non-standard behaviors will produce
similar results. In this work, we find that a CBF might produce
false negative items even in standard usages of item insertion,
query, and deletion operations. Specifically, we discuss false
negative items caused by an incorrect item deletion operation
triggered by once false positive in a CBF.

2.3 False negative items in counting Bloom filters

It is well-known that CBF supports item deletion operation at
the cost of consuming more spaces than BF. Many researchers
have studied the scenario where item deletions occur and are
always correct. A common precondition is that a data set is
stored together with a corresponding CBF to ensure that only
the deletion instructions of items in the data set are set to the
CBF. That is, an item can be deleted from a CBF only if it has
been inserted into it. This precondition, however, generally is
not satisfied because it deviates from the objective to replace a
data set with a CBF, especially in some network applications
as follows. These applications just maintain a CBF without
keeping the data set.

As mentioned in [9], routers and networking devices are
likely to evolve to be more application-aware. Many existing
routers and switches begin to monitor traffic flows by keeping
state about TCP connections for security violations and to
steer traffic based on packet content. Specifically, the intrusion
detection devices and packaged firewalls keep state for each
TCP connection in order to detect security violations. The
application level QoS devices track the state of each flow to
provide more discriminating QoS to applications by steering
traffic based on packet content, such as video congestion
control [23] and identifying Peer-to-Peer traffic [24]. Forhigh-
speed networking devices, thechallengeto track state for each
flow on-chip without resorting to slow off-chip memories is
the limited on-chip memory. For example, consider a router
keeping track of 1 million (a number found in many studies
[25]) TCP connections. If 100 bits are used to track each
connection, it costs 100 Mbits memory, which is impractical
using on-chip memory.

To deal with such challenging issues in many networking
applications, Bonomi et. al use a CBF to track the state of the

same number of concurrent flows such that the needed on-
chip memory can be reduced by a factor of 5 to 20 Mbits in
[9]. Here, it is unnecessary and impractical for a networking
device to store states of flows together with a corresponding
CBF. In such scenarios, the CBF cannot ensure that only an
item, which has been inserted into it, can be deleted from it.
That is, the CBF also decrements the value of each respective
counter by one when it receives a deletion instruction for a
false positive item, and thus produces possiblefalse negative
items.

Throughout this paper, we call this type of item deletion as
incorrect deletion of a false positive item. In reality, several in-
tentional or unintentional behaviors might trigger an incorrect
item deletion. For example, adversaries can issue an instruction
to delete an itemx after detecting thatx is a false positive
item, and intentionally produce potential false negative items.
For another example, theid of a flow is inserted into a CBF
when its first packet arrives, subsequent packets check whether
the flow has been recorded, and the flow is deleted when the
last packet is processed. In some cases, a network device might
receive a subset of packets without the first packet of a flow.
If the id of this flow is a false positive item, the last packet
can result in false negative items unintentionally.

After discussing the incorrect deletion of a false positive
item, we find that an item deletion in a CBF might be incorrect
due to the multi-address problem even when the item has been
inserted into the CBF. This kind of item deletion might cause
potential false negative items, and is referred as theincorrect
deletion of a multi-address item. In reality, we are aware of at
least the following representative scenarios about this kind of
incorrect deletion.

First, a CBF may respond multipleBfaddress(x) for a query
with an itemx ∈ X as input. For example, Bonomi et al. use
a CBF to store and track the states of many flows associated
with uniqueflow-id at network devices [9]. They append the
state value of a flow to theflow-id as an item, and then add
it in a CBF. When the state of a flow is retrieved or updated,
one must perform a membership query for each combination
of the flow-id and possible state value. In such a situation,
a flow may appear to have multiple states because of one or
more false positives in the CBF. It is difficult for the CBF
to determine which is the right one. Thus, a state update
operation may cause a wrong item deletion operation, and then
results in false negative items. In reality, each flow transmits
its state frequently during its life cycle, and the number of
flows tracked by a network device could be huge. Thus, the
number of cumulative false negative items is no trivial, and
their impact cannot be omitted.

Second, it seems that multiple CBFs represent a same
item even if only one CBF does so in several variants of
CBF, such as the dynamic CBF and scalable CBF [17], [20].
A dynamic CBF uses a CBF to represent a dynamic data
set. If the cardinality of the dynamic data set reaches a
predefined threshold, it will allocate another CBF to represent
the following data items, and so on. An itemx belonging to
the dynamic data set may appear in multiple CBFs due to
the false positives, and a CBF might wrongly delete the item
x, leading to false negative items. A scalable CBF adopts a



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. , NO. , 4

similar concept and suffers the same problem.
In summary, the incorrect deletion of a false positive item,

or a multi-address item are the root causes of false negative
items in a CBF and its variants. They affect the CBF and
its variants in the same way by decrementing the value of
respective counters, and are equivalent in nature. The only
difference is that the incorrect deletion of a false positive item
is undetectable, while the incorrect deletion of a multi-address
item is detectablein advance. In this work, we only focus on
the false negative problem in the CBF, and leave the study of
the same issue in variants of the CBF as a future work.

3 MEASUREMENT OF FALSE NEGATIVE ITEMS

In this work, we only discuss the incorrect deletion of a false
positive item since it is equivalent to the incorrect deletion of a
multi-address item. Specifically, we first measure the expected
value of the number of false negative items caused by an
incorrect deletion of a false positive item. We observe that
the potential false negative items may be not exposed to the
upcoming membership queries immediately. Inspired by the
observation, we also measure how many false negative items
will be exposed in theory and practice. We finally propose
two principles to reduce the number of exposed false negative
items, even make all potential false negative items become
unexposed.

Before measuring the false negative items, let us consider
the four rules to delete an itemx from a respective CBF of a
setX .

1) If a membership query for an itemx ∈ X responses
a right judgment, the CBF performs the item deletion
operation by decrementing respective counters by one.

2) If a membership query for an itemx ∈ X responses a
false negative, the CBF rejects the item deletion opera-
tion. It shows that the CBF does not reflect the setX
correctly.

3) If a membership query forx /∈ X responses a right
judgment, the CBF omits the item deletion operation.

4) If a membership query forx /∈ X responses a false pos-
itive judgment, the CBF still performs the item deletion
operation. Consequently, the CBF does not represent the
setX correctly after the operation.

The event mentioned in the fourth rule is the root cause of
subsequent false negative judgments, and furthermore it can
bring in the event illustrated in the second rule. According
to Formula 1, the false positive probability of a CBF should
decrease in theory if it performs an item deletion operation.
Thus, the second rule may increase the false positive probabil-
ity of a CBF as an item is not deleted, although it should be
deleted. In summary, the fourth rule not only produces false
negative items directly but also may increase the probability
of false positive judgments indirectly.

3.1 Potential false negative items in theory

Given a setX and its CBF, an incorrect deletion of a false
positive item causes the affected counters decrease at least by
one. The resulting false negative items will be found through
the following steps. First, we delete each item, whose CBF

address overlaps with those affected counters and all counters
of its CBF address are larger than 0, from the CBF andX
correctly. Second, we perform a round of set membership
queries for each remaining item in setX based on the CBF.
Some false negative items will be found. Those false negative
items are called thepotential false negative itemsdue to an
incorrect item deletion operation.

In the following discussions, we measure the number of
potential false negative items due to an incorrect item deletion,
and then due to multiple incorrect item deletions respectively.

Lemma 1:The number of potential false negative items due
to an incorrect item deletion (no incorrect item deletions have
been performed before) is a discrete random variable, denoted
asY . Its possible values are the integers ranging from1 to k.

Proof: Given anyx1 /∈ X , its CBF address consists of
countershi(x1) for 1 ≤ i ≤ k, denoted asBfaddress(x1).
Let us define a subsetXi ⊆ X for each counterhi(x1),
whereXi contains the itemx ∈ X such that the CBF address
Bfaddress(x) involves the counterhi(x). If the CBF occurs
an incorrect deletion for the itemx1, the value of each counter
hi(x1), 1 ≤ i ≤ k, is larger than0 before the deletion
operation, and is decreased by1 after the deletion operation.

