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LASS: Local-Activity and Social-Similarity
Based Data Forwarding in Mobile Social

Networks
Zhong Li, Cheng Wang, Siqian Yang, Changjun Jiang, and Xiangyang Li, Senior Member, IEEE

Abstract—This paper aims to design efficient data forwarding schemes based on social similarity for mobile social networks
(MSNs) without infrastructure support. Diverse definitions of social similarity, acting as the criteria of relay selection, produce
various forwarding schemes; and the appropriateness and practicality of definitions determine the performance of the schemes
indeed. A popular definition has recently been proven to be more efficient than other existing ones, i.e., the more common
interests between two nodes, the larger social similarity between them. In this work, we indicate that schemes based on such
definition ignore the fact that members within the same community, i.e., with the same interest, usually have different levels
of internal activity, which possibly results in a low efficiency of data delivery in some situations. Thus, we design a new data
forwarding scheme for MSNs based on community detection in dynamic weighted networks, called LASS, taking into account
the difference of members’ activity within each community, i.e., local activity. To the best of our knowledge, the proposed scheme
is the first one aware of different levels of local activity within communities. Through extensive simulations, LASS achieves better
performance than state-of-the-art protocols.

Index Terms—local activity, social similarity, data forwarding, mobile social networks
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1 INTRODUCTION

According to different underlying network architectures,
MSNs (Mobile Social Networks) can be classified into
two broad types, i.e., centralized MSNs and distributed
MSNs. The former, the traditional online social networking
services (MySpace, Facebook etc.) migrate their centralized
social applications or portal web sites to mobile devices.
It is an extension of web-based social networks. Cellular
networks provide the most popular network infrastructure to
support centralized MSNs [1]. The latter, mobile users dis-
seminate data in a decentralized way which is on the basis
of opportunistic contacts. Thus, the ad-hoc networks are fit
for the distributed MSNs, e.g. proximity-based applications
using Bluetooth. The social construction and underlying
infrastructure for above two MSN types are shown in Fig.1.

In the aspects of privacy protection, performance bot-
tleneck and geo-location application, decentralized MSNs
have a more effective underlying network architecture for
mobile social networks. An important research trend of
this area is to investigate how to achieve better data dis-
semination efficiency (deliver ration and throughput-delay
tradeoff) by mining and utilizing the social relationship.

In mobile social networks, most data forwarding algo-
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rithms are “encounter-based”. Recently, people have found
social information has big impact on data forwarding. Thus,
some “social-aware encounter-based” forwarding schemes
are received enormous attention, see [2]–[9]. Hui et al. [3]
contributed a milestone work BUBBLE RAP to the data
forwarding scheme through creatively exploiting node local
centrality and social community structures. Gao et al. [4]
investigated the multicast with known community structures
for delay tolerant networks. Nguyen et al. [6] proposed a
new efficient scheme Nguyen’s Routing that delivers data
to nodes having more common communities to gain a high
data delivery ratio. In the literature, one common critical
assumption has been widely utilized: two nodes can
contact with a higher probability if they have more
social similarity. The measurement of social similarity
is various and one of the most popular methods is using
common interests or common communities.

In this paper, we show that the measurement of social
similarity based on the number of common communities
has an imperfection for some cases, i.e., it ignores the
fact that the members within the same community usually
have different levels of local activity, which possibly results
in a potentially low efficiency in terms of deliver ratio
and latency due to the misalignment estimation of nodes’
contact probability. Here, node local activity is a statistics
of encounter probability in a node’s communities. More
detailed explanation will be provided in Section 3.1.

As depicted in Fig.2(a), assuming destination w has
common interests both with node u and v; node u has more
common interests with destination w than v, but the activity
of u in common interests of u and w is weaker than that
of v in common interest(s) of v and w. Therefrom, it is
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Fig. 1: The areas circled by the dotted line are the friendship communities.
The picture (a) shows the centralized case and (b) presents the distributed
case.

uncertain to determine whether v should be chosen as the
next relay node due to lack of measurement criteria.

We design a new data forwarding scheme for M-
SNs based on social similarity in dynamic weight-
ed networks, called LASS (Local-Activity and Social-
Similarly), which has two novel characteristics compared
with the existing community-based schemes as follows: (1)
LASS takes into account the diversity of members’ activity
within each community based on weighted network models,
i.e., local activity, rather than making no difference to all
members in terms of activity. (2) The global activity of a
node can be defined by an activity vector whose entries are
the local activity of this node for all current communities;
then, we give a novel definition of the social similarity of
two nodes by the inner product of their activity vectors, by
which the forwarding scheme can operate according to a
simple rule of choosing the relay node with higher social
similarity to the destination. To the best of our knowledge,
this proposed LASS scheme is the first one aware of
the different levels of local activity within communities;
furthermore, the inner product based definition may lead to
new ideas in measuring the social similarity among nodes.

Here, the structure of social networks can be modeled
more close to reality. As illustrated in Fig.2(b), the different
interest groups emerge through the community detection
algorithm and the different levels of local activity is held
by users. The major contribution of this paper is two-folds:
• We propose a data forwarding scheme LASS by inves-

tigating the local activity for mobile social networks. The
local activity is defined to describe different levels of node
internal activity. It is a statistics of encounter probability in
a node’s communities. Then, according to the community
detection results, activity vector is formed by using the local
activity. Meanwhile, the social similarity is also computed
by the vector inner product method for settling our problem.
Comparing with the popular social forwarding algorithms,
e.g., BUBBLE RAP [3] and Nguyen’s Routing [6], LASS
has competitive effects, which can achieve 66.74 percent
delivery ratio and only have 26.07 percent overhead ratio
with controlled delay in a reasonable range.
• We give a self-adaptive weighted dynamic community

detection algorithm (SAWD) so as to gain community
structures and the node local activity for LASS. The com-
munication critical value and the weighted density embryo

(a) (b)

Fig. 2: Figure (a) depicts the transmitting choice for node u to destination
w in data forwarding algorithm. In figure (b), different sizes of icons
represent each node’s different levels of local activity in its community.
In the overlapping area, one node has many different activity attributes,
corresponding to each belonging community respectively, depicted by
overlapping icons of square and triangle or square and circle.

are defined to help form communities. Both definitions
assist us in avoiding some low weighted edges to shape
communities. In the dynamic environment, we clearly dis-
tinguish and tackle two kinds of network changes: “out-
pool” case and “in-pool” case. Comparing with AFOCS
(a newly overlapped and dynamic community detection
algorithm), SAWD can save some repeated operations on
edges to avoid the unnecessary computing and is fit for the
weighted graph.

