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Abstract—Mobile Crowd Sensing (MCS) is a new paradigm
which takes advantage of pervasive mobile devices to efficiently
collect data, enabling numerous novel applications. To achieve
good service quality for an MCS application, incentive mecha-
nisms are necessary to attract more user participation. Most of
existing mechanisms apply only for the offline scenario where all
users report their strategic types in advance. On the contrary,
we focus on a more realistic scenario where users arrive one
by one online in a random order. Based on the online auction
model, we investigate the problem that users submit their private
types to the crowdsourcer when arrive, and the crowdsourcer
aims at selecting a subset of users before a specified deadline for
maximizing the value of services (assumed to be a non-negative
monotone submodular function) provided by selected users under
a budget constraint. We design two online mechanisms, OMZ
and OMG, satisfying the computational efficiency, individual
rationality, budget feasibility, truthfulness, consumer sovereignty
and constant competitiveness under the zero arrival-departure
interval case and a more general case, respectively. Through
extensive simulations, we evaluate the performance and validate
the theoretical properties of our online mechanisms.

Index Terms—Crowdsourcing, incentive mechanism design,
online auction.

I. INTRODUCTION

Crowdsourcing is a distributed problem-solving model in
which a crowd of undefined size is engaged to solve a
complex problem through an open call [1]. Nowadays, the
proliferation of mobile devices (e.g., smartphones, wearable
devices, in-vehicle sensing devices) provides a new opportu-
nity for extending existing web-based crowdsourcing appli-
cations to a larger contributing crowd, making contribution
easier and omnipresent. Furthermore, today’s smartphones are
programmable and come with a rich set of cheap power-
ful embedded sensors, such as GPS, WiFi/3G/4G interfaces,
accelerometer, digital compass, gyroscope, microphone, and
camera. The great potential of mobile sensing offers a variety
of novel, efficient ways to collect data, enabling numerous
Mobile Crowd Sensing (MCS) applications, such as Sensorly
[2] for constructing cellular/WiFi network coverage maps, Sig-
nalGuru [3], Nericell [4] and VTrack [5] for providing traffic
information, Ear-Phone [6] and NoiseTube [7] for making
noise maps. For more details on MCS, we refer interested
readers to several survey papers [1], [8], [9].
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Adequate user participation is one of the most critical
factors determining whether an MCS application can achieve
good service quality. Most of the current MCS applications
[2]–[7] are based on voluntary participation. While participat-
ing in an MCS campaign, mobile users consume their own
resources such as battery and computing power, and expose
their locations with potential privacy threats. Thus, incentive
mechanisms are necessary to provide participants with enough
rewards for their participation costs. At present, a lot of
research [10]–[16] focuses on incentive mechanism design for
MCS applications. Most of existing mechanisms apply only for
the offline scenario in which all of participating users report
their strategic types, including the tasks they can complete
and the bids, to the crowdsourcer (campaign organizer) in
advance, and then the crowdsourcer selects a subset of users
after collecting the information of all users to maximize his/her
utility (e.g., the total value of all tasks that can be completed
by selected users).

In practice, however, users always arrive one by one online
in a random order and user availability changes over time.
Therefore, an online incentive mechanism is necessary to make
irrevocable decisions on whether to accept a user’s task and
bid, based solely on the information of users arriving before
the present moment, without knowing future information.

In this paper we consider a general problem: the crowd-
sourcer aims at selecting a subset of users before a specified
deadline, so that the value of services provided by selected
users is maximized under the condition that the total payment
to these users does not exceed a budget constraint. Specially,
we investigate the case where the value function of selected
users is non-negative monotone submodular. This covers many
realistic scenarios. For example, many MCS applications [2]–
[7] aim at selecting users to collect sensing data so that a
given region can be covered before a specified deadline, where
the coverage function is typically non-negative monotone sub-
modular. We further assume that the cost and arrival/departure
time of each user are private and only known to itself. Users
are assumed to be game-theoretic and seek to make strategy
(possibly report an untruthful cost or arrival/departure time)
to maximize their individual utility in equilibrium. Thus, the
problem of selecting crowdsourcing users while maximizing
the value can be modeled as an online auction.

Our objective is to design online mechanisms satisfying six
desirable properties: computational efficiency, individual ra-
tionality, budget feasibility, truthfulness, consumer sovereignty
and constant competitiveness. Informally, computational effi-
ciency ensures the mechanism can run in real time, individual
rationality ensures each participating user has a non-negative
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utility, budget feasibility ensures the crowdsourcer’s budget
constraint is not violated, truthfulness ensures the participat-
ing users report their true costs (cost-truthfulness) and ar-
rival/departure times (time-truthfulness), consumer sovereignty
ensures each participating user has a chance to win the auction,
and constant competitiveness guarantees that the mechanism
performs close to the optimal solution in the offline scenario
where all users’ information are known a priori. Although
several recent studies also investigate online mechanisms for
crowdsourcing markets [17]–[19], they focus on different
models or goals, or fail to consider some important properties.

The main idea behind our online mechanisms is to adopt a
multiple-stage sampling-accepting process. At every stage the
mechanism allocates tasks to a user only if his/her marginal
density is not less than a certain density threshold that has
been computed using previous users’ information, and the
budget allocated for the current stage has not been exhausted.
Meanwhile, the user obtains a bid-independent payment. The
density threshold is computed in a manner that guarantees
desirable performance properties of the mechanism. We first
consider the zero arrival-departure interval case where the
arrival time of each user equals to his/her departure time
(Section III). In this case, achieving time-truthfulness is trivial.
We present an online mechanism OMZ satisfying all desirable
properties under this special case without considering the time-
truthfulness. Then we revise the OMZ mechanism, and present
another online mechanism OMG satisfying all desirable prop-
erties under a more general case (Section IV).

The remainder of this paper is organized as follows. In
Section II we describe the MCS system model, and formulate
the problem as an online auction. We then present two online
mechanisms, OMZ and OMG, satisfying all desirable prop-
erties under the zero arrival-departure interval case and the
general case in Section III and IV, respectively. Performance
evaluations are presented in Section V. We review the related
work in Section VII, and conclude this paper in Section VIII.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We use Fig. 1 to illustrate an MCS system. The system
consists of a crowdsourcer, which resides in the cloud and
consists of multiple sensing servers, and many smartphone
users, which are connected to the cloud by cellular networks
(e.g., GSM/3G/4G) or Wi-Fi connections. The crowdsourcer
first publicizes an MCS campaign in a Region of Interest
(RoI), aiming at finding some users to complete a set of tasks
Γ = {τ1, τ2, . . . , τm} in the RoI before a specified deadline
T . Assume that a crowd of mobile users U = {1, 2, . . . , n}
interested in participating in the campaign arrive online in a
random order, where n is unknown. Each user i has an arrival
time ai ∈ {1, . . . , T}, a departure time di ∈ {1, . . . , T},
di ≥ ai, and a subset of tasks Γi ⊆ Γ he/she can complete
within this time interval. Meanwhile, user i also has an
associated cost ci ∈ R+ for performing sensing tasks. All
information constitutes the type of user i, θi = (ai, di,Γi, ci).
In this paper we consider two models with respect to the
distribution of users:

• The i.i.d. model: The costs and values of users are i.i.d.
sampled from some unknown distributions.
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Fig. 1. Illustration of a mobile crowd sensing system.

• The secretary model: An adversary gets to decide on the
costs and values of users, but not on the order in which
they are presented to the crowdsourcer.

In fact, the i.i.d. model is a special case of the secretary model,
since the sequence can be determined by first picking a multi-
set of costs or values from the (unknown) distribution, and
then permuting them randomly. Note that these two models
are different from the oblivious adversarial model, where an
adversary chooses a worst-case input stream including the
users’ costs, values and their arrival orders.

We model the interactive process between the crowdsourcer
and users as an online auction. Each user expects a payment
in return for his/her service. Therefore, he/she makes a price
that he/she expects, called bid, for selling his/her sensing data.
When a user arrives, the crowdsourcer must decide whether
to buy the service of this user, and if so, at what price, before
he/she departs. Assume that the crowdsourcer has a budget
constraint B indicating the maximum value that he/she is
willing to pay. Therefore, the crowdsourcer always expects to
obtain the maximum value from the selected users’ services
under the budget constraint.

Users are assumed to be game-theoretic and seek to make
strategy to maximize their individual utility in equilibrium.
Note that the arrival/departure time and cost of user i are
private and only known to himself/herself. Only the task set Γi

must be true since the crowdsourcer can identify whether the
announced tasks are performed ∗. In other words, user i may
misreport all information about his/her type except for Γi. The
budget and value function of the crowdsourcer are common
knowledge. Although we do not require a user to declare
his/her departure time until the moment of his/her departure,
we find it convenient to analyze our auctions as direct-
revelation mechanisms (DRMs) [21]. The strategy space in an
online DRM allows a user to declare some possibly untruthful
type θ̂i = (âi, d̂i,Γi, bi), subject to ai ≤ âi ≤ d̂i ≤ di. Note
that we assume that a user cannot announce an earlier arrival
time or a later departure time than his/her true arrival/departure
time. This assumption is justified if the user’s presence can be
directly verified, or (in the case of “no early arrivals”) if we

∗If the user fails to complete the tasks, or fails to meet the time or quality
requirement, the crowdsourcer can give no payment or less payment, or
records his/her reputation for assisting in future decision [20].
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think of ai as the time at which the user first becomes aware of
the existence of the auction or of his own desire to participate
in it [22].