To expose the potential false negative items caused by the
false deletion, let’s delete an item of any subsetXi for 1 ≤
i ≤ k if each counter in its CBF address is> 0. We will thus
decrease respective counters by one. Note that if the item is
also in other subsets, it should be removed from those subsets.
The CBF repeats the deletion operation until all counters of
hi(x1) for 1 ≤ i ≤ k are 0. By now, each subsetXi for
1 ≤ i ≤ k still contains one item (they may overlap). The
reason is that, for the surviving itemx of the subsetXi where
1 ≤ i ≤ k, at least one counter of theBfaddress(x) has
been destroyed by the deletion of itemx1. Thus the deletion
operation of the survivingx was taken over by the second
item deletion rule, not the first one.

The cardinality of the union of thek subsets is indeed the
number of false negative items caused by the incorrect deletion
of x1. It is a discrete random variable, and the possible values
can been shown as follows. If the intersection of thek subsets
is not empty initially, and the deletion operations of all the
common items amongk subsets have been taken over by the
first kind of item deletion rule, the value ofY is k. If the
deletion of one common item was taken over by the second
kind of item deletion rule, then the value ofY is 1. Assume
that the intersection of thek subsets is an empty set, but the
intersection ofk−1 subsets is not an empty set. If the deletion
of one common item amongk − 1 subsets was taken over by
the second kind of item deletion rule, then the value ofY is 2.
And so on and so forth, the value ofY can be3, 4, . . . , k−1.
Thus, Lemma 1 holds.

Theorem 1:Let i denote the possible values of the discrete
random variableY . The probability mass function ofY is

P (Y = i) =

i!
∑

z

i
∏

j=1

(

k
aj

)(

k−
∑ j−1

l=1
al

aj

)

k
∑

i=1

i!
∑

z

i
∏

j=1

(

k
aj

)(

k−
∑ j−1

l=1
al

aj

)

. (2)



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. , NO. , 5

Proof: Assumei represents the possible value ofY , and
all aj for 1 ≤ j ≤ i are integers satisfying that

∑i
j=1 aj = k.

Let Yi denote the event thatY =i, and means thati items are
deleted due to the second item deletion rule and appeared as
i false negative items. We need know the number of mutually
exclusive outcomes which can produce the eventYi.

Consider an experiment clustering thek bits to form i
clusters, denoted asci. The integerk can be decomposed as
the sum ofi integers, and usually exists multiple different
decomposition results. For each possible result,

1) The number of possible outcomes of the experiment is
∏i

j=1

(

k−
∑ j−1

l=1
al

aj

)

.
2) Consider an experiment that establishes a bijective map-

ping between the number ofi items and thei clusters.
The number of possible outcomes isi!.

3) Based on the former steps, for a clusterci and its related
itemx, let us consider an experiment that establishes a bi-
jective mapping between the CBF addressBfaddress(x)
and theai bits of the cluster. The number of possible
outcomes is

(

k
ai

)

.
We then can calculate the number of possible outcomes of

the experiment for each decomposition result, and it is

i!

i
∏

j=1

(

k

aj

)(

k −
∑j−1

l=1 al

aj

)

.

Let us calculate such value for other decomposition resultsof
integerk using the same method. Then, the number of possible
outcomes of the experiment to decomposingk asi clusters is

i!
∑

∑

i
j=1

aj=k

i
∏

j=1

(

k

aj

)(

k −
∑j−1

l=1 al

aj

)

.

Let z denote that
∑i

j=1 aj = k. According to the same
method, we can calculate the number of possible outcomes
for different i. Then the probability ofYi is given by Formula
2.

Corollary 1: The expectation ofY can be calculated by
E[Y ] =

∑k
i=1 i × P (Y = i).

Corollary 1 shows the expectation of the number of potential
false negative items caused by an incorrect item deletion in
theory. We find that some (or even all) potential false negative
items are not exposed if respective counters in a CBF are still
larger than 0 after the incorrect item deletion. On the other
hand, the number of potential/exposed false negative items
increases as the number of incorrect item deletion performed
by the CBF increases.

Similar to the proof of Theorem 1, we have

Corollary 2: The number of cumulative potential false neg-
atives caused byα undetectable incorrect item deletions is
a discrete random variable. Its possible values are integers
ranging fromα to α×k. Its expectation is given byα×E[Y ].

3.2 Exposed false negative items in theory

In reality, we find that the potential false negative items
caused by an incorrect item deletion often are not exposed

simultaneously to future queries for remaining items in set
X . The reason is that only one incorrect item deletion might
not cause all affected counters reaching 0. The exposed false
negative items show more realistic effect of an incorrect item
deletion than the potential ones. We thus measure this new
metric in theory in this section. Before in-depth analysis,we
first introduce several definitions that will be used by later
measurements.

Definition 1: Given a setX of n items and a random
counter in a CBF, the eventsAn

>i, An
<i and An

=i denote that
the value of the related counter is larger thani, less thani, and
equal toi respectively. The combination of the three events
can produce new eventsAn

≥i andAn
≤i.

The probability of the eventAn
=0 can be calculated by

P (An
=0) = (1 − 1/m)kn.

The probability of the eventAn
=1 can be calculated by

P (An
=1) =

(

kn

1

)

(1 − 1/m)kn−1

m
.

The probability of the eventAn
≥1 can be calculated by

P (An
≥1) = 1 − P (An

=0).

We first study the probability that the potential false negative
items, due to one and only one incorrect item deletion, are
exposed or not. We then examine the expectation of the
number of exposed false negative items caused by the incorrect
deletion of one or multiple items.

Theorem 2:For an event that all potential false negative
items, caused by an incorrect deletion of an itemx1 /∈ X , are
not exposed to queries for all items in the setX , its probability
is

(

1 − (1 − 1/m)kn−k)
)k

=
(

P (An−1
≥1 )

)k
. (3)

Proof: If the CBF covers up all the potential false negative
items after the incorrect deletion of an itemx1, all counters
corresponding toBfaddress(x1) must be larger than 1 before
deleting the itemx1. It is obvious that the construction process
of the CBF is equivalent to throwingkn balls in m bins
randomly. The event can be explained as follows. The bins
Bfaddress(x1) are putk balls such that each bin holds one
ball. Otherkn−k balls are thrown in them bins including
the binsBfaddress(x1) randomly. The probability that each
bin in Bfaddress(x1) is hit at least once by the subsequent
k(n− 1) balls is given by Formula 3. This finishes the proof.

Theorem 3:For an event that a query for any item in the
set X discovers one of potential false negative items caused
by an incorrect deletion of an itemx1 /∈ X , its probability is

k
∑

i=1

(

k

i

)

P (An−1
=0 )iP (An−1

≥1 )k−i
(

1 −
(

1 −
i

m × P (An
≥1)

)k
)

.

(4)

Proof: According to the definition of this event, at least
one counter amongBfaddress(x1) is set to one and others
are set to an integer larger than one. The event defined
in this theorem can be explained as follows. First, letE1



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. , NO. , 6

denote an event that exactlyi counters among the counters
Bfaddress(x1) are set to one and other counters are set to
some integers larger than one for1 ≤ i ≤ k. That is, each bin
among the bins defined byBfaddress(x1) is put a ball firstly,
and i bins among the binsBfaddress(x1) are not hit (other
k − i bins in Bfaddress(x1) are hit by balls) during throwing
k(n − 1) balls in them bins. Its probability is

(

k

i

)

P (An−1
=0 )iP (An−1

≥1 )k−i.

Second, on the base ofE1 let us consider another eventE2

that j hash functions hash the itemx to the i counters that
were set to one among theBfaddress(x1), and otherk − j
hash functions map the itemx to other counters set to nonzero
among them bits. We can infer that1 ≤ j ≤ k, and the
probability of the eventE2 is

k
∑

j=1

(

k

j

)

( i

m × P (An
≥1)

)j
(

1 −
i

m × P (An
≥1)

)k−j

= 1 −
(

1 −
i

m × P (An
≥1)

)k
.