The rest of the paper is organized as follows. Section
2 provides the basic network model. Section 3 gives the
designing of LASS data forwarding scheme. In order to ob-
tain the node local activity, Section 4 gives the community
detection algorithm SAWD. In Section 5, we establish our
experiment environment and gain some interesting results
about social relationships and data forwarding performance.
Section 6 states several issues about our algorithm’s de-
signing and gives some possible extensions for the future.
In Section 7, we review some related studies. Finally, we
conclude the paper in Section 8.

2 NETWORK MODEL

2.1 Dynamic Weighted Graph

We model the mobile network, consisting of users in
the mobile social network, as a dynamic weighted graph
which can be defined as a time sequence of network
graph, denoted by G = {G0, G1, ..., Gt, ...}, where Gt =
(Vt, Et,Wt, Ft) represents a time dependent network s-
napshot recorded at time t, Vt denotes the set of nodes,
Et = {(u, v)|u, v ∈ Vt} denotes the edge set, Wt =
{wij ∈ [0, 1)|i, j ∈ Vt and (i, j) ∈ Et} denotes the set
of weights on edges at time t, and Ft : Et → Wt is
a mapping that assigns weights to edges. The node and
edge sets change over time. For a node u, let dtu and
Nt(u) denote the degree and the set of all its neighbors
at time t respectively. Especially, in our study, the value
of wij denotes an encounter probability in mobile ad-
hoc networks. Extended explanations about wij will be
provided in Section 5.2 and Section 6 .
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2.2 Community Structure
A community is a structure that has a group of tight-knit
nodes with more internal links than external links, [10]–
[12]. If people have common interests or often encounter
with each other, they may form a community. But, the
definition of it is quiet subjective (most of the definitions are
concerned with the special community detection algorithms
or social applications), there is not a uniform definition
about community. Here, let Ct = {C1, C2, ..., Ck}t denote
the network community structure at time t, i.e., a collection
of subsets of Vt, where the element Ci ∈ Ct and its
induced subgraph form a community of Gt. Particularly,
allow Ci

∩
Cj ̸= ∅, i.e., the network communities can

overlap with each other. For a node u, let Comt(u) denote
the set of labels of all communities containing u at time
t, i.e., {Cl|l ∈ Comt(u)}; let Ct(u) denote the set of all
community structure containing u at time t. Some notations
are listed in TABLE 1.

3 LASS DATA FORWARDING SCHEME

In this section, we propose our LASS (Local-Activity and
Social-Similarity) data forwarding scheme.

3.1 About Local Activity
Definition 1 (Local Activity): Denote the node local ac-

tivity as atij at time t, where i denotes the label of a node
and j denotes the label of its belonging community. Then,

atij =


∑

(i,k)∈Cj
wik∑

(k
′
,k

′′
)∈Cj

w
k
′
k
′′

j ∈ Comt(i)

0 otherwise

Definition 2 (Activity Vector): We define an activity
vector At

i = (ati1, a
t
i2, ..., a

t
ij , ..., a

t
ik) for each mobile node

i at time t, where atij denotes the local activity value of
node i in community j. The value of k represents the
number of communities after applying the following SAWD
community detection algorithm.

An activity vector contains three-dimensional meanings:
time, the number of communities, the local activity.

We give a metaphor to explain the meaning of the
node local activity. Assuming there exists a basketball club
(community) in a university. Two students A and B are
belonged to this club. If A has many interactions with
other members in the club, while B has few interactions
with members, we will say, A has a high local activity and
B has a low local activity. If there exists more than one
community which A and B are belonged to, A and B will
have different local activity in each community. In data
forwarding, local activity is important because if the
message is given to a node having low local activity, it
will bring about a low efficiency in terms of delivery
ratio.

There exist some other methods and concepts which
need to be differentiated from our local activity.

In PROPHET [13], they simply use the encounter history
to predict the future delivery probability. This algorithm
is not as good as community-based prediction in social

TABLE 1: Main notations used in this paper

Notation Meaning

Ct the community structure at time t

Nt(u) the set of neighbor labels of node u at time t

Comt(u) the set of community labels of node u at time t

Ct(u) the set of all communities containing node u at time t

xt the average communication level at time t

Ot(u, v) the weighted density embryo generated by (u, v) at time t

Φ(Ot(u, v)) the weighted density function

Γ(Ci, Cj) coupling coefficient

α the threshold of combining criterion

atij the local activity value for node i in community j at time t

At
i the activity vector of node i at time t

SSt
uw the social similarity between node u and w at time t

networks. Because in social networks, nodes belonging to
the same community means they are more likely to meet
each other. To some extent, it can reflect social preference.
That is to say, community structure is good at delivery pre-
diction. Therefore, using node local activity(associated with
community structure) to design data forwarding scheme is
better than PROPHET.

In Simbet [2] and BUBBLE RAP [3], they use between-
ness centrality in data forwarding. Betweenness measures
the extent to which a node lies on the shortest paths linking
other nodes. A node with a high betweenness centrality has
a capacity of facilitating interactions between the nodes that
it links. However, not only global but also local centrality
are just fit for unweighted graphs. In unweighted graphs,
there will be an edge if there exists a contact between two
nodes. But in reality, the contact probability may be too
low to be utilized in data forwarding, i.e., betweenness
centrality can not reflect the encounter probability. To
some extent, local centrality and local activity both can
represent the importance of a node in its communities,
but, they are not the same concept. The former is only
with node degrees, the latter is a statistics of encounter
probability in a node’s communities.

We find different nodes in the same community have
different local activity values and the same node in different
communities has different local activity values. Next, we
take advantage of the node local activity to develop the
social similarity between two nodes.

3.2 About Social Similarity
There are many kinds social similarity measurements, such
as cosine angular distance [14], Hamming feature dis-
tance [9], the number of common communities (interesting
groups) [6]. However, the above distance-based methods
cannot give a meaningful explanation in real social net-
works. The common interests-based method has a problem
that if we choose a node having more common communities
with the destination as a relay node, the chosen node may
be a node with low local activity in its community. In this
paper, we introduce the inner product method to define
social similarity.
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Definition 3 (Social Similarity): Given two activity
vectors At

u = (atu1, a
t
u2, ..., a

t
uj , ..., a

t
uk) of node u and

At
w = (atw1, a

t
w2, ..., a

t
wj , ..., a

t
wk) of node w, we define

the social similarity between u and w at time t as SSt
uw,

having SSt
uw = At

u · At
w, where the symbol · denotes the

inner product of vectors.
We assume that node w is the destination node. There

exists a unicast session from node u to node w. The
candidate relay is node v. If the social similarity between v
and w is larger than u and w, there will be two facts that can
be proved. One, the candidate node v has more common
interests with the destination node w, i.e., the number of
non zero vector component is large. The other, referring
to the destination node w, the candidate node v has high
local activity values on the corresponding non zero vector
component.