In order to obtain the required service, the crowdsourcer
needs to design an online mechanism M = (f, p) consisting
of an allocation function f and a payment function p. For any
strategy sequence θ̂ = (θ̂1, . . . , θ̂n), the allocation function
f(θ̂) computes an allocation of tasks for a selected subset of
users S ⊆ U , and the payment function p(θ̂) returns a vector
(p1(θ̂), . . . , pn(θ̂)) of payments to the users. Note that, the
crowdsourcer, when presented with the strategy θ̂i of user i,
must decide whether to accept user i at what price (pi) before
the time step d̂i.

The utility of user i is

ui =

{
pi − ci, if i ∈ S;
0, otherwise.

Let V (S) denote the value function of the crowdsourcer over
the selected subset of users S. The crowdsourcer expects to
obtain the maximum value from the selected users’ services
under the budget constraint, i.e.,

Maximize V (S) subject to
∑
i∈S

pi ≤ B.

In this paper, we focus on the case where V (S) is non-negative
monotone submodular. This covers many realistic scenarios.

Definition 1 (Monotone Submodular Function). Let Ω be a
finite set. For any X ⊆ Y ⊆ Ω and x ∈ Ω\Y , a function
f : 2Ω 7→ R is called submodular if and only if

f(X ∪ {x})− f(X) ≥ f(Y ∪ {x})− f(Y ),

and it is monotone (increasing) if and only if f(X) ≤ f(Y ),
where 2Ω denotes the power set of Ω, and R denotes the set
of reals.

Application Scenario Illustration: As illustrated in Fig. 1,
we consider the scenario where the crowdsourcer expects to
obtain the sensing data covering all roads in an RoI. For
example, in Sensorly [2] or Ear-Phone [6], the crowdsourcer
allocates tasks to the smartphone users for constructing sensing
maps of Wi-Fi signals or environmental noises. For conve-
nience of calculations, we divide each road in the RoI into
multiple discrete Points of Interest (PoIs), and the objective
of the crowdsourcer is equivalent to obtaining the sensing
data covering all PoIs before T . The set of PoIs is denoted
by Γ = {τ1, τ2, . . . , τm}. Assume that each sensor follows a
geometric disk sensing model with sensing range R, which
means if user i senses at a location Li and obtain a reading,
then any PoI within the disk with the origin at Li and a radius
of R has been covered once. The set of PoIs covered by user
i is denoted by Γi ⊆ Γ, which means the sensing tasks that
user i can complete. Without loss of generality, assume that
each PoI τj has a coverage requirement rj ∈ Z+ indicating
how many times it requires to be sensed at most. The value
of the selected users to the crowdsourcer is:

V (S) =
m∑
j=1

min{rj ,
∑
i∈S

vi,j},

where vi,j equals to 1 if τj ∈ Γi, and 0 otherwise.

Lemma 1. The value function V (S) is monotone submodular.

The proof of Lemma 1 is given in Appendix A.
Our objective is to design an online mechanism satisfying

the following six desirable properties:
• Computational Efficiency: A mechanism is computa-

tionally efficient if both the allocation and payment can
be computed in polynomial time as each user arrives.

• Individual Rationality: Each participating user will have
a non-negative utility: ui ≥ 0, if he/she reports the true
cost and arrival/departure time.

• Budget Feasibility: We require the mechanism to be
budget feasible:

∑
i∈S pi ≤ B.

• Truthfulness: A mechanism is cost- and time-truthful (or
simply called truthful, or incentive compatible or strate-
gyproof ) if reporting the true cost and arrival/departure
time is a dominant strategy for all users †. In other words,
no user can improve his/her utility by submitting a false
cost, or arrival/departure time, no matter what others
submit.

• Consumer Sovereignty: The mechanism cannot arbi-
trarily exclude a user; the user will be selected by the
crowdsourcer and obtain a payment if only his/her bid is
sufficiently low while others are fixed.

• Competitiveness: The goal of the mechanism is to max-
imize the value of the crowdsourcer. To quantify the
performance of the mechanism we compare its solution
with the optimal solution: the solution obtainable in
the offline scenario where the crowdsourcer has full
knowledge about users’ types. A mechanism is O(g(n))-
competitive if the ratio between the online solution and
the optimal solution is O(g(n)). Ideally, we would like
our mechanism to be O(1)-competitive.

The importance of the first three properties is obvious,
because they together guarantee that the mechanism can be
implemented in real time and satisfy the basic requirements
of both the crowdsourcer and users. In addition, the last three
properties are indispensable for guaranteeing that the mecha-
nism has high performance and robustness. The truthfulness
aims at eliminating the fear of market manipulation and the
overhead of strategizing over others for the participating users.
The consumer sovereignty aims at guaranteeing that each
participating user has a chance to win the auction and obtain a
payment, otherwise it will hinder the users’ completion or even
result in task starvation. Besides, if some users are guaranteed
not to win the auction, then being truthful or not will have the
same outcome. For this reason, the property satisfying both the
consumer sovereignty and the truthfulness is also called strong
truthfulness by Hajiaghayi et al. [21]. Later we will show that
satisfying consumer sovereignty is not trivial in the online
scenario, which is in contrast to the offline scenario. Finally,
we expect that our mechanism has a constant competitiveness
under both the i.i.d. model and the secretary model. Note that
no constant-competitive auction is possible under the oblivious
adversarial model [23].

†It also implies the “dominant strategy equilibrium” in the mechanism [21].
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TABLE I
FREQUENTLY USED NOTATIONS.

Notation Description
U , n, i set of users, number of users, and one user
Γ,m, τj set of tasks, number of tasks, and one task
B,B′ budget constraint and stage-budget
T, T ′, t deadline, end time step of each stage, and each time step
ai, âi true arrival time and strategic arrival time of user i
di, d̂i true departure time and strategic departure time of user i
Γi set of user i’s tasks

ci, bi true cost and bid of user i
θi, θ̂i true type and strategy of user i
S,S′ set of selected users and sample set
pi, ui payment and utility of user i
V (S) value function of the crowdsourcer over S
Vi(S) marginal value of user i over S
ρ∗ density threshold
δ parameter used for computing the density threshold
ω parameter assumed on users’ value

Table I lists frequently used notations.

III. ONLINE MECHANISM UNDER ZERO
ARRIVAL-DEPARTURE INTERVAL CASE

In this section, we consider a special case where the arrival
time of each user equals to his/her departure time. In this
case, each user is impatient since the decision must be made
immediately once he/she arrives. Note that achieving time-
truthfulness is trivial in this case. It is because that any user
has no incentive to report a later arrival time or an earlier
departure time than his/her true arrival/departure time, since
the user cannot perform any sensing task or obtain a payment
after he/she departs. In this section, we present an online
mechanism OMZ satisfying all desirable properties under
this zero arrival-departure interval case, without considering
the time-truthfulness. Then, in Section IV we revise this
mechanism and prove the revised one satisfies all desirable
properties including the time-truthfulness under the general
case without zero arrival-departure interval assumption. To
facilitate understanding, in this section it is also assumed
that no two users have the same arrival time. Note that this
assumption can also be easily removed according to the revised
mechanism in Section IV.

A. Mechanism Design

An online mechanism needs to overcome several nontrivial
challenges: first, the users’ costs are unknown and need to be
reported in a truthful manner; second, the total payment cannot
exceed the crowdsourcer’s budget; finally, the mechanism
needs to cope with the online arrival of users. Previous solu-
tions of online auctions and related problems [22], [24] always
achieve desirable outcomes in online settings via a two-stage
sampling-accepting process: the first batch of users is rejected
and used as the sample which enables making an informed
decision on whether accepting the rest of users. However, these
solutions cannot guarantee the consumer sovereignty, since the
first batch of users has no chance to win the auction no matter
how low his/her cost is. It can lead to undesirable effects in
our problem: automatically rejecting the first batch of users
encourages users to arrive late; in other words, those users

Stage 1 Stage 2 Stage 3 Stage 4

B/8 B/4

B/2

B

t=1 t=2 t=4 t=8

T=8

Fig. 2. Illustration of a multiple-stage sampling-accepting process when
T = 8.

arriving early have no incentive to report their bids, which may
hinder the users’ competition or even result in task starvation.

To address the above challenges, we design our on-
line mechanism, OMZ, based on a multiple-stage sampling-
accepting process. The mechanism dynamically increases the
sample size and learns a density threshold used for future
decision, while increasing the stage-budget it uses for alloca-
tion at various stages. The rationale behind this idea contains
two points. First, each stage is an accepting process as well
as a sampling process ready for the next stage, so users
are not automatically rejected during the sampling process.
Second, it adopts an “incremental learning” process. At first,
the sample size is small, so we need to learn the density
threshold frequently. As the sample size increases, a more
accurate density threshold can be learned, so we can decrease
the learning frequency gradually. The learned density threshold
will be accurate enough when about a half of users have
arrived (to be proved later in Lemma 7 and Lemma 10), so at
that time, we can stop the learning process.