Based on the conditional probability and total probability
formulas, the probability that a subsequent set membership
query will discover a false negative item can be calculated by
Formula 4. This finishes the proof.

Theorem 4:The number of false negative items, caused by
an incorrect deletion and exposed to queries for all items inthe
setX , is a discrete random variable, denoted asZ. Its possible
values are integers ranging from1 to k. Its probability mass
function is

P (Z = i) =

(

k

i

)

P (An−1
=0 )iP (An−1

≥1 )k−i. (5)

Proof: We assume that a false positive itemx1 /∈ X is
deleted incorrectly from a CBF representing the setX with n
items. LetE1 denote an event that exactlyi counters among
theBfaddress(x1) are set to one and other counters are set to
some integers larger than one. That is, each bin among the bins
Bfaddress(x1) is put a ball firstly, andi bins among the bins
Bfaddress(x1) are not hit (otherk − i bins in Bfaddress(x1)
are hit) during throwingk(n − 1) balls in them bins. Thus,
i counters among theBfaddress(x1) will become zero after
deleting the itemx1 incorrectly from the CBF. According to
the proof of Theorem 1, thei counters are mapped toi false
negative items with high probability. On the other hand, the
values ofi range from1 to k.

The probability of the eventE1 is
(

k

i

)

P (An−1
=0 )iP (An−1

≥1 )k−i.

Thus, Formula 5 defines the probability mass function ofZ.
Theorem 4 is proved.

Corollary 3: The expectation ofZ is

E[Z] =
∑k

i=1
i × P (Z = i). (6)

The expectation of exposed false negative items due toα
incorrect item deletions isα × E[Z].

Proof: It is straightforward that the expectation of ex-
posed false negative items due to one incorrect item deletion
is given by Formula 6. Since theα incorrect item deletions
are independent to each other, the cumulative value of exposed
false negative items isα × E[Z].

3.3 Potential and exposed false negative items in
practice

The hash functions are the fundamental factors which influ-
ence the distribution of the number of exposed false negative
items. The ideal CBF makes the natural assumption that the
hash functions can map each item in the unknown universe
to a random number over the range{1, . . .m} uniformly.
In reality, this assumption is too strict to achieve, thus itis
very difficult to implement a CBF which can achieve the
measurement results accurately mentioned above. Therefore, it
is necessary to study the potential and exposed false negative
items triggered by an incorrect item deletion from a practical
aspect.

In the previous two subsections, the probability that any bit
in a CBF is set to zero, one and an integer larger than one
are studied analytically, just as many papers did. In reality,
the method does not work well if thek hash functions can not
satisfy the assumption of uniform random distribution. In such
scenario, we usep0, p1 andp2 to denote the fraction of bits
set to zero, one and an integer larger than one in the CBF, and
use them as the probability that any one bit is set to zero, one
and an integer larger than one. The new method is reasonable
from a viewpoint of the classic definition of probability, and
also practical because it is easy to collect thep0, p1 andp2. In
this subsection, we reconsider the problems mentioned in the
previous subsection from a practical aspect, and also revise
the results along the following steps.

1) First of all, let us perform the following modifica-
tions that P (An

=0)=p0, P (An
=1)=p1, P (An

≥2)=p2 and
P (An

≥1)=p1 + p2.
2) The formulas using theP (An

=0), P (An
=1), P (An

≥2) and
P (An

≥1) should perform the related modifications, such
as Formula 3, 4, 5, and 6.

We further conduct experiments to verify theoretical results
of potential and exposed false negative items caused by one or
multiple incorrect item deletions. Specifically, we will verify
the probability distribution of random variablesY andZ, the
cumulative potential false negative items, and the cumulative
exposed false negative items. We adopt the experimental
methodology in Section 5.2 to design and implement experi-
ments, wherec = 1.

Figures 1(a) and 1(b) plot the theoretical and experimen-
tal results about the probability distribution ofY and the
cumulative potential false negative items, respectively.The
figures show that the experimental results match well with
the theoretical results proved in Theorem 1 and Corollary 2.
On the other hand, Figures 2(a) and 2(b) plot the theoretical
and experimental results about the probability distribution ofZ
and the cumulative exposed false negative items, respectively.
The figures show that the experimental results match well with
the theoretical results proved in Theorem 4 and Corollary 3.



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. , NO. , 7

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Number of potential false negative items

P
ro

b
a

b
ili

ty

Theory
Experiment

(a) The probability distribution ofY

0 2 4 6 8 10
0

10

20

30

40

50

Number of incorrect item deletions

N
u

m
b

e
r 

o
f 
p

o
te

n
ti
a

l 
fa

ls
e

 n
e

g
a

ti
v
e

 i
te

m
s

Theory
Experiment

(b) The potential false negative items

Fig. 1. The provability distribution and number of potential
false negative items in theory as well as experiment,
where m=1600, n=100, and k=5.

Thus, the experimental results verify the correctness of those
theoretical results.

By comparing Figure 1(a) with Figure 2(a), we can find that
one incorrect item deletion can causek potential false negative
items with high probability, however, only aboutk/2 exposed
false negative items with high probability. This motivatesus
to study the exposed false negative items besides the potential
ones.

3.4 Principles to improve counting Bloom filter

According to the measurement results and observations men-
tioned above, we find two useful and important principles to
improve counting Bloom filter.

1) The improved CBF should not increase the probability
of false positive. Thus, at least it should not decrease the
ratio of bits set to zero,p0.

2) The improved CBF should decrease the exposed false
negative items caused by an incorrect item deletion
operation. Thus, at least it should increase the ratio of
bits set to a value larger than one,p2.

To increasep2, more bits of the CBF address of an item
x1 /∈ X need to be set to an integer larger than one. The
activity will decrease the number of exposed false negative
items, caused by the incorrect item deletion operation triggered
by x1. The two principles motivate us to consider a possible
improvement of CBF to increasep2 but do not decreasep0.
In the next section, we propose a new mechanism to improve
CBF and achieve the desired objectives. Although the solution
may not be the best one, it is useful to reduce the exposed false
negative items.

4 MULTI-CHOICE COUNTING BLOOM FILTER

The CBF assigns each itemx ∈ X just one CBF address
Bfaddress(x). The addresses of different items are indepen-
dent each other, and the value distribution of all bits in a CBF
is uncontrollable. Therefore, it is very difficult to increase
p2 by the traditional mechanisms widely used to control
the probability of false positive, for example the parameter
optimization. If we introduce some choices about the CBF
address, it is possible to increasep2 with the help of a suitable
greedy algorithm. In this paper, we will combine the CBF
with a mechanism often applied to improve load balancing, the

0 2 4 6 8 10 12
0

0.05

0.1

0.15

0.2

0.25

Number of exposed false negative items

P
ro

b
a

b
ili

ty

Theory
Experiment

(a) The probability distribution ofZ

0 2 4 6 8 10 12 14
0

10

20

30

40

50

60

70

80

Number of incorrect item deletions

N
u

m
b

e
r 

o
f 
e

x
p

o
s
e

d
 f
a

ls
e

 n
e

g
a

ti
v
e

 i
te

m
s

Theory
Experiment

(b) The exposed false negative items

Fig. 2. The probability distribution and number of exposed
false negative items in theory as well as experiment,
where m=1600, n=100, and k=11.

power of more choices [26], and validate the two principles
mentioned above.

Lumetta et al. combine the power of two choices with
Bloom filter to reduce the false positive probability [18]. They
use two groups of hash functions for mapping items and
checking membership at the cost of additional computations.
Their experiments show that the solution does not decrease
the false positive probability underany configuration of the
parametersm, n, and k in the online model, but achieves
some improvement in the offline model. Recently, Jimeno et
al. propose a Best-of-N Bloom filter replacing two groups of
hash functions withN groups [19]. They show the idea works
well under major configurations in the online model, and the
increase ofN always decreases the probability of false positive
judgment.