Using the inner product-based method, we need not to
distinguish the different social features and it can guarantee
the number of common interests and the high local activity.
Besides, the method can deal with not only the uniform
but also the nonuniform activity distribution in vectors. A
special case is the binary value of activity. It is reduced to
the case that the data forwarding only relies on the number
of common interests.

3.3 LASS Algorithm
Based on Definition 1, 2 and 3, the description of LASS
is presented in Algorithm 1. In order to make it clear,
an example is also given to show the process of the data
forwarding.

Algorithm 1 LASS: a session from node u to w at time t

1: for each encountered node vi do
2: calculate SSt

uw and SSt
viw

3: if SSt
viw

> SSt
uw

4: add SSt
viw

to the set Tempt

5: if Tempt ̸= ∅
6: sort the values in set Tempt in descending order
7: choose the largest SSt

viw
from Tempt

8: node u transmits the message to node vi
9: else

10: node u maintains the message

There is an example as shown in Fig. 3. At time t, node
u transmits a message to destination node w in the mobile
social network. Node u meets nodes v1 and v2. The vectors
of node u, v1, v2 and w are

At
u = (0.5, 0, 0.5, 0.2, 0.3, 0)

At
v1 = (0.8, 0, 0 , 0.9, 0.5, 0)

At
v2 = (0.7, 0, 0.5, 0.6, 0 , 0)

At
w = (0.9, 0, 0.3, 0.5, 0.7, 0)

According to Algorithm 1, we calculate the social sim-
ilarity and gain SSt

uw = 0.91, SSt
v1w = 1.52, SSt

v2w =
1.08. From above results, node v1 and v2 can both use as the
next hop. But SSt

v1w > SSt
v2w, so we finally choose node

v1 and transmit the message from u to v1. After that, node
v1 keeps on doing the similar operations like above ways.

Fig. 3: Node u transmits a message to destination node w. At time t, u
meets two nodes v1 and v2. Through LASS algorithm, finally, we choose
node v1 as the next hop. The data forwarding path is marked by the red
dotted line with arrow.

The performance evaluation about LASS will be presented
in Section 5.3.

4 SELF-ADAPTIVE WEIGHTED DYNAMIC
COMMUNITY DETECTION

In LASS algorithm, we need to fix the community structure
and gain the value of node local activity. Thus, an efficient
community detection algorithm is required in our dynamic
weighted graph. There have existed many related algorithm-
s [15]–[19] and some of them can be transplanted to the
dynamic weighted graph, but they have many problems.
For example, K-clique-based algorithms [16], [17] require
prior community information about K as inputs. It is not
real for social networks, because we can not know the
number of communities in advance,i.e., the prior value of
K. Some modularity-based algorithms [15], [18], [19] have
the problems of resolution limit and extreme degeneracy
[20]. In addition, when meeting the dynamic environment,
some algorithms need to repeat identification. The cost of
time and computation is very high.

We refer to algorithm AFOCS in literautre [6] and design
our self-adaptive weighted dynamic (SAWD) community
detection algorithm1. AFOCS is a newly overlapped and
dynamic detection algorithm. It avoids above-mentioned
problems. But, it is only for unweighted graph and has some
repeated operations on nodes and edges. Because when
nodes change, the corresponding edges must also change.
When the number of adding or removing nodes is large,
the unnecessary repeated work becomes bored.

First of all, SAWD gives some weighted concepts and
criterions(e.g. weighted density embryo, weighted criteri-
on of communities) to handle the weighted graph. Then,
SAWD classifies the adding or removing nodes or edges
into “out-poll” and “in-pool” cases to save repeated opera-
tions. SAWD has two steps: 1) We treat the mobile social
network as a static one and identify the initial weighted
community structure using a weighted criterion in Section
4.1. 2) We deal with the evolving structures using the
local information of community structure, i.e., a distributed
tracking method in Section 4.2.

1. SAWD refers to algorithm AFOCS, some correctness verification
about the algorithm can be seen in [6].
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Fig. 4: In fig (a), the red subgraph shows a weighted density embryo
Ot(u, v). Correspondingly, Et(u, v) is the set of red lines. In fig (b),
the red community is generated by the edge weighted 0.7 and the blue
community arises from the edge weighted 0.6. Two communities overlap
with each other.

4.1 Initializing Community Structure

First, according to a criterion weighted density (Equation
1), nodes are classified into different groups, i.e., raw
communities. Then, on the basis of a combining criterion
of communities (Definition 8), the highly overlapped raw
communities will merge.

Definition 4 (Communication Critical Value): Define
the communication critical value at time t, denoted by xt,
as xt = wM

t , where wM
t is the median value of the set of

weights Wt.
Communication critical value reflects a medial encounter

probability or traffic between any two nodes in social
networks. Thus, a sequence {xt} is formed over time. xt

is important because it can avoid some low weighted edges
to form meaningless communities in social networks, i.e.,
those rarely meeting nodes can not form communities.

Given a communication critical value xt, we can obtain a
spanning subgraph of Gt by deleting edges whose weights
are smaller than xt; we call such spanning subgraph filtered
graph, and denote it by Gt(xt).

Before defining the community, we give a notion called
weighted density embryo.

Definition 5 (Weighted Density Embryo, WDE): Given
an edge (u, v) at time t, an induced subgraph of Gt(xt)
whose all nodes belong to Nt(u)∩Nt(v) is called xt-level
weighted density embryo (WDE) generated by (u, v) at
time t, denoted by Ot(u, v;xt).

For brevity, denote WDE Ot(u, v;xt), the node and edge
sets of Ot(u, v;xt) by Ot(u, v), Vt(u, v) and Et(u, v),
respectively, without confusion.

An example of weighted density embryo Ot(u, v) is
depicted in Fig.4(a).

Then, we define the weighted density of WDE Ot(u, v)
by

Φ(Ot(u, v)) =
|Et(u, v)|(|Vt(u,v)|

2

) . (1)

Now, we can give a weighted criterion for determining
whether a WDE is a community.