The whole process is illustrated in Algorithm 1. First,
we divide all of T time steps into (⌊log2 T ⌋ + 1) stages:
{1, 2, . . . , ⌊log2 T ⌋, ⌊log2 T ⌋+1}. The stage i ends at time step
T ′ = ⌊2i−1T/2⌊log2 T⌋⌋. Correspondingly, the stage-budget
for the i-th stage is allocated as B′ = 2i−1B/2⌊log2 T⌋. Fig. 2
is an illustration when T = 8. When a stage is over, we add all
users who have arrived into the sample set S ′, and compute a
density threshold ρ∗ according to the information of samples
and the allocated stage-budget B′. This density threshold is
computed by calling the GetDensityThreshold algorithm (to
be elaborated later), and used for making decision at the next
stage. Specially, when the last stage i = ⌊log2 T ⌋+ 1 comes,
the density threshold has been computed according to the
information of all users arriving before time step ⌊T/2⌋, and
the allocated stage-budget B/2.

Algorithm 1: Online Mechanism under Zero Arrival-
departure Interval Case (OMZ)

Input: Budget constraint B, deadline T
1 (t, T ′, B′,S ′, ρ∗,S)← (1, T

2⌊log2 T⌋ ,
B

2⌊log2 T⌋ , ∅, ϵ, ∅);
2 while t ≤ T do
3 if there is a user i arriving at time step t then
4 if bi ≤ Vi(S)/ρ∗ ≤ B′ −

∑
j∈S pj then

5 pi ← Vi(S)/ρ∗; S ← S ∪ {i};
6 else pi ← 0;
7 S ′ ← S ′ ∪ {i};
8 end
9 if t = ⌊T ′⌋ then

10 ρ∗ ← GetDensityThreshold(B′,S ′);
11 T ′ ← 2T ′; B′ ← 2B′;
12 end
13 t← t+ 1;
14 end
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Given a set of selected users S, the marginal value of user
i /∈ S is Vi(S) = V (S ∪ {i}) − V (S), and his/her marginal
density is Vi(S)/bi. When a new user i arrives, the mechanism
allocates tasks to him/her as long as his/her marginal density is
not less than the current density threshold ρ∗, and the allocated
stage-budget B′ has not been exhausted. Meanwhile, we give
user i a payment

pi = Vi(S)/ρ∗,

and add this user to the set of selected users S. To start the
mechanism, we initially set a small density threshold ϵ, which
is used for making decision at the first stage.

Since each stage maintains a common density threshold,
it is natural to adopt a proportional share allocation rule to
compute the density threshold from the sample set S ′ and
the allocated stage-budget B′. As illustrated in Algorithm 2,
the computation process adopts a greedy strategy. Users are
sorted according to their increasing marginal densities. In this
sorting the (i+1)-th user is the user j such that Vj(Ji)/bj is
maximized over S ′\Ji, where Ji = {1, 2, . . . , i} and J0 = ∅.
Considering the submodularity of V , this sorting implies that:

V1(J0)

b1
≥ V2(J1)

b2
≥ · · · ≥

V|S′|(J|S′|−1)

b|S′|
.

Find the largest k such that bk ≤ Vk(Jk−1)B
V (Jk)

. The set of
selected users is Jk = {1, 2, . . . , k}. Finally, we set the density
threshold to be V (Jk)

δB′ . Here we set δ > 1 to obtain a slight
underestimate of the density threshold for guaranteeing enough
users selected and avoiding the waste of budget. Later we
will fix the value of δ elaborately to enable the mechanism
achieving a constant competitive ratio.

Algorithm 2: GetDensityThreshold
Input: Stage-budget B′, sample set S ′

1 J ← ∅; i← argmaxj∈S′(Vj(J )/bj);
2 while bi ≤ Vi(J )B′

V (J∪{i}) do
3 J ← J ∪ {i};
4 i← argmaxj∈S′\J (Vj(J )/bj);
5 end
6 ρ← V (J )/B′;
7 return ρ/δ;

In the following, we use an example to illustrate how the
OMZ mechanism works.

Example 1. Consider a crowdsourcer with the budget con-
straint B = 16 and the deadline T = 8. There are five
users arriving online before the deadline with types θi =
(ai, di,Γi, ci), where ai = di, and Γi can be omitted by
assuming that each user has the same marginal value 1. Here
the types (ai, di, ci) of the five users are: θ1 = (1, 1, 2),
θ2 = (2, 2, 4), θ3 = (4, 4, 5), θ4 = (6, 6, 1), and θ5 = (7, 7, 3).

We set ϵ = 1/2 and δ = 1. Then the OMZ mechanism
works as follows.
⋄ t = 1: (T ′, B′,S ′, ρ∗,S) = (1, 2, ∅, 1/2, ∅), V1(S)/b1 =

1/2, thus p1 = 2, S = {1}, S ′ = {1}. Update the density
threshold: ρ∗ = 1/2.

⋄ t = 2: (T ′, B′,S ′, ρ∗,S) = (2, 4, {1}, 1/2, {1}),
V2(S)/b2 = 1/4, thus p2 = 0, S ′ = {1, 2}. Update the
density threshold: ρ∗ = 1/4.

⋄ t = 4: (T ′, B′,S ′, ρ∗,S) = (4, 8, {1, 2}, 1/4, {1}),
V3(S)/b3 = 1/5, thus p3 = 0, S ′ = {1, 2, 3}. Update
the density threshold: ρ∗ = 1/4.

⋄ t = 6: (T ′, B′,S ′, ρ∗,S) = (8, 16, {1, 2, 3}, 1/4, {1}),
V4(S)/b4 = 1, thus p4 = 4, S = {1, 4}, S ′ = {1, 2, 3, 4}.

⋄ t=7: (T ′, B′,S ′, ρ∗,S)= (8, 16, {1, 2, 3, 4}, 1/4, {1, 4}),
V5(S)/b5 = 1/3, thus p5 = 4. Finally, the set of selected
users is S = {1, 4, 5}, and the payments of these selected
3 users are 2, 4, 4 respectively.

B. Mechanism Analysis

In the following, we will first prove that OMZ satisfies
the computational efficiency (Lemma 2), individual rationality
(Lemma 3), budget feasibility (Lemma 4), cost-truthfulness
(Lemma 5), and consumer sovereignty (Lemma 6). Then, we
will prove that OMZ can achieve a constant competitive ratio
under both the i.i.d. model (Lemma 7) and the secretary model
(Lemma 10) by elaborately fixing different values of δ.

Lemma 2. The OMZ mechanism is computationally efficient.

Proof: Since the mechanism runs online, we only need
to focus on the computation complexity at each time step
t ∈ {1, . . . , T}. Computing the marginal value of user i takes
O(|Γi|) time, which is at most O(m). Thus, the running time
of computing the allocation and payment of user i (lines 3-
8) is bounded by O(m). Next, we analyze the complexity
of computing the density threshold (Algorithm 2). Finding
the user with maximum marginal density takes O(m|S ′|)
time. Since there are m tasks and each selected user should
contribute at least one new task, the number of winners is at
most min{m, |S ′|}. Thus, the running time of Algorithm 2 is
bounded by O(m|S ′|min{m, |S ′|}). Therefore, the computa-
tion complexity at each time step (lines 3-13) is bounded by
O(m|S ′|min{m, |S ′|}). At the last stage, the sample set S ′

has the maximum number of samples, being n/2 with high
probability. Thus, the computation complexity at each time
step is bounded by O(mnmin{m,n}).

Note that the above analysis is very conservative. In prac-
tice, the running time O(|Γi|) of computing the marginal value
is much less than O(m). Moreover, the running time of OMZ
will increase linearly with n especially when n is large.

Lemma 3. The OMZ mechanism is individually rational.

Proof: From the lines 4-6 of Algorithm 1, we know that
pi ≥ bi if i ∈ S , otherwise pi = 0. Thus, we have ui ≥ 0.

Lemma 4. The OMZ mechanism is budget feasible.

Proof: At each stage i ∈ {1, 2, . . . , ⌊log2 T ⌋, ⌊log2 T ⌋+
1}, the mechanism uses a stage-budget B′ = 2i−1B

2⌊log2 T⌋ . From
the lines 4-5 of Algorithm 1, it is guaranteed that the current
total payment does not exceed the stage-budget B′. Specially,
the budget constraint of the last stage is B. Therefore, every
stage is budget feasible, and when the deadline T arrives, the
total payment does not exceed B.
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Designing a cost-truthful mechanism relies on the rationale
of bid-independence. Let b−i denote the sequence of bids
arriving before the i-th bid bi, i.e., b−i = (b1, . . . , bi−1). We
call such a sequence prefixal. Let p′ be a function from prefixal
sequences to prices (non-negative real numbers). We extend
the definition of bid-independence [25] to the online scenario:

Definition 2 (Bid-independent Online Auction). An online
auction is called bid-independent if the allocation and pay-
ment rules for each player i satisfy:

a) The auction constructs a price schedule p′(b−i);
b) If p′(b−i) ≥ bi, player i wins at price pi = p′(b−i);
c) Otherwise, player i is rejected, and pi = 0.