The idea of our solution is similar to that of [18], [19],
but the objective and related methods are different. We try
to decrease the exposed false negative items triggered by an
incorrect item deletion, but the authors of [18], [19] aimedto
control the false positive probability and did not mention any
issue about the false negative judgment. We propose a more
suitable item insertion method to realize our objective, which
increases the fraction of bits set to an integer larger than one
and does not decrease the fraction of bits set to zero in the
filter. The idea of using more choices to improve CBF should
also support the item deletion operation, however, this problem
is not discussed in [18], [19]. We propose a reasonable solution
to handle this issue, and analyze its impact on the false positive
and false negative judgments. The average time complexities
of the following item operations for CBF and MCBF areO(k)
and O(c × k), respectively. The space complexities for CBF
an MCBF are the same,L × m.

4.1 Insertion operation

Given a dynamic data setX with n items and a CBF with
a vector of m bits, let us consider the following variation
on the CBF. Instead of using a group of hash functions
to assign a CBF address for any itemx ∈ X , we usec
groups of hash functions to producec CBF addresses as
candidates wherec ≥ 2. The ith group consists ofk hash
functionshi

1, h
i
2, · · · , hi

k for 1 ≤ i ≤ c, and produces theith
CBF address for the itemx, denoted asBfaddressi(x). We



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. , NO. , 8

require that hash functions are perfectly independent, andas
random as possible. We call the improved CBF as multi-choice
counting Bloom filter, abbreviated as MCBF.

After receiving an insertion request for an itemx ∈ X ,
the MCBF will first calculatec CBF addresses forx as the
candidates, then choose one as the final CBF address according
to different approaches, finally increase the value of counter
by one for each bit in the final CBF address. A natural greedy
approach is proposed in literature [18], [19]. The basic idea
is to calculate how many additional bits would have to be
set to one for each candidate and select the candidate with
the least additional bits to be set to one. The greedy approach
produces less number of bits set to nonzero than that produced
by the CBF. It is well known that decreasing the number of
bits set to nonzero in a filter will increase the number of bits
set to an integer larger than one in the same filter. Thus, the
greedy approach also has positive impact on implementing our
fundamental objective although its original goal is to decrease
the false positive probability.

In this paper, we propose an improved greedy approach. It
still increases the ratio of the bits whose value is zero at the
similar extent, just as the greedy approach does. At the same
time, it can increase the ratio of the bits whose value is larger
than one and decrease the ratio of the bits set to one than that
of the greedy approach. Thus, our new approach can decrease
the exposed false negative items, caused by an incorrect item
deletion, more than what the greedy approach does. Algorithm
1 explains the improved greedy approach in detail.

Algorithm 1 Improved Greedy Approach For Selecting a CBF
Address for an itemx

1: Define and calculate a metric for each candidate to mea-
sure the number of additional bits needed to be set to
one in order to coverx. Then select the minimum value.
If there is only one candidate whose metric value equals
to the minimum value, then that candidate is the final
CBF address ofx. Otherwise, go to the next step with the
candidates whose metric equals to the minimum value as
the input parameters.

2: Define and calculate a metric for each candidate contained
in the input parameters to measure the number of bits set
to one currently. Then pick up the maximum value. If
there is only one candidate whose metric value equals
to the maximum value, then that candidate is the final
CBF address ofx. Otherwise, go to the next step with the
candidates whose metric equals to the maximum value as
input parameters.

3: Define and calculate a metric for each candidate contained
in the input parameters to measure the maximum value
among thek counters. Then pick up the minimum value.
If there is only one candidate whose metric value equals
to the minimum value, then it is the final CBF address
of x. Otherwise, randomly select one from the candidates
whose metric equals to the minimum value as the final
CBF address ofx.

4.2 Query operation

When we query an itemx, we will compute theBfaddressi(x)
for the ith group of hash functions, fori ∈ [1, c], and test
whether all bits ofBfaddressi(x) are non-zero. If it is, then
we sayx passes the test ofith group. The query forx returns
“yes” if it passes the test ofany group i ∈ [1, c].

Both the greedy approach and the improved greedy ap-
proach can increase the ratio of bits set zero, and seem to
decrease the chances of a false positive. But, usingc groups
of hash functions would seem to increase the chances of a
false positive, in that there are nowc ways for a false positive
to occur. Specifically, recall thatp0 is the fraction of bits set
to zero in the filter, the probability of a false positive is

1 − (1 − (1 − p0)
k)c. (7)

It is very difficult to determine whether the greedy and
improved approaches always decrease the false positive proba-
bility in the online model, although some preliminary analysis
have been done in literatures [18], [19]. Lumetta and Mitzen-
macher did not provide clear comments about the problem.
Jimeno and Christensen believed that the greedy approach al-
ways decreases the false positive probability as the increasing
of c. Recall that the strict assumptions about hash functions
are very difficult to reach, thus the analysis based on such
assumptions can not reflect the reality. In this paper, we prefer
to use the experiments rather than the theoretical analysisto
address the problem. The results of our experiments show that
the greedy and improved greedy approaches decrease the false
positive probability as the increasing ofc when the ratiom/n
exceeds a threshold, but increase it as the increasing ofc under
other configurations.

4.3 Deletion operation

During the process of item deletion, an itemx ∈ X may find
multiple possible CBF addresses. It is clear that only one CBF
address is assigned to the itemx during the insertion process,
and others are false positive judgments. In such situation,if
the MCBF persists in performing the item deletion operation,
the related counters of a wrong CBF address may be decreased
by one with some probability. As discussed in Section 2.3, the
incorrect deletion of a multi-address itemalways destroys the
CBF, and produces at mostk potential false negative items.

After the representation of setX , let Emulti denote the
event that an itemx ∈ X meets multiple possible CBF
addresses when performing the membership query of itemx.
The event means that at least an additional group of hash
functions map the itemx to the bits set to an integer larger
than zero besides the group of hash functions related to the
real CBF address of itemx. The probability of the event is

P (Emulti) = 1 − (1 − (1 − p0)
k)c−1. (8)

Formula 8 yields an upper bound on the probability that
event Emulti happens, and an upper bound on the number
of multi-address items isnr × P (Emulti), wherenr denotes
the cardinality of setX . Our experimental results show that
the real number of such items is much less than the upper
boundnr × P (Emulti). On the other hand, the deletion of a



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. , NO. , 9

such item is not always performed incorrectly in related CBF.
That is, the deletion of a multi-address item also has chanceto
be performed correctly without causing false negative items.
Theorem 5 analyzes the problem from the probability theory.

According to the definition of eventEmulti, the number of
false positives among the possible CBF addresses of itemx
is a discrete random variable, which is denoted asU .

Theorem 5:For an itemx which meets an eventEmulti,
the probability that the deletion of the itemx produces false
negative items is

E[U ]

1 + E[U ]
. (9)

Proof: The set of possible values of variableU are the
integers ranging from 1 toc−1. Its probability mass function
is

P (U = i) =

(

c

i

)

(

(1 − p0)
k
)i(

1 − (1 − p0)
k
)c−i

.

Furthermore,E[U ] =
∑c−1

i=1 i × P (U = i) denotes the expec-
tation ofU . Therefore, the number of possible CBF addresses
of x is 1+E[U ], and the probability that the deletion ofx will
cause false negative items isE[U ]

1+E[U ] . This finishes the proof.

According to Theorem 5 and the method to measure the
number of potential and exposed false negative items, we
estimate an upper bound on the number of potential and
exposed false negative items if the CBF deletes one of such
kind of items. We can also calculate upper bounds on the
number of potential false negative items and that of exposed
false negative items caused by all multi-address items. In
reality, the number of potential and exposed false negative
items are much less than the related upper bounds, because
the number of such items is much less than its upper bound.