Definition 6 (Weighted Criterion of Communities): A
WDE Ot(u, v) is a community iff the weighted density

Algorithm 2 Constructing Initial Community Structure
Input: G0 = (V0, E0,W0, F0)
Output: the set of initial communities Cinit

1: x0 ← apply Definition 4 on G0

2: E
′ ← E0

3: for each wuv ∈W0

4: if wuv < x0

5: E
′ ← E

′ \ (u, v)
6: sort the edge weight in a descending order
7: from the largest weighted edge (u, v) ∈ E

′

8: if Comt(u)
∩

Comt(v) = ∅
9: find Ot(u, v) according to Definition 5

10: if Φ(Ot(u, v)) ≥ δ(Ot(u, v)) and |Vt(u, v)| ≥ 4
11: Craw = Craw

∪
{Vt(u, v)}

12: Cinit ← Craw
13: for Ci, Cj ∈ Craw and !Done
14: if Γ(Ci, Cj) ≥ α

15: C
′ ← combine Ci and Cj

16: Cinit = (Cinit \ {Ci, Cj})
∪
{C′}

17: Done ← False

satisfies that Φ(Ot(u, v)) ≥ δ(Ot(u, v)), where

δ(Ot(u, v)) =

(|Vt(u,v)|
2

)1− 1

(|Vt(u,v)|
2 )(|Vt(u,v)|

2

) .

The threshold δ(Ot(u, v)) is an increasing function [6], a
relaxation version of the traditional density threshold, e.g.,
complete graph. According to Definition 6, some nodes and
edges can be grouped into different raw communities, but
there exist some substructures which are highly overlapped.
Then, a combining criterion is necessary to help them
merge into large ones. Before proposing the criterion, we
define

Definition 7 (Coupling Coefficient): For two weighted
communities, say Ci and Cj , the coupling coefficient,
denoted by Γ(Ci, Cj), is defined as:

Γ(Ci, Cj) =

∑
(u,v)∈Ci

∩
Cj

wuv

min{
∑

(u′ ,v′ )∈Ci
wu′v′ ,

∑
(u′′ ,v′′ )∈Cj

wu′′v′′}

+

∑
u∈Ci

∩
Cj

∑
v∈Ci

∩
Cj

wuv

min{
∑

u′∈Ci

∑
v′∈Ci

wu′v′ ,
∑

u′′∈Cj

∑
v′′∈Cj

wu′′v′′ }
.

The coupling coefficient is comprised of two parts, one is
the intra edge weights ratio, the other is the intra node
weights ratio. Based on it, we have

Definition 8 (Combining Criterion of Communities):
Two communities Ci and Cj should be combined, if their
coupling coefficient Γ(Ci, Cj) ≥ α, where α is a given
threshold.

Note that the parameter α will be determined in the
experiment in Section 5.1, i.e., we will choose an optimal
value of α that makes the community detection have good
effectiveness. Fig.4(b) shows two weighted overlapping
communities.

The procedures of constructing initial community struc-
ture are described in Algorithm 2.

4.2 Distributed Tracking Method
After constructing the initial communities, with the passage
of time, the edge weights will vary due to strength changes
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Algorithm 3 Finding Changed Edges
Input: the community structures Gt−1 and Gt

Output: the set of ∆Et

1: xt−1 ← apply Definition 4 on Gt−1

2: E
′
t−1 ← Et−1

3: for each wuv ∈Wt−1

4: if wuv < xt−1

5: E
′
t−1 ← E

′
t−1 \ (u, v)

6: xt ← apply Definition 4 on Gt

7: E
′
t ← Et

8: for each wuv ∈Wt

9: if wuv < xt

10: E
′
t ← E

′
t \ (u, v)

11: compare E
′
t−1 and E

′
t−1

12: get the set of changed edges ∆Et

of social relationships, such as new people making friends
with each other, users joining in or withdrawing from the
entire social network or local communities. So, we need to
cope with the dynamic changes. It shows in two aspects,
one is the physical mobility, the other is the strength
changes of relationships. Here, we compare a network to a
“pool”. Reflected in the weighted graph, the changes can be
classified into two types: 1) the number of nodes changes
and the weight of edges also changes, called “out-pool”
changes; 2) the number of nodes does not change but the
weight of edges changes, called “in-pool” changes.

Like AFOCS [6], we also handle the dynamic changes
through adding or removing nodes or edges, but we classify
them into “out-pool” and “in-pool” cases. Our SAWD
algorithm can save repeated operations on nodes and edges,
which results from the asymmetric processing results of
two endpoints for an edge. As soon as finding the social
changes, the distributed tracking method can deal with
all nodes and edges changes simultaneously. The detailed
procedures are presented in Algorithm 4 ∼ 7 in APPENDIX
A and B. Some explanations about the tracking method are
described as follows:

• Through checking the sets Vt and Et, we can find
the insertion and deletion actions of nodes and edges.
Especially with varying edge weights, the adding and
removing edges are found by Algorithm 3.

• For simplicity, we assume that every node has a com-
munity label set Comt(i), including solitary nodes.
In final experiment results, if we find the number of
nodes in a community is only one, we will discard it.

• We distinguish two types of nodes, one is the foreign
node with its Comt(u) = ∅ and its Nt(u) = ∅, i.e.,
it is not in the current network pool. The other is the
solitary node with its Comt(u) ̸= ∅ and its Nt(u) = ∅,
i.e., it is in the current network pool. Let Ct

s denote
the set of solitary nodes at time t.

• The “out-pool” case includes adding foreign nodes to
the current social network and removing nodes from
the network. The “in-pool” case includes adding edges
and removing edges operations.

Our object is to find a good community assignmen-
t which maximizes the overall internal weighed density
function. According to above definitions and algorithms of

SAWD, the high weighted substructures are clustered into
different communities. As time goes by, the overall internal
weighed density can always maintain the maximum value.

Algorithm 2 is centralized and only executes once at the
initial constructing stage. The following dynamic Algorithm
4∼ 7 uses local structure information to handle all changes
in a distributed way.

5 PERFORMANCE EVALUATIONS

5.1 Parameter Choosing for Combining Thresh-
old α

Our detection algorithm (SAWD) does not need any prior
user-input information about communities, e.g., the number
of communities. The only parameter required to be fixed
is the combining threshold value α. By the following
NMI (Normalized Mutual Information) experiments, we
determine an appropriate value for α to guarantee a good
detection effect. Once gained, it will be used in the step
of constructing initial static community and does not need
to change in future dynamic operations. Moreover, it is
only concerned with the detection method, not with the
real online social networks.

5.1.1 Network Generation for NMI Experiments
We choose LFR undirected and weighted benchmark [21]
to generate a synthetic social network. That is to say
it can produce undirected weighted graphs with possible
overlapping communities and satisfies the power-law degree
distribution. We refer [22] to choose some parameters:
exponent for the weight distribution β = 1.5 and the
number of memberships for the overlapping nodes om = 2.
We freeze the number of nodes N = 1000, topology mixing
parameters µt = 0.1 or µt = 0.5 and the number of
overlapping nodes on = 0.1 or on = 0.3. Then, we vary
the weighted mixing parameter µw from 0−0.6 to find the
best value of α.