Proposition 1. ( [23], Proposition 2.1) An online auction is
cost-truthful if and only if it is bid-independent.

Lemma 5. The OMZ mechanism is cost-truthful.

Proof: Consider a user i that arrives at some stage for
which the density threshold is ρ∗. If by the time the user
arrives there are no remaining budget, then the user’s cost
declaration will not affect the allocation of the mechanism
and thus cannot improve his/her utility by submitting a false
cost. Otherwise, assume there are remaining budget by the
time the user arrives. In case ci ≤ Vi(S)/ρ∗, reporting any
cost below Vi(S)/ρ∗ would not make a difference in the
user’s allocation and payment and his/her utility would be
Vi(S)/ρ∗ − ci ≥ 0. Declaring a cost above Vi(S)/ρ∗ would
make the worker lose the auction, and his/her utility would be
0. In case ci > Vi(S)/ρ∗, declaring any cost above Vi(S)/ρ∗
would leave the user unallocated with utility 0. If the user
declares a cost lower than Vi(S)/ρ∗ he/she will be allocated.
In such a case, however, his/her utility will be negative. Hence
the user’s utility is always maximized by reporting his/her true
cost: bi = ci.

Lemma 6. The OMZ mechanism satisfies the consumer
sovereignty.

Proof: Each stage is an accepting process as well as a
sampling process ready for the next stage. As a result, users
are not automatically rejected during the sampling process,
and are allocated as long as their marginal densities are not
less than the current density threshold, and the allocated stage-
budget has not been exhausted.

Before analyzing the competitiveness of the OMZ mecha-
nism, we first introduce an offline mechanism proposed by
Singer [26], which has been proved to satisfy the compu-
tational efficiency, individual rationality, budget feasibility,
and truthfulness. This mechanism does not have knowledge
about users’ costs, but it is an offline mechanism, i.e., all
users submit their bids to the mechanism and wait for the
mechanism to collect all the bids and decide on an allocation.
This mechanism has been proved to be O(1)-competitive
in maximizing the value of services received under budget
constraint compared with the optimal solution. Therefore, we
only need to prove that OMZ has a constant competitive ratio
compared with this offline mechanism, then OMZ will also be
O(1)-competitive compared with the optimal solution. Note
that in the offline scenario satisfying the time-truthfulness

and consumer sovereignty is trivial, since all decisions are
made after that all users’ information is submitted to the
crowdsourcer.

The offline mechanism adopts a proportional share al-
location rule. As described in Algorithm 3, it consists of
two phases: the winner selection phase and the payment
determination phase. The winner selection phase has the same
working process as Algorithm 2. To compute the payment for
each winner i ∈ S, we sort the users in U\{i}:

Vi1(Q0)

bi1
≥ Vi2(Q1)

bi2
≥ · · · ≥

Vin−1(Qn−2)

bin−1

,

where Vij (Qj−1) = V (Qj−1 ∪ {ij}) − V (Qj−1) denotes
the marginal value of the j-th user and Qj denotes the first
j users according to this sorting over U\{i} and Q0 = ∅.
The marginal value of user i at position j is Vi(j)(Qj−1) =
V (Qj−1 ∪ {i})− V (Qj−1). Let k′ denote the position of the
last user ij ∈ U\{i}, such that bij ≤ Vij (Qj−1)B/V (Qj). For
brevity we will write bi(j) = Vi(j)(Qj−1)bij/Vij (Qj−1), and
ηi(j) = Vi(j)(Qj−1)B/V (Qj−1 ∪ {i}). In order to guarantee
the truthfulness, each winner should be paid the critical value,
which means that user i would not win the auction if he/she
bids higher than this value. Thus, the payment for user i should
be the maximum of these k′ + 1 prices:

pi = max
j∈[k′+1]

{min{bi(j), ηi(j)}}.

Algorithm 3: Proportional Share Mechanism (Offline)
[26]

Input: Budget constraint B, User set U
/* Winner selection phase */

1 S ← ∅; i← argmaxj∈U (Vj(S)/bj);
2 while bi ≤ Vi(S)B

V (S∪{i}) do
3 S ← S ∪ {i};
4 i← argmaxj∈U\S(Vj(S)/bj);
5 end
/* Payment determination phase */

6 foreach i ∈ U do pi ← 0;
7 foreach i ∈ S do
8 U ′ ← U\{i}; Q ← ∅;
9 repeat

10 ij ← argmaxj∈U′\Q(Vj(Q)/bj);
11 pi ← max{pi,min{bi(j), ηi(j)}};
12 Q ← Q∪ {ij};
13 until bij ≤

Vij
(Qj−1)B

V (Q)
;

14 end
15 return (S, p);

Let Z be the set of selected users S computed by Algorithm
3, and the value of Z is V (Z). The density of Z is ρ =
V (Z)/B. Define Z1 and Z2 as the subsets of Z that appears
in the first and second half of the input stream, respectively.
When the stage ⌊log2 T ⌋ is over, we obtain the sample set S ′

consisting of all users arriving before the time ⌊T/2⌋. Thus,
we have Z1 = Z ∩ S ′, and Z2 = Z ∩ {U\S ′}. Let Z ′

1 denote
the set of selected users computed by Algorithm 2 ‡ based on
the sample set S ′ and the allocated stage-budget B/2, and the
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value of Z ′
1 is V (Z ′

1). The density of Z ′
1 is ρ′1 = 2V (Z ′

1)/B.
The density threshold of the last stage is ρ∗ = ρ′1/δ. Let Z ′

2

denote the set of selected users computed by Algorithm 1 at
the last stage. Assume that the value of each user is at most
V (Z)/ω, where the parameter ω will be fixed later.

1) Competitiveness Analysis under the I.I.D. Model:
Since the costs and values of all users are i.i.d., they can
be selected in the set Z with the same probability. The
sample set S ′ is a random subset of U since all users arrive
in a random order. Therefore the number of users from Z
in the sample set S ′ follows a hypergeometric distribution
H(n/2, |Z|, n). Thus, we have E[|Z1|] = E[|Z2|] = |Z|/2.
The value of each user can be seen as an i.i.d. random
variable, and because of the submodularity of V (S), it can
be derived that: E[V (Z1)] = E[V (Z2)] ≥ V (Z)/2. The
expected total payments to the users from both Z1 and Z2 are
B/2. Since V (Z ′

1) is computed with the stage-budget B/2, it
can be derived that: E[V (Z ′

1)] ≥ E[V (Z1)] ≥ V (Z)/2, and
E[ρ′1] ≥ ρ, where the first inequality follows from the fact
that V (Z ′

1) is the optimal solution computed by Algorithm
2 with stage-budget B/2 according to the proportional share
allocation rule. Therefore, we only need to prove that the ratio
of E[V (Z ′

2)] to E[V (Z ′
1)] is at least a constant, then the OMZ

mechanism will also have a constant expected competitive
ratio compared with the offline mechanism.

Lemma 7. For sufficiently large ω, the ratio of E[V (Z ′
2)] to

E[V (Z ′
1)] is at least a constant. Specially, this ratio approach-

es 1/4 as ω → ∞ and δ → 4.

The proof of Lemma 7 is given in Appendix B.
2) Competitiveness Analysis under the Secretary Model:

Lemma 8. ( [24], Lemma 16) For sufficiently large ω, the
random variable |V (Z1) − V (Z2)| is bounded by V (Z)/2
with a constant probability.

Note that a non-negative submodular function is also a
subadditive function, so we have V (Z1) + V (Z2) ≥ V (Z).
Thus, Lemma 8 can be easily extended to the following
corollary.

Corollary 1. For sufficiently large ω, both V (Z1) and V (Z2)
are at least V (Z)/4 with a constant probability.

Lemma 9. Given a sample set S ′, the total value of selected
users computed by Algorithm 2 with the budget B′/2 is at
least a half of that computed with the budget B′.

The proof of Lemma 9 is given in Appendix C.
Note that the total value of selected users from the sample

set S ′ computed by Algorithm 2 with the budget B is not
less than V (Z1). Thus, considering Corollary 1 and Lemma
9, it can be derived that: V (Z ′

1) ≥ V (Z1)/2 ≥ V (Z)/8.
Therefore, it only needs to prove that the ratio of V (Z ′

2)
to V (Z ′

1) is at least a constant, then the OMZ mechanism
will also have a constant competitive ratio compared with the
offline mechanism.

‡When we mention Algorithm 2 in the following analysis, it means the line
10 in Algorithm 1, which calls the GetDensityThreshold algorithm.

Lemma 10. For sufficiently large ω, the ratio of V (Z ′
2) to

V (Z ′
1) is at least a constant. Specially, this ratio approaches

1/12 as ω → ∞ and δ → 12.