Traditionally, a MCBF decrements the values of the respec-
tive counters when it receives a deletion instruct of a multi-
address item. As a new policy, a MCBF can simply omit
the deletion instruct of a multi-address item. The objective is
to prevent the MCBF from producing potential and exposed
false negative items. Thus, the MCBF still keeps membership
information for at mostnr ×P (Emulti) items even it receives
the deletion instructions for all items of the setX . If other
items join the setX during the process of deleting the original
items, the MCBF reflects not only current items of the setX
but also at mostnr×P (Emulti) retained items. It is reasonable
that the false positive probability of the MCBF is always larger
than the theoretical value. But, the difference between thereal
value and theoretical value is small, and the negative impact
of the new policy can be controlled at an acceptable level. As
direct results of the new policy, queries of such items always
response false positive, and the filter does not need to do any
change when such items rejoin the setX .

In summary, if a MCBF deletes multi-address items, it may
result in false negative items, otherwise it increases the false
positive probability. In reality, it needs to make a tradeoff
between these two policies. For applications in which the harm
of false negative is more serious than that of false positive, it’s
better to keep the MCBF after receiving a deletion request for a

multi-address item. On the other hand, it’s better to do related
modifications to the filter. Recall that even keep all multi-
address items in a MCBF, the negative impact on the false
positive probability can be controlled at a low and acceptable
level. We therefore recommend to keep multi-address items in
filter because the harm of false negative items is serious for
major applications.

5 PERFORMANCE EVALUATIONS

We first describe the implementation issues of related CBF
and the configurations of our experiments, and then compare
the analytical model with the experiment results in terms of
exposed false negatives. We also evaluate the false positive
probability, the greedy and improved greedy insertion of items,
and the impact of item deletion methods.

5.1 Implementation
In this work, we extend the BF and CBF delivered by Guo et
al. in [17] to implement the multi-choice counting Bloom filter.
One critical factor of the multi-choice counting Bloom filter
is to createc groups of hash functions. In our experiments, a
group ofk hash functions are generated by

hi(x) =
(

g1(x) + i × g2(x)
)

modm, (10)

where g1(x) and g2(x) are two independent and random
integers in the universe with range{1, 2, . . . , m}. The value
of i ranges from0 to k − 1. We propose the following three
methods to generate two random integers for any itemx.

1) The SDBM BUZhash method. We choose the SDBM and
BUZ hash functions to produce the values ofg1(x) and
g2(x), respectively.

2) The SDBM MersenneTwister method. The output of
SDBM Hash function acts as the seed of a random
number generator (RNG) MersenneTwister. The Mersen-
neTwister produces two desired random integers.

3) The BUZ MersenneTwister method. The output of BUZ
hash function acts as the seed of MersenneTwister. The
MersenneTwister produces two desired random integers.

The mechanism requires two hash functions or one hash
function and one random number generator to runk rounds
of Formula 10 in order to generate aBfaddress(x) for an item
x. For otherc − 1 Bloom filter addresses, we use the results
of appendingc − 1 predefined strings onx as the inputs for
producingc−1 pairs of two random numbers, and then achieve
otherc−1 CBF addresses by the Formula 10. The mechanism
can bring in a considerable reduction in processing overhead
compared to usingc × k hashes, and does not increase the
false positive probability [27].

The quality of the hash functions and one random number
generator has significant impact on the experiment results.
The SDBM hash function has a good overall distribution
for different data sets, and works well even if the MSBs of
items in a data set exhibit high variation. BUZ hash function
is fast and employed widely. It produces near-perfect result
even with extremely skewed input data. The Mersenne twister
provides for fast generation of very high quality pseudo-
random numbers, and is designed to rectify many flaws found
in older algorithms.



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. , NO. , 10

1 5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

2.5

The number of the groups of hash functions (C)

T
h

e
 c

h
a

n
g

e
 f

a
c
to

r 
o

f 
th

e
 f

a
ls

e
 p

o
s
it
iv

e

Ratio=8

Ratio=12

Ratio=16

Ratio=20

(a) SDBM MersenneTwister method

1 5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

2.5

The number of the groups of hash functions (C)

T
h

e
 c

h
a

n
g

e
 f

a
c
to

r 
o

f 
th

e
 f

a
ls

e
 p

o
s
it
iv

e

Ratio=8

Ratio=12

Ratio=16

Ratio=20

(b) BUZ MersenneTwister method

1 5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

2.5

3

3.5

4

The number of the groups of hash functions (C)

T
h

e
 c

h
a

n
g

e
 f

a
c
to

r 
o

f 
th

e
 f

a
ls

e
 p

o
s
it
iv

e

Ratio=8

Ratio=12

Ratio=16

Ratio=20

(c) SDBM BUZhash method

Fig. 3. The ratio of false positive probability of multi-choice counting Bloom filter to that of Bloom filter.

1 5 10 15 20 25 30 35 40 45 50
0.45

0.5

0.55

0.6

0.65

0.7

The number of the groups of hash functions (C)

T
h

e
 r

a
ti
o

 o
f 

th
e

 b
it
s
 s

e
t 

to
 z

e
ro

Ratio=8

Ratio=12

Ratio=16

Ratio=20

(a) SDBM MersenneTwister method

1 5 10 15 20 25 30 35 40 45 50
0.45

0.5

0.55

0.6

0.65

0.7

The number of the groups of hash functions (C)

T
h

e
 r

a
ti
o

 o
f 

th
e

 b
it
s
 s

e
t 

to
 z

e
ro

Ratio=8

Ratio=12

Ratio=16

Ratio=20

(b) BUZ MersenneTwister method

1 5 10 15 20 25 30 35 40 45 50
0.5

0.55

0.6

0.65

0.7

The number of the groups of hash functions (C)

T
h

e
 r

a
ti
o

 o
f 

th
e

 b
it
s
 s

e
t 

to
 z

e
ro

Ratio=8

Ratio=12

Ratio=16

Ratio=20

(c) SDBM BUZhash method

Fig. 4. The ratio of the bits set to zero in multi-choice counting Bloom filters with different configurations.

5.2 Experiment methodology

Note that CBF and MCBF are designed to represent any
possible sets, query sequences, and item deletion/insertion
sequences. In addition, there are no benchmark sets and traces
in the field of Bloom filters. Since we could not obtain traffic
traces [28] in the field of real-time identification of P2P traffic
based on CBF, we simply use a set from the DBLP. The
size of the data set is near 300M. We retrieve partial history
information of papers published in the major conferences
from the DBLP records. We then use the name of authors to
initialize a data setX to be represented by our Bloom filter,
and another data setY to be used by the tests of false positive
judgments. Our experiments do not seek particular sequences
of item query/correct deletion/incorrect deletion/insertion but
simply use a synthetic random sequence. The limitation is
that we did not use the actual traces. We plan to work on
the real traces once we obtain them. While the extension is
necessary in a deeper, trace-drive study, the initial results are
independent to the type of set and the sequence of those basic
item operations facing MCBF.

For each instance of experiment, we initialize the following
parameters before testing data. The first parameter is the bits
per itemratio = m/n, and can be set as 8, 12, 16, 20 and
24. The second parameterk is ⌊(m/n) ln 2⌋ [1]. The third
parametern is set to 10000. The fourth parameter is the upper
bound ofc, and is set to 50. The fifth parameterT is the size
of data set used by the tests of false positive judgments, and
is set to8 × n. The hash algorithms are the three candidates
mentioned above. The item insertion algorithms are the greedy
together with its improved algorithms.

The experiments are divided as3 × 2 × 5 = 30 instances.
Each instance selects one hash algorithm from three candi-
dates, one item insertion algorithm from two candidates, and
the value ofm/n from five candidates. Other parameters are
the same among different instances. Each instance runsc
rounds, with one round for each integer in the range[1, c].
The 30 instances are conducted on a cluster with Linux and
Solaris OS and more than 30 CPUs.