5.1.2 Metrics
We use NMI overlapping version [23] as metrics, i.e.,
calculating the NMI score N(X|Y ). It is one of the most
important entropy measures in information theory. N(X|Y )
can be interpreted as the average relative lack of informa-
tion to infer random variable X given Y , N(X|Y ) ∈ [0, 1].
The higher the NMI score is, the more similar the two com-
munity partitions are. If N(X|Y ) equals 1 , it means the
two kinds of community partitions are exactly coincident.
Therefore, we make our detection algorithm (SAWD) as X,
the LFR benchmark as Y.

5.1.3 Experiment Results and Analysis
From large numbers of tests, we gain the combining thresh-
old α ranging from 0 − 1.8. We select the representative
values 0.4 − 1.4 to analyze an appropriate value for α .
Because in this scope, the NMI score shows better than in
other scopes. The experiment results are shown in Fig.6.

We can see, all curves declines as µw increases. µw

indicates the fraction of the strength of a node which
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lies on links connecting the node to the nodes outside
its community with respect to the total strength of this
node [22]. The larger the µw is, the weaker the node
strength is in its community. The weak strength results
in the difficulty in community detection. Another view is
from the horizontal and vertical perspectives. The small
value of µt means a clear mixing topology and a dense
community inner structure. The small on represents that
the community structures approach to a disjoint status.
The above two factors cause us to find the community
structure easily. Thus, Fig.6 (a) shows the best performance
in NMI tests and Fig.6 (d) is the worst case in all tests.
As depicted, not only in the best case but also in the
worst case, the appropriate value for α is 0.6. This
value contributes a good NMI score, which is excellent for
community partition.

5.2 Constructing Social Graphs
The evaluation of LASS (Local-Activity and Social-
Similarity) is based on MIT Reality Mining Dataset [24]. In
trace files, 97 Nokia 6600 mobile phones were carried by
users over the course of nine months in MIT campus and
its surroundings. In the long-term observation, phone users
use Bluetooth sightings with 5 minutes interval to record the
direct contacts between nodes. The trace files offer insights
into the real world interactions between mobile users from
different aspects and constitute a valuable database for
various studies. But, they do not provide the information of
social relationship directly. We need to construct a weighted
social graph using bluetooth device scanning records in
those files.

Based on the fact that the encounter probability can
reflect the strength of social relationship in MSNs [24],
we construct our social graphs as following steps.
• We capture a period between date 2004− 09− 10 and

2005 − 03 − 23 from the original data since there are no
significant groups of device contacts before and after this
period.
• We add the number of direct contacts between node

pairs iteratively in chosen period t1 to tq .
∑p

k=1 l
tk
ij denotes

the overall numbers of contacts between node i and j in time
period t1 to tp,

∑p
k=1 l

tk
∗ denotes the overall numbers of

contacts for all nodes. Thus, we have a matrix with w
tp
ij =∑p

k=1 l
tk
ij∑p

k=1 l
tk
∗

, where 1 ≤ p ≤ q.
• For simplicity, we change the matrix to a symmetric

one in order to cope with the invalidation of Bluetooth
devices. Finally, we gain a weighted matrix representing
the social graph with social relationship links.

Some discussion about the datasets selection and the
meaning of the edge weight will be seen in Section 6.

Here, in Fig.5, we give a visual presentation about
social graphs founded on MIT Reality Mining Dataset.
The two pictures are gained at different network snapshots.
They have been processed by deleting some edges whose
weights are smaller than communication critical value xt.
Because our constructing procedure is cumulative, with
the passage of time, the social phenomenon (community
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Fig. 5: The dense parts are the potential community structures. The solid
black lines stand for the weighted social links. Figure (a) and (b) are
captured at 2004− 10− 06 and 2004− 10− 16 respectively.

structure) shows more and more clear and stable among
users. Different shapes of communities are forming stable
groups in Fig.5. This cumulative social phenomenon has
positive effect on data forwarding.

5.3 Data Forwarding Experiment

5.3.1 Algorithm Comparison
In this section, we compare our LASS algorithm against
Epidemic [25], PROPHET [13], Simbet [2], BUBBLE
RAP [3] and Nguyen’s Routing [6]. Above algorithms are
“encounter-based” strategies in nature. Particularly, the last
three have “social-aware” properties further.

• Firstly, we compare LASS with Epidemic and
PROPHET. In Epidemic, each relay forwards the mes-
sage to all the meeting nodes until arriving at its desti-
nation. In PROPHET, through encounter history, each
node predicts the probability of future encounters. We
use the default PROPHET settings as recommended
in [13] and refer to [3] to set the aging parameter for
delivery prediction.

• Secondly, we compare LASS with Simbet, BUBBLE
RAP and Nguyen’s Routing. In Simbet, it calculates
betweenness and similarity for mobile nodes. A mes-
sage is forwarded to a node if the node has higher
simbet utility metric than the current one. We use
the same parameters as stated in [2], i.e., setting
the similarity coefficient α = 0.5 and betweenness
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Fig. 6: Parameter Choosing for Combining Threshold α

coefficient β = 0.5. In BUBBLE RAP, it provides a
hierarchical forwarding strategy. A node first bubbles
the message up the hierarchical ranking tree using
the global centrality. When the message reaches the
community of the destination node, local centrality is
used instead of the global centrality. In Nguyen’s Rout-
ing, a smart community detection algorithm AFOCS
is proposed and applied to data forwarding in mobile
ad-hoc networks. A message is forwarded to a meeting
node if the node shares more common community
labels with the destination than the current one. Note
that we select settings or parameters which bring
about the best performances for above five contrastive
algorithms respectively.

5.3.2 Simulation Setup

We choose the ONE simulator as our experimental tool
[26]. It not only provides various mobile models including
some complex mobility scenarios in daily life, but also
can incorporate real world traces. In MIT trace files, one
of the most important records is the contact between
Bluetooth devices. It includes the start time, end time and
communication peers. These discrete contact events can be
taken as the inputs of the ONE simulator. In order to model
connecting and disconnecting, we reorder the start times
and end times. Corresponding to communication peers, we
set the start time as up and the end time as down. The form

of the extracted trace data is like:

0 CONN 93 96 up
0 CONN 93 14 up
128 CONN 85 17 up
129 CONN 94 29 up

· · ·
1169 CONN 28 5 down
1169 CONN 28 17 down

For all simulations conducted in this work, each node
generates 1000 packets during the simulation time. The
packet size is distributed from 50KB to 100KB uniformly.
Data transmission speed is 2Mbps and the transmission
range is in 10m. The buffer size of each node is 5MB. The
source and destination pairs are chosen randomly among all
nodes. Each emulation is repeated 20 times with different
random seeds. Without losing precision, we set the update
interval is 1. The interface of the underlying network is
assigned to Bluetooth.