The proof of Lemma 10 is given in Appendix D.
From the above analysis, we know that the OMZ mecha-

nism has a competitive factor of at least 8 (96) of the offline
proportional share solution under the i.i.d. model (the secre-
tary model). While the competitive ratio may seem large, we
emphasize that our goal is to show that the OMZ mechanism
is indeed O(1)-competitive, and thus its performance guarantee
is independent of the parameters of the problem (e.g. number
of users, their costs, the tasks they can complete, etc.). We will
later show that the mechanism performs well in practice (see
Section V), implying that bounded competitive ratio serves as
a good guide for designing such mechanisms.

Theorem 1. The OMZ mechanism satisfies computational ef-
ficiency, individual rationality, budget feasibility, truthfulness,
consumer sovereignty, and constant competitiveness under the
zero arrival-departure interval case.

IV. ONLINE MECHANISM UNDER GENERAL CASE

In this section, we consider the general case where each user
may have a non-zero arrival-departure interval, and there may
be multiple online users in the auction simultaneously. First,
we change the settings of Example 1 to show that the OMZ
mechanism is not time-truthful under the general case.

Example 2. All the settings are the same as Example 1 except
for that user 1 has a non-zero arrival-departure interval, a1 <
d1. Specially, the type of user 1 is θ1 = (1, 5, 2).

In this example, if user 1 report his/her type truthfully, then
he/she will obtain the payment 2 according to the OMZ mecha-
nism. However, if user 1 delays announcing his/her arrival time
and reports θ′1 = (5, 5, 2), then he/she will improve his/her
payment to 8 according to the OMZ mechanism (the detailed
computing process is omitted).

In the following, we will present a new online mechanism,
OMG, and prove that it satisfies all six desirable properties
under the general case.

A. Mechanism Design

In order to hold desirable properties of OMZ, we adopt a
similar algorithm framework under the general case. Mean-
while, in order to guarantee the cost- and time-truthfulness,
it is necessary to modify OMZ based on three principles.
First, any user is added to the sample set only when he/she
departs; otherwise, the bid-independence will be destroyed if
his/her arrival-departure time spans multiple stages, because
a user can indirectly affect his/her payment now. Second, if
there are multiple users who have not yet departed at some
time, we sort these online users according to their marginal
values, instead of marginal densities, and preferentially select
those users with higher marginal value. In this way, the bid-
independence can be held. Note that, this principle can be used
to enable OMZ to adapt to the case when two users have the
same arrival time. Third, whenever a new time step arrives,
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we scan through the list of users who have not yet departed
and selects those whose marginal densities are not less than
the current density threshold under the stage-budget constraint,
even if some arrived much earlier. At the departure time of any
user who was selected as a winner, the user is paid for a price
equal to the maximum price attained during the user’s reported
arrival-departure interval, even if this price is larger than the
price at the time step when the user was selected as a winner.

According to the above principles, we design OMG satisfy-
ing all desirable properties under the general case, as described
in Algorithm 4. Specially, we consider two cases. The first
case is when the current time step t is not at the end of any
stage. In this case, the density threshold remains unchanged.
The following operations (the lines 3-11 in Algorithm 4) are
performed. First, all new users arriving at time step t are added
to a set of online users O. Then we make decision on whether
to select these online users one by one in the order of their
marginal values; the users with higher marginal values will be
selected first. If an online user i has been selected as a winner
before time step t, we need not to make decision on him/her
again because he/she is impossible to obtain a higher payment
than before (to be proved later in Lemma 13). Otherwise, we
need to make decision on him/her again: if his/her marginal
density is not less than the current density threshold, and the
allocated stage-budget has not been exhausted, he/she will be
selected as a winner. Meanwhile, we give user i a payment
pi = Vi(S)/ρ∗, and add he/she to the set of selected users S.
Finally, we remove all users departing at time step t from O,
and add them to the sample set S ′.

The second case is when the current time step is just at the
end of some stage. In this case, the density threshold will be
updated. The mechanism works as the lines 13-22. We need to
make decision on whether to select these online users, and at
what prices, one by one in the order of their marginal values,
no matter whether they have ever been selected as the winners
before time step t. As shown in the lines 17-20, if user i can
obtain a higher payment than before, his/her payment will be
updated. Meanwhile, if user i has never been selected as a
winner before time step t, he/she will be added to the set S.

Return to Example 2. If all of the five users report their
types truthfully, then the OMG mechanism works as follows.
⋄ t = 1: (T ′, B′,S ′, ρ∗,S) = (1, 2, ∅, 1/2, ∅), V1(S)/b1 =

1/2, thus p1 = 2, S = {1}. Update the density threshold:
ρ∗ = 1/2, p1 remains unchanged.

⋄ t = 2: (T ′, B′,S ′, ρ∗,S) = (2, 4, ∅, 1/2, {1}),
V2(S)/b2 = 1/4, thus p2 = 0, S ′ = {2}. Update the
density threshold: ρ∗ = 1/4, increase p1 to 4.

⋄ t = 4: (T ′, B′,S ′, ρ∗,S) = (4, 8, {2}, 1/4, {1}),
V3(S)/b3 = 1/5, thus p3 = 0, S ′ = {2, 3}. Update the
density threshold: ρ∗ = 1/8, increase p1 to 8.

⋄ t = 5: user 1 departs, so S ′ = {1, 2, 3}.
⋄ t = 6: (T ′, B′,S ′, ρ∗,S) = (8, 16, {1, 2, 3}, 1/8, {1}),

V4(S)/b4 = 1, thus p4 = 8, S = {1, 4}, S ′ = {1, 2, 3, 4}.
⋄ t=7: (T ′, B′,S ′, ρ∗,S)= (8, 16, {1, 2, 3, 4}, 1/8, {1, 4}),

V5(S)/b5 = 1/3, thus p5 = 0, S ′ = {1, 2, 3, 4, 5}.
Thus, user 1 can obtain the payment 8 according to the

OMG mechanism. Even if user 1 delays announcing his/her
arrival time and reports θ′1 = (5, 5, 2), he/she still cannot

Algorithm 4: Online Mechanism under General Case
(OMG)

Input: Budget constraint B, deadline T
1 (t, T ′, B′,S ′, ρ∗,S)← (1, T

2⌊log2 T⌋ ,
B

2⌊log2 T⌋ , ∅, ϵ, ∅);
2 while t ≤ T do
3 Add all new users arriving at time step t to a set of online

users O; O′ ← O \ S;
4 repeat
5 i← argmaxj∈O′(Vj(S));
6 if bi ≤ Vi(S)/ρ∗ ≤ B′ −

∑
j∈S pj then

7 pi ← Vi(S)/ρ∗; S ← S ∪ {i};
8 else pi ← 0;
9 O′ ← O′ \ {i};

10 until O′ = ∅;
11 Remove all users departing at time step t from O, and add

them to S ′;
12 if t = ⌊T ′⌋ then
13 ρ∗ ← GetDensityThreshold(B′,S ′);
14 T ′ ← 2T ′; B′ ← 2B′; O′ ← O;
15 repeat
16 i← argmaxj∈O′(Vj(S \ {j}));
17 if bi ≤ Vi(S \ {i})/ρ∗ ≤ B′ −

∑
j∈S pj + pi and

Vi(S \ {i})/ρ∗ > pi then
18 pi ← Vi(S \ {i})/ρ∗;
19 if i /∈ S then S ← S ∪ {i};
20 end
21 O′ ← O′ \ {i};
22 until O′ = ∅;
23 end
24 t← t+ 1;
25 end

improve his/her payment (the detailed computing process is
omitted). Therefore, the time-truthfulness can be guaranteed
in this case.

B. Mechanism Analysis

It is convenient to prove that the OMG mechanism also
holds the individual rationality, consumer sovereignty, and
constant competitiveness as OMZ (with almost the same
proof), although OMG may have slightly lower competitive
ratio than OMZ. In the following, we prove that OMG also
satisfies the computational efficiency, the budget feasibility,
and most importantly, the cost- and time-truthfulness.

Lemma 11. The OMG mechanism is computationally efficient.

Proof: The OMG mechanism needs to compute the al-
locations and payments of multiple online users at each time
step. Thus, the running time of computing the allocations and
payments at each time step is bounded by O(m|O|) < O(mn),
where |O| is the number of online users. The complexity of
computing the density threshold is the same as that of OMZ.
Thus, the computation complexity at each time step is the
same as that of OMZ, i.e., bounded by O(mnmin{m,n}).

Lemma 12. The OMG mechanism is budget feasible.

Proof: From the lines 6-7 and 17-18 of Algorithm 4, it is
guaranteed that the current total payment does not exceed the
stage-budget B′. Note that in the line 17, pi is the price paid
for user i in the previous stage instead of the current stage,
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so it cannot lead to the overrun of the current stage-budget.
Thus every stage is budget feasible, and when the deadline T
arrives, the total payment does not exceed B.

Lemma 13. The OMG mechanism is cost- and time-truthful.