5.3 Experiment results

5.3.1 False positive judgment
Figures 3 and 4 plot the experiment results about the false
positive probability under several different configurations, and
we report results under the improved greedy algorithm only.
The results under the greedy algorithm are similar, and are
omitted due to the space limit. Thechange factorof false
positive is the ratio of false positive probability of MCBF to
that of CBF. Figure 4 shows that MCBF always increases the
ratio of the bits set to zero as the increasing ofc, and the
number of bits set zero in a MCBF withc=50 increases about
40% of that in a CBF whenm/n=8 or 12. The gain is about
30% whenm/n=16 or 20. The results demonstrate that when
MCBF satisfies the first policy we proposed in section 3.4, the
ratio of bits set to zero increases significantly and the false
positive probability might be decreased.

For the cases thatm/n = 8 or 12, the false positive
probability of MCBF is always larger than that of CBF as
the increasing ofc. For the case thatm/n = 20, MCBF
indeed decreases the false positive probability as the increas-
ing of c. The experiment results under the three different



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. , NO. , 11

1 5 10 15 20 25 30 35 40 45 50
1

2

3

4

5

6

7

8

9

The number of the groups of hash functions (C)

T
h

e
 n

u
m

b
e

r 
o

f 
th

e
 f

a
ls

e
 n

e
g

a
ti
v
e

s The greedy, ratio=16

Improved greedy, ratio=16

The greedy, ratio=8

Improved greedy, ratio=8

(a) SDBM MersenneTwister method

1 5 10 15 20 25 30 35 40 45 50
1

2

3

4

5

6

7

8

9

The number of the groups of hash functions (C)

T
h

e
 n

u
m

b
e

r 
o

f 
th

e
 f

a
ls

e
 n

e
g

a
tiv

e
s The greedy, ratio=16

Improved greedy, ratio=16

The greedy, ratio=8

Improved greedy, ratio=8

(b) BUZ MersenneTwister method

1 5 10 15 20 25 30 35 40 45 50
1

2

3

4

5

6

7

8

9

The number of the groups of hash functions (C)

T
h

e
 n

u
m

b
e

r 
o

f 
th

e
 f

a
ls

e
 n

e
g

a
ti
v
e

s The greedy, ratio=16

Improved greedy, ratio=16

The greedy, ratio=8

Improved greedy, ratio=8

(c) SDBM BUZhash method

Fig. 5. The average value of exposed false negative items due to an incorrect item deletion triggered by a false
positive.

1 5 10 15 20 25 30 35 40 45 50

0.5

1

1.5

2

2.5

3

The number of the groups of hash functions (C)

T
h

e
 r

a
ti
o

 o
f 

th
e

 v
a

lu
e

 p
2

 t
o

 t
h

e
 v

a
lu

e
 o

f 
p

1

Improved greedy, ratio=8

The greedy, ratio=8

Improved greedy, ratio=16

The greedy, ratio=16

(a) SDBM MersenneTwister method

1 5 10 15 20 25 30 35 40 45 50

0.5

1

1.5

2

2.5

3

The number of the groups of hash functions (C)

T
h

e
 r

a
ti
o

 o
f 

th
e

 v
a

lu
e

 p
2

 t
o

 t
h

e
 v

a
lu

e
 o

f 
p

1

Improved greedy, ratio=8

The greedy, ratio=8

Improved greedy, ratio=16

The greedy, ratio=16

(b) BUZ MersenneTwister method

1 5 10 15 20 25 30 35 40 45 50

0.5

1

1.5

2

2.5

3

The number of the groups of hash functions (C)

T
h

e
 r

a
tio

 o
f 

th
e

 v
a

lu
e

 p
2

 t
o

 t
h

e
 v

a
lu

e
 o

f 
p

1

Improved greedy, ratio=8

The greedy, ratio=8

Improved greedy, ratio=16

The greedy, ratio=16

(c) SDBM BUZhash method

Fig. 6. The ratio of the bits set to a value larger than one to the bits set to one.

hash algorithms have the similar trend for the four cases
of m/n. There may exist a threshold of the value ofm/n
such that the false positive probability of MCBF always
decreases as the increasing ofc only if m/n exceeds it. When
m/n = 16, the hash algorithm is SDBMMersenneTwister
or BUZ MersenneTwister, the false positive probability of
MCBF is less than or similar to that of CBF as the increasing
of c. If the hash algorithm is the SDBMBUZhash, the false
positive probability of MCBF is always larger than that of
CBF as the increasing ofc. The experiment results show that
the SDBM MersenneTwister and BUZMersenneTwister are
more suitable to the multi-choice counting Bloom filters than
the SDBM BUZhash.

In summary, the results show that MCBF satisfies the first
policy used to improve CBF, however, it cannot always de-
crease the false positive probability in the online model under
any configurations. The reason is that the positive contribution
by increasing the ratio of the bits set to zero does not always
go beyond the negative influence of the more chance of a false
positive resulting from thec possible Bloom filter addresses.
Thus, it is very important to tune the parameters of MCBF
carefully in order to always decrease the false positive prob-
ability. The result recommends that the value ofm/n should
not less than 16 and prefers the SDBMMersenneTwister and
BUZ MersenneTwister hash algorithms.

5.3.2 False negative judgment
Theoretically, we show that MCBF can reduce the exposed
false negatives caused by incorrect deletion of items. Recall
that the experiment are divided into30 instances. Now we
examine whether the experiment result is consistent with

theoretical result in each instance. The incorrect item deletions
triggered by different false positives have different impacts on
the exposed false negative items. Due to the huge number of
possible false positives in a given MCBF, here we only show
two representative categories.

In the first category, we emulate an incorrect deletion of an
item by decreasing the counters ofk bits by one, where the
k bits are randomly selected from those bits set to nonzero in
the MCBF. After multiple rounds of each instance, the average
value of the number of exposed false negative items due to an
incorrect item deletion is shown in Figure 5. As the analysis
in theory, the improved greedy algorithm indeed decreases
the exposed false negatives more than the traditional greedy
algorithm under different configurations ofm/n and hash
algorithms. We use the experiment results shown in Figure
6 to explain the reason of such conclusion. In Figure 6, a
curve of our improved greedy algorithm is always above a
corresponding curve of the traditional greedy algorithm ineach
experiment instance. This means that our improved greedy
algorithm updates more bits set to one with a value larger than
one than the traditional greedy algorithm. Thus, more potential
false negative items can be covered and are not exposed under
the improved greedy algorithm. In summary, the improved
greedy algorithm outperforms the traditional one in theoryand
practice.

In the second category, we emulate an incorrect deletion
of an item by decreasing anyα counters set to one and
β counters set to an integer larger than one by one in the
MCBF, where k = α + β and α

β ≈ p1

p2

. This method
can reflect an incorrect deletion of an item more accurate
than the method used in the first category. We then measure



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. , NO. , 12

(a) SDBM MersenneTwister method, ratio=8 (b) BUZ MersenneTwister method, ratio=12 (c) SDBM BUZhash method, ratio=16

Fig. 7. The exposed false negative items due to multiple incorrect item deletions triggered by multiple false positives.

1 5 10 15 20 25 30 35 40 45 50
6

8

10

12

14

16

18

The number of the groups of hash functions (C)

T
h

e
 m

a
xi

m
u

m
 v

a
lu

e
 a

m
o

n
g

 m
 c

o
u

n
te

rs

SDBM−MersenneTwister

BUZ−MersenneTwister

SDBM−BUZhash

(a) Ratio = 8

1 5 10 15 20 25 30 35 40 45 50
6

8

10

12

14

16

18

The number of the groups of hash functions (C)

T
h

e
 m

a
xi

m
u

m
 v

a
lu

e
 a

m
o

n
g

 m
 c

o
u

n
te

rs

SDBM−BUZhash

SDBM−MersenneTwister

BUZ−MersenneTwister

(b) Ratio = 12

1 5 10 15 20 25 30 35 40 45 50

8

10

12

14

16

18

The number of the groups of hash functions (C)

T
h

e
 m

a
xi

m
u

m
 v

a
lu

e
 a

m
o

n
g

 m
 c

o
u

n
te

rs

SDBM−BUZhash

SDBM−MersenneTwister

BUZ−MersenneTwister

(c) Ratio = 16

Fig. 8. The maximum counter value among all the m bits in the context of our improved greedy algorithm.