5.3.3 Metrics
• Delivery Ratio: the ratio of the number of successfully

delivered messages to the total number of created
messages.

• Average Delay: the average messages delay for all the
successful sessions.

• Overhead Ratio: the proportion of the difference be-
tween the number of relayed messages and successful-
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ly delivered messages out of the successfully delivered
messages.

5.3.4 Experiment Results and Analysis

MIT Reality Mining Dataset is a long-term observation
repository. Thus, some cumulative social phenomena (local
activity, community structure etc.) require a period of time
to reveal. Here, we make TTL2 from 30min to 1mon. The
experiment results are illustrated in Fig.7 (a)-Fig.7 (f).

Fig.7 (a)-Fig.7 (c) show the delivery ratio, overhead ratio
and average latency of LASS, Epidemic and PROPHET
algorithms respectively.

In terms of delivery ratio, shown in Fig.7 (a), due to Epi-
demic’s flooding-based copy strategy, Epidemic performs
better than PROPHET during the initial phase. At time 3
days, it reaches the peak value, close to 50 percent. But
after that, the delivery performance decreases because of
network congestion resulting from large numbers of copies
3. Similarly, the turning point also appears in PROPHET
at 1 week because it needs redundant relays to adapt to
the fluctuation of meeting probabilities [3]. But, due to
using the encounter history to predict the next hop, after
the turning point, its delivery ratio shows better than Epi-
demic. By contrast, LASS goes up in steps and shows the
best delivery performance among them, which outweighs
Epidemic 32.63 percent and PROPHET 81.5 percent. At
1 month, it finally reaches 66.74 percent delivery ratio.
Although LASS is also an unlimit copy algorithm like
above two, its turning points will not emerge too early.
This is because we use social similarity strategy to forward
data. It means that the relay node has a high chance to meet
the destination.

In terms of overhead ratio, illustrated in Fig.7 (b), due
to the nature of flooding, the disadvantage of Epidemic
is obvious among the three algorithms. It exceeds 64.64
percent than PROPHET. However, LASS performs well
thanks to its social similarity forwarding scheme. To a
great extent, through the whole TTL experiment period,
the scheme controls the number of relaying copies with the
overhead ratio only at 26.07 percent on average. In Fig.7
(c), the delays of all the three algorithms arise with TTL
increasing. But, because of Epidemic’s large numbers of
copies, it can achieve the lowest delay rapidly among three.
PROPHET falls in between Epidemic and LASS. LASS is
a little higher than PROPHET with 19.01 percent. This is
because the balance effect between the number of copies
and the precise relay choosing strategy, i.e., when we aspire
to find a good data forwarding scheme, the cost may be a
little higher delay which is due to a relatively fewer copies.

2. We do experiments from date 2004-10-01 to date 2004-11-01.
Because MIT is a long-term observation dataset, we choose a large TTL-1
month, instead of several days. A larger TTL(larger than 1 month) also can
be done with more simulation time. But through our experiment analysis,
the overall trend is similar with 1 month.

3. Here, in order to avoid the serious declining of performance, we
process Epidemic algorithm with copy-limits. Although the turning point
still exists, its performance will not descend too much and will maintain
relatively steady as time goes by.

Fig.7 (d)-Fig.7 (f) show the delivery ratio, overhead ratio
and average latency of our LASS, Simbet, BUBBLE RAP
and Nguyen’s Routing algorithms respectively.

In Fig.7 (d), LASS performs best among four algorithms.
Its delivery ratio is higher than Nguyen’s Routing with
34.64 percent, BUBBLE RAP with 46.18 percent and Sim-
bet with 120 percent on average. Simbet and BUBBLE RAP
use betweenness as centrality metrics without considering
node contact frequency. As long as there exists an edge
between two nodes, the edge will be used in betweenness
calculation. But, in real social networks, the edge may only
have a trivial effect in data forwarding. Thus, both of them
have a lower delivery ratio than LASS. Nguyen’s Routing
tends to send messages to nodes having many interests with
the destination, but, it may deliver them to nodes which
have low activity in their communities (or interests groups).
It is the main reason for the low delivery ratio of Nguyen’s
Routing.

In Fig.7 (e), the overhead ratio of Simbet and BUBBLE
RAP are much higher than LASS and Nguyen’s Routing.
The reason is LASS and Nguyen’s Routing prefer to choose
the similar interests nodes as relays, which can control the
number of copies in sessions. In the enlarged legend, the
overhead ration of LASS and Nguyen’s Routing are de-
scending with TTL increasing. This is because both of them
use social similarity strategy (one use the inner product of
local activity vectors as similarity, the other use the number
of common interests as similarity) to delivery message. As
time goes by, the social phenomena are becoming more
and more clear, which makes the algorithms more and
more suitable for the social network, i.e., just fewer copies
can handle the data forwarding. On average, LASS keeps
a low overhead ratio of 26.07. It is better than Nguyen’s
Routing which is 44.72. This is due to that LASS is good at
finding high activity nodes in pace with dynamic network.
In Fig.7 (f), the delays of four algorithms go up with TTL
increasing. LASS and Nguyen’s Routing are close to each
other and slightly higher than BUBBLE RAP and Simbet.
The gap is caused by few copies of LASS and Nguyen’s
Routing .

From above results and analysis, LASS has proved
its competitive ability, which can achieve 66.74 percent
delivery ratio and only have 26.07 percent overhead ratio
with controlled delay in a reasonable range.

6 DISCUSSION
In this section, we further explain several issues about our
algorithm’s designing and give some possible extensions
for the future.

6.1 DataSets Selection
There exist many collections of social networks datasets,
such as CRAWDAD4, Haggle iMotes5 projects and Stan-
ford SNAP Graph Library 6. In above collections, Info-
com 06 dataset, Sigcomm09 dataset, MIT Reality Mining

4. http://crawdad.cs.dartmouth.edu/
5. http://www.haggleproject.org
6. http://snap.stanford.edu/data/index.html
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Fig. 7: Simulation Results on Reality Mining Dataset

dataset and Facebook dataset will be found. Based on
them, some studies about relationship inference, behavior
medeling and prediction, complex social studies, and in-
formation dissemination are carried out. In these datasets,
one kind is the social friendship information, the other
kind is the social proximity information. The former is
about logical relationship, the latter is about geographical
relationship. In our study, because the underlying network is
the distributed mobile ad-hoc network, the second kind data
(using Bluetooth discovery to gain proximity information)
is appropriate. In order to observe the social impact on
data forwarding, we choose a long term observation-MIT
Reality Mining Dataset as our experiment dataset. Our
algorithm can also be applied to other datasets to validate
it effectiveness.