The proof of Lemma 13 is given in Appendix E.

Theorem 2. The OMG mechanism satisfies the computation-
al efficiency, individual rationality, budget feasibility, truth-
fulness, consumer sovereignty, and constant competitiveness
under the general case.

V. PERFORMANCE EVALUATION

To evaluate the performance of our online mechanisms, we
implemented OMZ and OMG, and compared them against
the following three benchmarks. The first benchmark is the
(approximate) optimal offline solution which has full knowl-
edge about all users’ types. The problem in this scenario is
essentially a budgeted maximum coverage problem, which is
a well-known NP-hard problem. It is known that a greedy
algorithm provides a (1 − 1/e)-approximation solution [27].
The second benchmark is the proportional share mechanism
in the offline scenario (Algorithm 3). The third benchmark
is the random mechanism, which adopts a naive strategy,
i.e., rewards users based on an uninformed fixed density
threshold. The performance metrics include the running time,
the crowdsourcer’s value and the truthfulness.

A. Simulation Setup

Simulation Setting 1: First, we consider a Wi-Fi signal
sensing application with the same scenario as [28]. As shown
in Fig. 3 obtained from the Google Map, the RoI is located
at Manhattan, NY, including three avenues of 0.319km length
and three streets of 1.135km length. We divide each road in
the RoI into discrete PoIs with a uniform spacing of 1m, so the
RoI consists of 4353 PoIs (m = 4352) in total. Without loss of
generality, let the coverage requirement of each PoI be 1. We
set the deadline (T ) to 1800s, and vary the budget (B) from
100 to 10000 with the increment of 100. Users arrive according
to a Poisson process in time with arrival rate λ. We vary λ from
0.2 to 1 with the increment of 0.2. Whenever a user arrives,
he/she is placed at a random location on the roads. In OMZ
each user has zero arrival-departure interval, and in OMG the
arrival-departure interval of each user is uniformly distributed
over [0, 300] seconds. The sensing range (R) of each sensor is
set to 7 meters. Each user’s cost is uniformly distributed over
[1, 10]. The initial density threshold (ϵ) of Algorithm 1 and 4
is set to 1 §. As we proved in Lemma 7, when δ = 4 OMZ is
O(1)-competitive for sufficiently large ω. Meanwhile we note
that ω increases with the number of users who have arrived.
Thus, we set δ = 1 initially, and change it to δ = 4 once the
size of the sample set exceeds a specified threshold. Note that
this threshold could be an empirical value, which is decided
by when each user’s value is a very small fraction of the total
value of all users in the sample set. In our simulation, we

§ϵ only affects a very small number of users arriving at the first stage, and
thus its impacts on the results can be omitted.

Fig. 3. The region of interest.
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Fig. 4. Running Time.

set this threshold to 240, because we observe that each user’s
value is at most 1/100 of the total value when the number of
users is larger than 240. For the random mechanism, we obtain
the average performance of 50 such solutions for evaluations,
where in each solution the density threshold was chosen at
random from the range of 1 to 29 ¶.

Simulation Setting 2: Second, we consider a simulation s-
cenario with real human mobility traces collected from KAIST
[29]. Altogether 92 daily trajectories with GPS positions are
collected by participants (users) in a region of 8000×14000m2.
We divide the region into discrete PoIs with a uniform spacing
of 100m. We set the deadline (T ) to 1800s, and vary the
budget (B) from 50 to 1000 with the increment of 50. Users
arrive according to a Poisson process in time with arrival rate
λ = 0.05. Whenever a user arrives, he/she submits a set of
tasks (PoIs) according to his/her mobility traces in the future
10 minutes. The sensing range (R) of each sensor (user) is set
to 50m. We fix the value of δ to 4 as the lower-bound. Other
parameters are the same to Simulation Setting 1.

Note that all the evaluation results in this section are
based on Simulation Setting 1 unless otherwise specified, and
Simulation Setting 2 is only used to evaluate crowdsourcer’s
value. All the simulations were run on a PC with 1.7 GHz
CPU and 8 GB memory. Each measurement is averaged over
100 instances.

B. Evaluation Results

Running Time: Fig. 4 shows the running time of OMZ and
OMG. Specially, Fig. 4(a) plots the running time at different
stages while λ = 0.6∥. Fig. 4(b) plots the running time at
the last stage with different arrival rates (λ). Both the OMZ
and OMG mechanisms have similar performance while OMG
outperforms OMZ slightly. Note that the size of the sample
set increases linearly with the time t and the arrival rate λ, so

¶Each user can cover at most 29 PoIs, and his/her bid is at least 1, so
his/her marginal density is at most 29.

∥As we proved in Lemma 2, the computation complexity is dominated by
computing the density threshold, so only the running time at the end time of
each stage is plotted.
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Fig. 5. Crowdsourcer’s value.

Fig. 4 implies the relationship between the running time and
the number of users. Thus, from Fig. 4 we can infer that the
running time increases linearly with the number of users (n),
which is consistent with our analysis in Section III-B.

Crowdsourcer’s Value: Fig. 5 compares the crowdsourcer’s
value achieved by OMZ and OMG against the three bench-
marks. In order to investigate the impact of δ on OMZ and
OMG, we also provided the simulation results by fixing the
value of δ to 4 as the lower-bound. From Fig. 5(a) and Fig.
5(c) we can observe that the crowdsourcer obtains higher
value when the budget constraint increases. From Fig. 5(b) we
can observe that the crowdsourcer obtains higher value when
more users participate. The approximate optimal mechanism
and the proportional share mechanism operate in the offline
scenario, where the true types or strategies of all users are
known a priori, and will therefore always outperform OMZ
and OMG. It is shown that the proportional share mechanism
sacrifices some value of the crowdsourcer to achieve the cost-
truthfulness compared with the approximate optimal mecha-
nism, and OMG also sacrifices some value to achieve the time-
truthfulness compared with OMZ. We can also observe that
both OMZ and OMG are guaranteed to be within a constant
factor of the offline solutions, although the crowdsourcer’s
value will be reduced to some extent by fixing the value of δ
without any heuristic method. Specially, although both OMZ
and OMG are only guaranteed to be within a competitive factor
of at least 8 of the proportional share solution in expectation
as we proved in Lemma 7, the simulation results show that
this ratio is almost as small as 1.6 for OMZ or 2.4 for OMG
by setting the value of δ heuristically. As compared to the
approximate optimal solution, this ratio is still below 2.2 for
OMZ or below 3.4 for OMG. In addition, we can see that both
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Fig. 7. Time-truthfulness of OMG.

OMZ and OMG largely outweigh the random mechanism.

Truthfulness: We first verified the cost-truthfulness of OMZ
by randomly picking two users (ID=130 and ID=591) and
allowing them to bid prices that are different from their true
costs. We illustrate the results in Fig. 6. As we can see, user
130 achieves his/her optimal utility if he/she bids truthfully
(b130 = c130 = 3) in Fig. 6(a) and user 591 achieves his/her
optimal utility if he/she bids truthfully (b591 = c591 = 8) in
Fig. 6(b). Then we further verified the time-truthfulness of
OMG by randomly picking two users (ID=17 and ID=85) and
allowing them to report their arrival/departure times that are
different from their true arrival/departure times. We illustrate
the results in Fig. 7. As shown in Fig. 7(a) and Fig. 7(b),
user 17 achieves his/her optimal utility if he/she reports
his/her true arrival and departure times (â17 = a17 = 50,
d̂17 = d123 = 50). As shown in Fig. 7(c), user 85 achieves
his/her optimal utility if he/she reports his/her true arrival time
(â85 = a85 = 201). Note that reporting any departure time
(a85 ≤ d̂85 ≤ d85) does not affect the utility of user 85.
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VI. DISCUSSION ON FRUGAL AND PROFIT-MAXIMIZING
ONLINE INCENTIVE MECHANISMS

Although this work mainly focuses on the budget feasible
mechanisms, we would like to emphasize that our main idea
and framework can also be applied to design online incentive
mechanisms with other objectives such as frugality and profit
maximization, while guaranteeing both consumer sovereignty
and time-truthfulness that are seldom considered by existing
work.

First, we consider the objective of frugality, namely that
the crowdsourcer expects to minimize the total payment while
obtaining the specific value of services Ψ. Based on our system
model, it can be expressed as follows.

Minimize
∑
i∈S

pi subject to V (S) ≥ Ψ.

Similarly, the frugal online incentive mechanisms should satis-
fy the computational efficiency, individual rationality, truthful-
ness, consumer sovereignty, and two other properties that are
different from budget feasible mechanisms, namely the task
completeness and constant frugality. The task completeness
means that the crowdsourcer can obtain the specific value
of services, and the constant frugality means that the total
payment made by the crowdsourcer has a constant approximate
ratio compared to the minimal cost required for obtaining
the specific value in the offline scenario. In order to guar-
antee the consumer sovereignty, we can adopt a multiple-
stage sampling-accepting process similar to the budget feasible
mechanisms. The difference is that each stage i is allocated a
stage-task Ψ′ = 2i−1Ψ/2⌊log2 T⌋, meaning that at each stage
the crowdsourcer should just obtain the value Ψ′. In order to
satisfy task completeness and constant frugality, it is intuitive
that we can dynamically learn a budget that is enough for
allocating users to obtain a specific value of services, then
use this budget to compute a threshold by leveraging budget
feasible mechanisms, and finally use this threshold for making
further decisions. We have used this idea to design constant-
frugal mechanisms with a linear value function in our latest
work [30]. This idea is also applicable to frugal mechanisms
with a submodular value function, but it is still challenging to
obtain a satisfactory frugality ratio.