0 10 20 30 40 50
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

The number of the groups of hash functions, c

Theoretical upperbound of r

Experimental upperbound of r

Real value of r

(a) SDBM MersenneTwister, ratio=8

0 10 20 30 40 50
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

The number of the groups of hash functions, c

Theoretical upperbound of r

Experimental upperbound of r

Real value of r

(b) BUZ MersenneTwister, ratio=8

0 10 20 30 40 50
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

The number of the groups of hash functions, c

Theoretical upperbound of r

Experimental upperbound of r

Real value of r

(c) SDBM BUZhash, ratio=8

Fig. 9. The ratio of items with multiple addresses and the false positive probability.

the exposed false negative items due to one incorrect item
deletion as well as the cumulative exposed false negative items
due to multiple incorrect item deletions. Indeed, this set of
experiments covers the scope of the experiments in the first
category. The experiment results under the improved greedy
algorithm is shown in Figure 7. We find that the number of
exposed false negative items increases more as the increasing
of number of incorrect item deletions in related CBF, and
at least 50% of the exposed false negative items become
unexposed if we introduce a MCBF with at most4 groups of
hash functions whenratio=8. Whenratio=12 andratio=16, a
MCBF needs 10 and 20 groups of hash functions, respectively,
to achieve the similar result. The MCBF also makes80% of
the exposed false negative items in a CBF become unexposed
by assigning a moderate value to the parameterc. The results
show that our improved greedy algorithm still do better than
the traditional one in this scenario. We do not show the detailed
results due to the page limit. The similar results hold when
ratio=20 andratio=24 in both first as well as second category,
and are omitted.

In summary, the results indicate that MCBF satisfies the
second policy to improve CBF mentioned in subsection 3.4
and makes about50−80% of exposed false negative items in a
CBF become unexposed with the help of careful configuration.
It, however, does not mean thatc should be as large as
possible because of the additional computation costs. On the
other hand, the contributions of decreasing the false positive
probability and reducing the number of exposed false negative
items turns to be trivial afterc exceeds a certain threshold in
MCBF.

5.3.3 The maximum load

Recall that each array position of a CBF is allocatedL bits,
and L=4 suffices if thek hash functions can map each item
over the range1, ..., m uniformly and independently. Under
the context of multi-choice counting Bloom filter, obviously,
this assumption is not true. Hence, it is necessary to reconsider
whetherL=4 still suffices. We conduct 9 experiment instances
to achieve the maximum load among them array positions
under different configurations. Each instance selects one hash



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. , NO. , 13

10 20 30 40 50
0

2

4

6
x 10

-3

The number of the groups of hash functions, c

Ratio=12

10 20 30 40 50
0

2

4

6
x 10

-4

The number of the groups of hash functions, c

Ratio=16

10 20 30 40 50
0

2

4

6

8
x 10

-5

The number of the groups of hash functions, c

Ratio=20

10 20 30 40 50
0

0.5

1

1.5
x 10

-5

The number of the groups of hash functions, c

Ratio=24

Current false positive probability

Original false positive probability

Current false positive probability

Original false positive probability

Current false positive probability

Original false positive probability

Current false positive probability

Original false positive probability

Fig. 10. The original false positive probability and the
resulting false positive probability due to keep additional r
items.

function algorithm from three candidates, and the ratio denoted
the value ofm/n from 8,12, and 16. Other parameters are the
same among different instances.

The experimental results shown in Figure 8 indicates the
maximum load is less than 16 in 8 instances except one
instance using theSDBM BUZhash algorithm. This shows
that other two hash algorithms are more suitable to the MCBF
than theSDBM BUZhash. Recall that the same conclusion
has been proposed in subsection 5.3.1. The experimental
results also show that the maximum load is less than 16 when
m/n ≥ 16 which we do not show. On the other hand, the
CBF and theirs variations often assign 8 or a larger value
to the parameterm/n in order to decrease the false positive
probability. In summary,L=4 still suffices in the context of
the MCBF.

5.3.4 Impact of item deletion operation in MCBF

Recall that some items of a setX may have multiple possible
CBF addresses in a MCBF. The recommended item dele-
tion operation mentioned in 4.3 remains the set membership
information of such items when dealing with item deletion
requests. It is easy to know that this operation may increasethe
false positive probability of the MCBF. Therefore, the number
of such items should be as less as possible. Letr denote
the percentage of such items in theX . An estimated upper
bound ofr is given by Formula 8 in theory. Each experiment
instance calculates the number of such items in theX , and
then achieves the experimental upper bound ofr. We also
measure another metric called the real value ofr besides the
theoretical and experimental upper bounds ofr. Each instance
attempts to delete all items from theX and related MCBF
following the recommended deletion operation. Finally, the
ratio of remaining items to the original items in theX denotes
the real value ofr.

Figure 9 shows that the real value ofr is always less than
its estimated and experimental upper bounds. In Figures 9(a),
9(b), and 9(c), all the three curves increase as the increasing
of c. The curves of the experimental upper bound ofr and the

real value ofr increase smoothly, and remain at a low level.
In practice, the frequency of deleting all items from a data
set and its MCBF is very low. If we insert othern items to
the data set and related MCBF once this event happens, the
false positive probability of resulting MCBF is often larger
than that of the original one, but is still at a lower and stable
level. Figure 10 shows that it is appropriate to the original
value whenc ≥ 10. In summary, the item deletion operation
can avoid producing false negative items at the cost of a trivial
influence on the false positive judgment if the size of theX
changes at a stable level without immediately decreasing more.

6 CONCLUSIONS

We show that the false negative items can indeed occur in a
CBF and related variants. We also reveal that two types of
incorrect item deletion operations triggered by a false positive
are the root causes of false negative items, and the potential
false negative items usually are not fully exposed at the
same time. We then measure the potential and exposed false
negative items from aspects of theory and practice. Finally, we
introduce two fundamental principles to make more potential
false negative items become unexposed whenever possible,
and propose an improved CBF to validate our principles.
Our analytical and experimental results demonstrate that the
proposed CBF decreases the number of exposed false negative
items without increasing the probability of false positive.

ACKNOWLEDGMENTS

The authors would like to thank anonymous reviewers for their
constructive comments. The work of Deke Guo is supported
in part by the NSF China under grants No. 60903206 and
No. 60903225. Xiang-Yang Li and Yunhao Liu’s research is
supported in part by the NSF CNS-0832120, the NSF China
under grants No. 60828003, No. 60773042 and No. 60803126,
the Natural Science Foundation of Zhejiang Province under
grant No. Z1080979, the National Basic Research Program of
China (973 Program) under grant No. 2010CB328100 and No.
2006CB30300, the National High Technology Research and
Development Program of China (863 Program) under grant
No. 2007AA01Z180, the Hong Kong RGC under grant HKBU
2104/06E, and the CERG under Grant PolyU-5232/07E. The
work of Panlong Yang is supported in part by the 973 Program
of China under grant No. 2009CB3020402, and the 863
Program of China under grant No. 2008AA01Z216.

REFERENCES

[1] B. Bloom. Space/time tradeoffs in hash coding with allowable errors.
Commun. ACM, 13(7):422–426, 1970.

[2] A. Broder and M. Mitzenmacher. Network applications of bloom filters:
A survey. Internet Mathematics, 1(4):485–509, 2005.

[3] J. K. Mullin. Optimal semijoins for distributed database systems.IEEE
Trans. Software Eng., 16(5):558–560, 1990.