6.2 Choice about the Communication Critical Val-
ue
With continual adding and removing actions, the com-
munication critical value xt is generated by calculating
the median value of the weight set Wt at each time
snapshot. This method can tackle both uniform and power-
law distribution. But, maybe, there will have some more
precise mathematical methods than ours to deal with the
problem, which can be studied in the future.

6.3 Edge Weight
In our study, the edge weight represents the encounter
probability between two nodes. The edge weight may be
concerned with mobility intensity, traffic interests or some
other physical/logical social properties. But it is not in the
scope of our research.
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6.4 Bounds for Combining Criterion of Communi-
ties
Like [6], we also use experimental method to gain the
threshold for combining criterion of communities, i.e.,
Definition 8. But in theory, we could give the upper and
lower bound of it. The bounds meet two conditions, one
is after combining, the community structure satisfies the
weighted criterion of communities, i.e., Definition 6; the
other is if two communities can combine with each other,
we should try our best to do this. This theory bounds will
be studied in the future.

7 RELATED WORK

In mobile social networks, most data forwarding algorithm-
s are “encounter-based”. Epidemic [25] and Spray-and-
Wait [27] are “simple encounter-based” algorithms. After
that, some studies [13], [28]–[30] use the history of node
contacts, spatial information or contextual information to
predict the future encounter probability. These heuristic
methods aim at finding appropriate relay nodes who are
like to meet the destination nodes.

Recently, people have found social information has big
impact on data forwarding. Because some social relation-
ships can reflect people’s preference, which is important
in node encounter prediction. Therefore, some “social-
aware encounter-based” algorithms emerge. They can be
classified into two kinds.

On the one hand, some studies have shown that
exploiting social relationships can achieve better data
forwarding performances (our work is belonged to
this kind). Daly and Haahr [2] proposed SimBet data
forwarding algorithm in delay tolerant MANETs. It uses
betweenness centrality and social similarity to increase the
probability of a successful data forwarding. Authors show
that SimBet performs well, especially when the connectivity
is low. But, it does not consider contact frequencies
between node pairs. Hui et al. [3] proposed an algorithm
called BUBBLE RAP in DTNs, with making use of node
centrality and weighted k-clique community structure to
enhance delivery performance. It is better than Daly and
Haahr [2]. But, it needs to give a priori value of k
to identify meaningful community structure, which is
impractical in mobile social networks. Moreover, it
has the same problem with [2], i.e., using betweenness
to calculate global and local centrality, not consider-
ing node encounter probability. Gao et al. [4] studied
multicast in DTNs from the social network perspective.
With known community structures, authors formulates the
relay selection as a unified knapsack problem. But this
method assumes that community structures are already
known and some parameters’ optimization requires
global information to support. Fan et al. [31] studied
a geo-community-based broadcasting schemes for mobile
social networks by exploiting node geo-centrality and geo-
community. Nguyen et al. [6] proposed an overlapping
community based data forwarding algorithm, called N-
guyen’s Routing. An efficient community detection method

is designed for tracing the evolution of the overlapping
communities in mobile networks. Taking advantage of the
overlapping community structure, Nguyen’s Routing uses
the number of common interests as social similarity to
design data forwarding scheme. However, it only focuses
on the binary graph and does not consider the node
local activity.

On the other hand, from another perspective, some
studies have demonstrated the social relationships limit
the freedom transmission between two nodes. Li et al. [5]
introduced socially selfish properties into data forwarding
scheme in delay tolerant networks, where protocol SSAR
considered both users’ forwarding willingness and their
contact opportunity. Li et al. [7] studied a joint rate control,
routing, and capacity allocation scheme to achieve optimal
multirate multicast in dynamic wireless networks, which
addressed social selfishness of users by differentiating relay
costs towards different destinations. Lin et al. [8] proposed
a PrefCast algorithm. It considers users’ heterogeneous
preferences for different content objects in mobile social
dissemination, and meanwhile produces the maximal total
utility for all users. Wu et al. [9] proposed a social feature-
based multipath routing scheme in DTNs. It is based on
the idea that the social features will play an important role
in data forwarding in social contact networks. Finally, the
scheme makes the routing problem become a hypercube-
based feature matching process.

8 CONCLUSION

This paper designs a social-based data forwarding scheme
for mobile social networks, called LASS (Local-Activity
and Social-Similarity), which measures the social similarity
through nodes’ different levels of activity. Extensive simu-
lations on MIT Reality Mining Database show that it can
achieve a very good data forwarding performance in an
efficient way. To the best of our knowledge, our work is
the first one to be aware of different levels of activity within
communities; furthermore, it enriches the methodology of
social similarity’s measurement.

There are several interesting issues left to study. First,
we can consider the direction of the social relationship in
the future. Second, in this paper, we only concern with the
unicast in mobile social networks. But in reality, there exist
many session modes, for example, broadcast, multicast.
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APPENDIX A
“OUT-POOL” CASE

The “out-pool” case contains tracking foreign nodes algo-
rithm and tracking missing nodes algorithm.

(a) (b) (c)

Fig. 8: The red node is a foreign node with added edges depicted by
dotted lines. In (a), the foreign node joins its adjacent community. In
(b), the foreign node forms new communities with neighbors. In (c), the
foreign node unites the solitary nodes to form a new community.

Algorithm 4 Tracking Foreign Nodes
Input: the current community structure Ct
Output: the updated structure Ct+1

1: if node u is added without edges, then
2: Ct

s = Ct
s

∪
{u}

3: else u with edges
4: xt ← apply Definition 4 on the community graph of Ct
5: for each wuv ∈Wt

6: if wuv < xt

7: Et ← Et \ (u, v)
8: update the set of Nt(u)
9: C1, C2, ..., Ck ← adjacent communities of u

10: for i = 1 do to k
11: Ot(u, v)← the induced subgraph of Gt(xt) based on Ci

∪
{u}

12: if Φ(Ot(u, v)) ≥ δ(Ot(u, v)) and |Vt(u, v)| ≥ 4
13: Ci ← Ci

∪
{u}

14: else
15: Ot(u, v)← the induced subgraph of Gt(xt) based on Ci

∩
Nt(u)

16: if Φ(Ot(u, v)) ≥ δ(Ot(u, v)) and |Vt(u, v)| ≥ 4

17: define Vt(u, v) of Ot(u, v) as a new community C
′

18: for v ∈ Ct
s and Comt(u)