Second, another research line is to design online mecha-
nisms for maximizing the profit of the crowdsourcer, name-
ly the value of services minus the total payment, without
budget constraint, where the profit function is non-monotone
submodular, and can be negative. Followed by this work,
another latest work [31] has designed constant-competitive
profit-maximizing online incentive mechanisms to satisfy both
consumer sovereignty and time-truthfulness by leveraging sim-
ilar ideas.

VII. RELATED WORK

A. Mechanism Design for Mobile Crowd Sensing

Reddy et al. [32] developed recruitment frameworks to
enable the crowdsourcer to identify well-suited participants for
data collections. However, they focused only on the user se-
lection instead of the incentive mechanism design. At present,

there are many studies [10]–[16] on incentive mechanism
design for MCS applications in the offline scenario. Generally,
two system models are considered: the platform/crowdsourcer-
centric model where the crowdsourcer provides a fixed reward
to participating users, and the user-centric model where users
can have their expected prices for the sensing service. For
the crowdsourcer-centric model, incentive mechanisms were
designed by using a Stackelberg game [12], [13]. The Nash
Equilibrium and Stackelberg Equilibrium were computed as
the solution, where the costs of all users or their probability
distribution was assumed to be known. In contrast, the user-
centric model allows that each user has a private cost only
known to itself. Danezis et al. [10] developed a sealed-bid
second-price auction to estimate the users’ value of sensing
data with location privacy. Lee and Hoh [11] designed and
evaluated a reverse auction based dynamic price incentive
mechanism, where users can sell their sensed data to a service
provider with users’ claimed bids. Jaimes et al. [14] proposed
a recurrent reverse auction incentive mechanism with a greedy
algorithm that selects a representative subset of the users
according to their location given a fixed budget. Yang et
al. [13] designed an auction-based incentive mechanism, and
proved this mechanism was computationally efficient, individ-
ually rational, profitable, and truthful. Feng et al. [15] inves-
tigated a more complex auction-based incentive mechanism
by considering the crucial dimension of location information
when assigning sensing tasks to smartphones. Luo et al. [16]
designed a profit-maximizing incentive mechanism based on
all-pay auctions. However, all of these studies failed to account
for the online arrival of users.

More recently, there are some studies on online mechanism
design for crowdsourcing markets [17]–[19]. Singer et al.
[17] and Singla et al. [18] presented pricing mechanisms for
crowdsourcing markets based on the bidding model and the
posted price model respectively. However, they focused only
on a simple additive utility function instead of the submodular
one. Only Badanidiyuru et al. [19] considered pricing mecha-
nisms for maximizing the submodular utility function. But they
mainly focused on the posted price mechanisms, and only a
small part of content discusses the bidding mechanisms under
the secretary model but not the i.i.d. model. Moreover, they
failed to consider the consumer sovereignty. In addition, none
of the above studies considered the time-truthfulness.

B. Online Auctions and Generalized Secretary Problems

Online auction is the essence of many networked markets,
in which information about goods, agents, and outcomes is
revealed one by one online in a random order, and the a-
gents must make irrevocable decisions without knowing future
information. Combining optimal stopping theory with game
theory provides us a powerful tool to model the actions of
rational agents applying competing stopping rules in an online
auction. The theory of optimal stopping is concerned with
the problem of choosing a time to take a particular action,
in order to maximize an expected reward or minimize an
expected cost. A classic problem of optimal stopping theory
is the secretary problem: designing an algorithm for hiring
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one secretary from a pool of n applicants arriving online, to
maximize the probability of hiring the best secretary. Many
variants of the classic secretary problem have been studied
in the literature, and the most relevant to this work is the
knapsack secretary problem, in which each applicant also has a
cost and the goal is to maximize performance of the secretarial
group as along as the total cost of selected applicants does not
exceed a given budget. Babaioff et al. [33] and Bateni et al.
[24] respectively presented constant competitive algorithms for
the linear knapsack secretary problem in which the objective
function is linear, and the submodular knapsack secretary
problem in which the objective function is submodular. Our
problem is similar to the submodular knapsack secretary prob-
lem in form, but we need to consider two significant properties,
the truthfulness and the consumer sovereignty. Although some
solutions ( [21], [22], [34]) of online auctions provided good
ideas of designing truthful mechanisms, they cannot be directly
applied to the problem setting with submodular value function
and budget constraint. Moreover, none of these solutions
considered the consumer sovereignty.

VIII. CONCLUSIONS

In this paper, we have designed online incentive mechanisms
to motivate mobile users to participate in mobile crowd sens-
ing, which is a new sensing paradigm allowing us to efficiently
collect data for numerous novel applications. Compared with
existing offline incentive mechanisms, we focus on a more
real scenario where users arrive one by one online. We have
modeled the problem as an online auction in which the users
submit their private types to the crowdsourcer over time, and
the crowdsourcer aims at selecting a subset of users before a
specified deadline for maximizing the total value of services
provided by selected users under a budget constraint. We
focus on the monotone submodular value function that can be
applied in many realistic scenarios. Two online mechanisms
have been designed under different assumptions: OMZ can
be applied to the zero arrival-departure interval case where
the arrival time of each user equals to his/her departure time,
and OMG can be applied to a more general case. We have
proven that our mechanisms satisfy the computational effi-
ciency, individual rationality, budget feasibility, truthfulness,
consumer sovereignty and constant competitiveness. Besides,
our main idea and framework can also be applied to design
online incentive mechanisms with other objectives such as
frugality and profit maximization.

APPENDIX

A. Proof of Lemma 1

Considering V (S) =
∑m

j=1 min{rj ,
∑

i∈S vi,j}, for any
X ⊆ Y ⊆ U and x ∈ U\Y we have

V (X ∪ {x})− V (X) =

m∑
j=1

min{max{0, rj −
∑
i∈X

vi,j}, vx,j}

≥
m∑
j=1

min{max{0, rj −
∑
i∈Y

vi,j}, vx,j}

= V (Y ∪ {x})− V (Y ).
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Fig. 8. The optimal ratio of E[V (Z′
2)] to E[V (Z′

1)] by fixing proper δ with
different values of ω.

Moreover, for any X ⊆ U and x ∈ U\X we have V (X ∪
{x})− V (X) ≥ 0. Therefore V (S) is monotone submodular
by Definition 1.

B. Proof of Lemma 7

We consider two cases according to the total payment to
the selected users at the last stage as follows.

Case (a): The total payment to the selected users at the last
stage is at least αB, α ∈ (0, 1/2]. In this case, since each
selected user has marginal density at least ρ∗, so we have that

V (Z ′
2) ≥ ρ∗αB =

αρ′1B

δ
=

2αV (Z ′
1)

δ
.

Case (b): The total payment to the selected users at the
last stage is less than αB, α ∈ (0, 1/2]. There might be two
reasons leading to that users from Z2 are not selected in Z ′

2.
The first case is when the marginal densities of some users
from Z2 are less than ρ∗, and thus we do not select them.
Even if these users are all in Z2, their expected total payment
is at most B/2. Because of submodularity, the expected total
loss due to these missed users is at most

ρ∗ · B
2

=
ρ′1B

2δ
=

V (Z ′
1)

δ
.

The other case is when there is not enough budget to pay
for some users whose marginal densities are not less than ρ∗.
It means that the payment for such a user (for example, user
i) is larger than (1/2 − α)B, i.e., Vi(S)/ρ∗ > (1/2 − α)B;
otherwise adding this user to Z ′

2 will not lead to that the
total payment for Z ′

2 exceeds the stage-budget B/2. Because
E[ρ′1] ≥ ρ, we have that

E[Vi(S)]>E[ρ∗]·(1
2
−α)B=

(1− 2α)E[ρ′1]B
2δ

≥ (1− 2α)ρB

2δ
.

Because the expected total payment to all users in Z2 is at
most B/2, there cannot be more than ( δ

1−2α − 1) such users
in Z2. Since the value of each user is at most V (Z)/ω, the
expected total loss due to these missed users is at most ( δ

1−2α−
1)V (Z)/ω. Therefore, we have that

E[V (Z ′
2)] ≥ E[V (Z2)]− (

δ

1− 2α
− 1)

V (Z)

ω
− E[V (Z ′

1)]

δ

≥ V (Z)

2
− (

δ

1− 2α
− 1)

V (Z)

ω
− E[V (Z ′

1)]

δ

≥ [
1

2
− (

δ

1− 2α
− 1)

1

ω
− 1

δ
]E[V (Z ′

1)].