[4] L. Fan, P. Cao, J. Almeida, and A. Broder. Summary cache: Ascalable
wide-area web cache sharing protocol.IEEE/ACM Trans. Networking,
8(3):281–293, 2000.

[5] J. Li, J. Taylor, L. Serban, and M.Seltzer. Self-organization in peer-to-
peer system. InProc. 10th ACM SIGOPS European Workshop, Saint-
Emilion, France, September 2002.

[6] S. C. Rhea and J. Kubiatowicz. Probabilistic location and routing. In
Proc. IEEE INFOCOM, pages 1248–1257, New York, USA, June 2004.



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. , NO. , 14

[7] A. Kumar, J. Xu, and E. W. Zegura. Effcient and scalable query routing
for unstructured peer-to-peer networks. InProc. IEEE INFOCOM, pages
1162–1173, Miami, USA, March 2005.

[8] F. Deng and D. Rafiei. Approximately detecting duplicates for streaming
data using stable bloom filters. InProc. 25th ACM SIGMOD, pages 25–
36, Chicago, Illinois, USA, June 2006.

[9] F. Bonomi, M. Mitzenmacher, R. Panigrahy, S. Singh, and G. Varghese.
Beyond bloom filters: from approximate membership checkstoapprox-
imate state machines. InProc. ACM SIGCOMM, pages 315–326, Pisa,
Italy, September 2006.

[10] Kang Li and Zhenyu Zhong. Fast statistical spam filter byapproximate
classifications. InProc. SIGMETRICS/Performance, pages 347–358,
Saint Malo, France, June 2006.

[11] M. Mitzenmacher. Compressed bloom filters.IEEE/ACM Trans.
Networking, 10(5):604–612, 2002.

[12] A. Kirsch and M. Mitzenmacher. Distance-sensitive bloom filters.
In Proc. 8th Workshop on Algorithm Engineering and Experiments
(ALENEX06), Miami, Florida,USA, January 2006.

[13] A. Kumar, J. Xu, J. Wang, O. Spatschek, and L. Li. Space-code bloom
filter for efficient per-flow traffic measurement. InProc. 23th IEEE
INFOCOM, pages 1762–1773, Hongkong, China, March 2004.

[14] S. Cohen and Y. Matias. Spectral bloom filters. InProc. 22th ACM
SIGMOD, pages 241–252, San Diego, USA, June 2003.

[15] R. P. Laufer, P. B. Velloso, and O. C. M. B. Duarte. Generalized bloom
filters. Technical Report Research Report GTA-05-43, University of
California, Los Angeles (UCLA), September 2005.

[16] B. Chazelle, J. Kilian, R. Rubinfeld, and A. Tal. The bloomier filter:
an efficient data structure for static support lookup tables. In Proc. 5th
SODA, pages 30–39, New Orleans, Louisiana, USA, January 2004.

[17] D. Guo, J. Wu, H. Chen, and X. Luo. Theory and network applications
of dynamic bloom filters. InProc. 25th IEEE INFOCOM, Barcelona,
Spain, April 2006.

[18] S. Lumetta and M. Mitzenmacher. Using the power of two choices to im-
prove bloom filters. http://www.eecs.harvard.edu/michaelm/postscripts/.

[19] M. Jimeno, K. Christensen, and A. Roginsky. A power management
proxy with a new best-of-n bloom filter design to reduce falsefosi-
tives. In Proc. 26th IEEE International Performance Computing and
Communications Conference (IPCCC), Louisiana, USA, April 2007.

[20] P. S. Almeida, C. Baquero, N. M. Preguiça, and D. Hutchison. Scalable
bloom filters. Inf. Process. Lett., 101(6):255–261, 2007.

[21] D. Benoit, B. Bruno, and F. Timur. Retouched bloom filters: Allowing
networked applications to trade off selected false positives against false
negatives. InProc. ACM CoNEXT, Lisboa, Portugal, September 2006.

[22] Y. Zhu and H. Jiang. False rate analysis of bloom filter replicas in
distributed systems. InProc. 35th International Conference on Parallel
Processing (ICPP), pages 255–262, Ohio, USA, August 2006.

[23] D. Forsgren, U. Jennehag, and P. Osterberg. Objective end-to-end QoS
gain from packet prioritization and layering in MPEG-2 streaming video.
http://amp.ece.cmu.edu/packetvideo2002/papers/61-ananhseors.pdf.

[24] T. Karargiannis, A. Broido, M. Faloutsos, and K. C. Claffy. Transport
layer identification of P2P traffic. InProc. ACM SIGCOMM, 2004.

[25] K. Thomson, G. J. Miller, and R. Wilder. Wide-are trafficpatterns and
characteristics.IEEE Network, December 1997.

[26] M. Mitzenmacher. The power of two choices in randomizedload
balancing.IEEE Trans. Parallel Distrib. Syst., 12(10):1094–1104, 2001.

[27] A. Kirsch and M. Mitzenmacher. Less hashing, same performance:
Building a better bloom filter. InProc. 14th Annual European Sympo-
sium on Algorithms, pages 456–467, Switzerland, 2006.

[28] T. Karargiannis, A. Broido, M. Faloutsos, and K.C. Claffy. Transport
layer identification of p2p traffic. InProc. ACM SIGCOMM, September
2004.

Deke Guo received the B.S. degree in industry
engineering from Beijing University of Aeronau-
tic and Astronautic, Beijing, China, in 2001, and
the Ph.D. degree in management science and
engineering from National University of Defense
Technology, Changsha, China, in 2008. He was
a visiting scholar at the Department of Computer
Science and Engineering in Hong Kong Univer-
sity of Science and Technology from Jan. 2007
to Jan. 2009. He is now an assistant professor
of Information System and Management, Na-

tional University of Defense Technology, Changsha, China. His current
research interests include peer-to-peer computing, Bloom filters, data
center networking, and wireless networks. He is a member of the ACM
and the IEEE.

Yunhao Liu (SM’06) received the B.S. degree
in automation from Tsinghua University, China,
in 1995, and the M.A. degree from the Beijing
Foreign Studies University, China, in 1997, and
the M.S. and Ph.D. degrees in computer science
and engineering from Michigan State University
in 2003 and 2004, respectively. He is now an
Associate Professor and the Postgraduate Di-
rector at the Department of Computer Science
and Engineering in the Hong Kong University of
Science and Technology. His research interests

include wireless sensor network, peer-to-peer computing, and pervasive
computing. Dr. Liu and his student Mo Li received the Grand Prize of
Hong Kong ICT Best Innovation and Research Award 2007. He is a
member of the ACM and a senior member of the IEEE.

Xiangyang Li received the M.S. (2000) and
Ph.D. (2001) degree at Department of Computer
Science from University of Illinois at Urbana-
Champaign. He received his Bachelor degree
at Department of Computer Science and Bach-
elor degree at Department of Business Man-
agement from Tsinghua University, P.R. China,
both in 1995. He has been with Department
of Computer Science at the Illinois Institute of
Technology since 2000. Currently he is an As-
sociate Professor of Department of Computer

Science, IIT. His research interests span wireless ad hoc and sensor
networks, non-cooperative computing, computational geometry, optical
networks, and cryptography. He is an editor of Ad Hoc & Sensor
Wireless Networks: An International Journal, and Editor of Networks:
An International Journal. He has been a guest editor of special issues
for ACM Mobile Networks and Applications, IEEE Journal on Selected
Areas in Communications. He is a Member of the ACM and a senior
member of the IEEE.

Panlong Yang received the B.S. degree, M.S.
degree, and Ph.D. degree in communication
and information system from Nanjing Institute
of Communication Engineering, China, in 1999,
2002, and 2005 respectively. During November
2006 to March 2009, he was a postdoc fellow at
the Department of Computer Science in Nanjing
University. Currently he is an associate professor
in the Nanjing Institute of Communication Engi-
neering. His research interests include wireless
mesh networks, wireless sensor networks and

cognitive radio networks. He is a member of the IEEE Computer Society
and the ACM SIGMOBILE Society.