∩
Comt(v) = ∅

19: Ot(u, v)← the induced subgraph of Gt(xt) based on
20: Nt(u)

∩
Nt(v)

21: if Φ(Ot(u, v)) ≥ δ(Ot(u, v)) and |Vt(u, v)| ≥ 4

22: define Vt(u, v) of Ot(u, v) as a new community C
′

23: merge overlapping communities on C1, C2, ..., Ck and C
′

24: update Ct to Ct+1

Firstly, we analyze Algorithm 4 about adding foreign
nodes case. There are two possibilities, one is the node
added without edges, the other is added with edges. If node
u satisfies the former case, we simply join u to the current
community structure. If u is the latter case, it becomes a
little complicated and needs three operations, as illustrated
in Fig. 8: 1) Because u is added with edges, it may join to
its adjacent communities, i.e., step 9 − 13. 2) Uniting its
neighbors, the foreign node u may form new communities,
i.e., step 15− 17. 3) Considering the set of solitary nodes,
node u may shape new communities, i.e., step 18− 21.

Secondly, we study Algorithm 5 about tracking missing
nodes case. 1) If node u is a solitary node or du = 1,
we simply remove the node from the current community

structure. 2) Otherwise, there are two operations, as illus-
trated in Fig. 9. One is the remaining structure can maintain
the original community, i.e., step 8 − 11, the other is the
remains may form new communities, i.e., step 13− 16.

(a) (b)

Fig. 9: The red node represents the missing node with removed edges
depicted by dotted lines. In (a), the remaining structure can maintain the
original shape. In (b), the remains forms two new communities.

Algorithm 5 Tracking Missing Nodes
Input: the current community structure Ct
Output: the updated structure Ct+1

1: if u is a solitary node or dtu = 1
2: Ct ← Ct \ Ct(u)
3: else
4: xt ← apply Definition 4 on the community graph of Ct
5: for each wuv ∈Wt

6: if wuv < xt

7: Et ← Et \ (u, v)
8: for each subset Cl in Ct(u) or in Ct(v)
9: Ot(u, v)← the induced subgraph of the filter graph Gt(xt)

10: based on the remaining nodes in one subset Cl of Ct(u)
11: if Φ(Ot(u, v)) ≥ δ(Ot(u, v)) and |Vt(u, v)| ≥ 4
12: Cl ← Vt(u, v)
13: else
14: sort the weight of Et(u, v) in a descending order
15: from the largest weighted edge (u, v) ∈ Et(u, v)

16: do Algorithm 2 step 8−10 to gain new communities sequence C
′

17: merge overlapping communities
18: update Ct to Ct+1

APPENDIX B
“IN-POOL” CASE

The “in-pool” case contains tracking adding edges algorith-
m and tracking removing edges algorithm.

(a) (b)

Fig. 10: The red dotted line represents an adding edge. In (a), the new edge
shapes a new community. In (b), for an adding edge, one of its endpoints
joins the community of the opposite side.

Firstly, we discuss Algorithm 6 about adding edges case.
There are two possibilities, one is two endpoints of the
adding edge are in the same community, the other is in
the different communities. In the former case, community
structure does not change, because adding edges increases
the weighted density of communities. In the latter case, we
further divide it into two operations, as illustrated in Fig.
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Algorithm 6 Tracking Adding Edges
Input: the current community structure Ct
Output: the updated structure Ct+1

if Comt(u)
∩

Comt(v) ̸= ∅
Ct+1 ← Ct

else
if Comt(u) ̸= ∅ and Comt(v) ̸= ∅

if Comt(u)
∩

Comt(v) = ∅ then
Ot(u, v)← the induced subgraph of Gt(xt) based on

Nt(u)
∩

Nt(v)
if Φ(Ot(u, v)) ≥ δ(Ot(u, v)) and |Vt(u, v)| ≥ 4

define Vt(u, v) of Ot(u, v) as a new community C
′

else
for each subset Cl in Ct(u) or in Ct(v)
Ot(u, v)← the induced subgraph of Gt(xt) based on one

subset Cl of Ct(u)∪{v} or one subset Cl of Ct(v)∪{u}
if Φ(Ot(u, v)) ≥ δ(Ot(u, v)) and |Vt(u, v)| ≥ 4
Cl ← Cl ∪ {v} or Cl ← Cl ∪ {u}

if (Comt(u) = ∅ and Comt(v) ̸= ∅) or (Comt(v) = ∅ and
Comt(u) ̸= ∅)

only do Algorithm 6 step 5− 9
merge overlapping communities
update Ct to Ct+1

10. 1) If the adding edges come from current nodes, we
decide whether the edge (u, v) can form a new community,
i.e., step 4− 8. Besides, we still need to judge whether the
node u or v will join the community of the opposite side,
i.e., step 9−14. 2) If the adding edges come from the new
foreign nodes, we only need to process the edge (u, v),
i.e., judging whether to shape a new community or not,
described in step 15 − 16. Some operations about two
endpoints have been done in Algorithm 4.

Secondly, we study Algorithm 7 about tracking remov-
ing edges case. There are also two possibilities, one is
two endpoints of the removing edge are in the different
community, the other is in the same communities. In the
former case, the community structure does not change. In

the latter case, as illustrated in Fig. 11, we only need to
concern the case that the removing edges come from the
existing networks. Because if the removing edges come
from the missing nodes, the corresponding operations
have been done in Algorithm 5. Therefore, in Algorithm
7, 1) We decide whether the remaining structure can still
maintain or not, i.e., step 4− 8. 2) Otherwise, the remains
can form some new communities, i.e., step 9− 13.

(a) (b)

Fig. 11: The red dotted line represents a removing edge. In (a), the
remaining structure can still maintain. In (b), the remaining structure forms
two new communities.

Algorithm 7 Tracking Removing Edges
Input: the current community structure Ct
Output: the updated structure Ct+1

if Comt(u)
∩

Comt(v) = ∅
Ct+1 ← Ct

else
if Comt(u) ̸= ∅ and Comt(v) ̸= ∅
for each subset Cl in Ct(u) or in Ct(v)
Ot(u, v)← the induced subgraph of Gt(xt) based on the
remaining nodes in one subset Cl of Ct(u) after removing (u, v)

if Φ(Ot(u, v)) ≥ δ(Ot(u, v)) and |Vt(u, v)| ≥ 4
Cl ← Vt(u, v)

else
sort the weight in Et(u, v) in a descending order
from the largest weighted edge (u, v) ∈ Et(u, v)

do Algorithm 2 step 8− 10 to gain new communities sequence C
′

merge overlapping communities
update Ct to Ct+1