13

Considering both of case (a) and (b), the ratio of E[V (Z ′
2)]

to E[V (Z ′
1)] will be at least 2α/δ, if it satisfies that

1

2
− (

δ

1− 2α
− 1)

1

ω
− 1

δ
=

2α

δ
. (1)

Therefore, for a specific parameter ω, we can obtain the op-
timal ratio of E[V (Z ′

2)] to E[V (Z ′
1)] by solving the following

optimization problem:

Maximize
2α

δ
subject to Eq. (1) and α ∈ (0, 1/2].

When ω is sufficiently large (at least 12), we can obtain a
constant ratio of E[V (Z ′

2)] to E[V (Z ′
1)]. Fig. 8 illustrates the

optimal ratios that can be obtained by fixing proper δ when
different values of ω are set. As ω becomes larger, a higher
ratio can be obtained. More importantly, both the optimal ratio
of E[V (Z ′

2)] to E[V (Z ′
1)] and the optimal value of δ converges

fast as ω increases. Specially, the optimal ratio approaches 1/4
as ω → ∞ and δ → 4.

C. Proof of Lemma 9

Assume that the set of selected users computed with the
budget B′/2 is Sl = {1, 2, . . . , l}, and the set of selected users
computed with the budget B′ is Sk = {1, 2, . . . , k}. Then,
users can be sorted according to their increasing marginal
densities as follows:
V1(S0)

b1
≥ V2(S1)

b2
≥· · ·≥ Vl(Sl−1)

bl
≥ 2V (Sl)

B′ ≥ Vl+1(Sl)

bl+1
≥· · ·

≥ Vk(Sk−1)

bk
≥ V (Sk)

B′ ≥ Vk+1(Sk)

bk+1
≥ · · · ≥

V|S′|(S|S′|−1)

b|S′|
.

Thus, it can be easily derived that: V (Sl) ≥ V (Sk)/2.

D. Proof of Lemma 10

We consider two cases according to the total payment to
the selected users at the last stage as follows.

Case (a): The total payment to the selected users at the last
stage is at least αB, α ∈ (0, 1/2]. In this case, since each
selected user has marginal density at least ρ∗, so we have that

V (Z ′
2) ≥ ρ∗αB =

αρ′1B

δ
=

2αV (Z ′
1)

δ
.

Case (b): The total payment to the selected users at the
last stage is less than αB, α ∈ (0, 1/2]. There might be two
reasons leading to that users from Z2 are not selected in Z ′

2.
The first case is when the marginal densities of some users
from Z2 are less than ρ∗, and thus we do not select them.
Even if these users are all in Z2, their total payment is at
most B. Because of submodularity, the total loss due to these
missed users is at most

ρ∗ ·B =
ρ′1B

δ
=

2V (Z ′
1)

δ
.

The other case is when there is not enough budget to pay
for some users whose marginal densities are not less than ρ∗.
It means that the payment for such a user (for example, user
i) is larger than (1/2 − α)B, i.e., Vi(S)/ρ∗ > (1/2 − α)B;
otherwise adding this user to Z ′

2 will not lead to that the total

payment for Z ′
2 exceeds the stage-budget B/2. Because ρ′1 =

2V (Z ′
1)/B ≥ V (Z)/(4B) = ρ/4, we have that

Vi(S) > ρ∗ · (1
2
− α)B =

(1− 2α)ρ′1B

2δ
≥ (1− 2α)ρB

8δ
.

Because the total payment to all users in Z2 is at most B,
there cannot be more than ( 8δ

1−2α −1) such users in Z2. Since
the value of each user is at most V (Z)/ω, the total loss due to
these missed users is at most ( 8δ

1−2α − 1)V (Z)/ω. Therefore,
we have that

V (Z ′
2) ≥ V (Z2)− (

8δ

1− 2α
− 1)

V (Z)

ω
− 2V (Z ′

1)

δ

≥ V (Z)

4
− (

8δ

1− 2α
− 1)

V (Z)

ω
− 2V (Z ′

1)

δ

≥ [
1

4
− (

8δ

1− 2α
− 1)

1

ω
− 2

δ
]V (Z ′

1).

Considering both of case (a) and (b), the ratio of V (Z ′
2) to

V (Z ′
1) will be at least 2α/δ, if it satisfies that

1

4
− (

8δ

1− 2α
− 1)

1

ω
− 2

δ
=

2α

δ
. (2)

Therefore, for a specific parameter ω, we can obtain the
optimal ratio of V (Z ′

2) to V (Z ′
1) by solving the following

optimization problem:

Maximize
2α

δ
subject to Eq. (2) and α ∈ (0, 1/2].

When ω is sufficiently large, we can obtain a constant ratio
of V (Z ′

2) to V (Z ′
1). Specially, the optimal ratio approaches

1/12 as ω → ∞ and δ → 12.

E. Proof of Lemma 13

Consider a user i with true type θi = (ai, di,Γi, ci), and
reported strategy type θ̂i = (âi, d̂i,Γi, bi). According to the
OMG mechanism, at each time step t ∈ [âi, d̂i], there may be
a new decision on whether to accept user i, and at what price.
For convenience, let T ′

t , B′
t, ρ

∗
t , and St denote the end time

of the current stage, the residual budget, the current density
threshold, and the set of selected users respectively at time
step t and before making decision on user i. Let θ̂−i denote
the strategy types of all users excluding θ̂i. We first prove the
following two propositions.

Proposition (a): at some time step t ∈ [âi, d̂i], fix ρ∗t and
B′

t, reporting the true cost is a dominant strategy for user i.
It can be easily proved since the decision at time step t is
bid-independent.

Proposition (b): fix bi and θ̂−i, reporting the true ar-
rival/departure time is a dominant strategy for user i. It’s
because that user i is always paid for a price equal to
the maximum price attained during his/her reported arrival-
departure interval. Assume that user i can obtain the maximum
payment at time step t ∈ [âi, d̂i]. Then reporting an earlier
arrival time or a later departure time than t does not affect the
payment of user i. However, if user i reports a later arrival
time or an earlier departure time than t, then he/she will obtain
a lower payment.

Based on the proposition (b), it is sufficient to prove this
lemma by adding a third proposition:
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Proposition (c): fix [ai, di] and θ̂−i, reporting the true cost
is a dominant strategy for user i. According to the proposition
(a), reporting a false cost at time step t cannot improve user
i’s payment at the current time. Thus, it only needs to prove
that reporting a false cost at time step t ∈ [ai, di) still cannot
improve user i’s payment at time step t′(t < t′ ≤ di).

First, we consider the case when user i is selected as a
winner by reporting his/her true type at time step t = ai. In
this case he/she satisfies bi ≤ Vi(St)/ρ

∗
t ≤ B′

t, and he/she can
obtain the payment Vi(St)/ρ

∗
t . At time t′(t < t′ < T ′

t ), due to
the submodularity of V (S), we have Vi(St′) ≥ Vi(St). Then
user i will obtain the payment Vi(St′)/ρ

∗
t if bi ≤ Vi(St′)/ρ

∗
t ≤

B′
t′ , otherwise he/she will obtain the payment 0. Thus, user i

cannot obtain higher payment at time step t′ than that at t. It
means that a user cannot improve his/her payment by reporting
a false cost if his/her arrival-departure interval does not span
more than one stage.

Next we consider user i’s payment at time step t′(T ′
t ≤ t′ ≤

di) if his/her arrival-departure interval spans multiple stages.
According to the proposition (a), user i’s payment at time step
t′ depends on ρ∗t′ and B′

t′ . Because ρ∗t′ is independent with bi,
it only needs to consider the effect of bi on B′

t′ . If user i reports
a false cost bi which still satisfies bi ≤ Vi(St)/ρ

∗
t ≤ B′

t, then
he/she is still accepted at price Vi(St)/ρ

∗
t at time step t, and

thus B′
t′ remains unchanged. If user i reports a larger bid

bi > ci and bi > Vi(St)/ρ
∗
t , then he/she will not selected

at time step t. In this case, more budget will be allocated
for other users, and B′

t′ will be diminished. Therefore, user i
cannot obtain higher payment at time step t′.

Second, we consider the case when user i is not selected
as a winner by reporting his/her true type at time step t = ai.
In this case it satisfies ci > Vi(St)/ρ

∗
t , or Vi(St)/ρ

∗
t > B′

t. In
case ci > Vi(St)/ρ

∗
t , if user i reports a false cost bi which still

satisfies bi > Vi(St)/ρ
∗
t , then the outcome remains unchanged.

If user i reports a lower bid bi < ci and bi ≤ Vi(St)/ρ
∗
t ,

then he/she will be accepted at price Vi(St)/ρ
∗
t at time step

t. In such case, however, his/her utility will be negative. In
addition, B′

t′ remains unchanged, and thus user i’s payment
at time step t′ > t is not affected. In case Vi(St)/ρ

∗
t > B′

t,
reporting a false cost does not affect the outcome at time step
t or the residual budget B′

t′ at time step t′ > t. To sum up,
reporting a false cost cannot improve user i’s payment at time
step t′ > t.
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