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Localized Topology Control for Unicast and
Broadcast in Wireless Ad Hoc Networks
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Abstract— We propose a novel localized topology control
algorithm for each wireless node to locally select commu-
nication neighbors and adjust its transmission power ac-
cordingly, such that all nodes together self-form a topology
that is energy efficient simultaneously for both unicast and
broadcast communications. We theoretically prove that the
proposed topology is planar, which meets the requirement of
certain localized routing methods to guarantee packet de-
livery; it is power efficient for unicast– the energy needed
to connect any pair of nodes is within a small constant fac-
tor of the minimum; it is also asymptotically optimum for
broadcast: the energy consumption for broadcasting data
on top of it is asymptotically the best among all structures
constructed using only local information; it has a constant
bounded logical degree, which will potentially save cost of
updating routing table if used. We further prove that the
expected average physical degree of all nodes is a small con-
stant. To the best of our knowledge, this is the first localized
topology control strategy for all nodes to maintain a struc-
ture with all these desirable properties. Previously, only
a centralized algorithm was reported in [3]. Moreover, by
assuming that the node ID and its position can be repre-
sented in O(log n) bits for a wireless network of n nodes, the
total number of messages by our methods is in the range of
[5n, 13n], where each message is O(log n) bits. Our theoretical
results are corroborated in the simulations.

Keywords— Graph theory, localized communication, wire-
less ad hoc networks, topology control, power efficient, low
weight, low interference, unicast, broadcast.

I. Introduction

A wireless ad hoc network consists of a distribution of
radios in certain geographical area. Unlike cellular wire-
less networks, there is no centralized control in the net-
work, and wireless devices (called nodes hereafter) can
communicate via multi-hop wireless channels: a node can
reach all nodes inside its transmission region while two far-
away nodes communicate through the relaying by interme-
diate nodes. An important requirement of these networks
is that they should be self-organizing, i.e., transmission
ranges and data paths are dynamically restructured with
changing topology. Energy conservation and network per-
formance are probably the most critical issues in wireless
ad hoc networks, because wireless devices are usually pow-
ered by batteries only and have limited computing capa-
bility and memory. A wireless ad hoc or sensor network is
modelled by a set V of n wireless nodes distributed in a
two-dimensional plane. Each node has the same maximum
transmission range R. By a proper scaling, we assume that
all nodes have the maximum transmission range equal to
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one unit. These wireless nodes define a unit disk graph
UDG(V ) in which there is an edge between two nodes iff
the Euclidean distance between them is at most one unit.
In other words, we assume that two nodes can always re-
ceive the signal from each other directly if the Euclidean
distance between them is no more than one unit. Notice
that, in practice, the transmission region of a node is not
necessarily a perfect disk. As done by most results in the
literature, for simplicity, we model it by disk in order to
first explore the underlying nature of ad hoc networks.
Hereafter, UDG(V ) is always assumed to be connected.
We also assume that all wireless nodes have distinctive
identities(IDs) and each wireless node knows its position
information. More specifically, it is enough in our proto-
col if each node knows the relative position of its one-hop
neighbors. The relative position of neighbors can be esti-
mated by the direction of signal arrival and the strength of
signal. The geometry location of a wireless node can also
be obtained by a localization method, such as [24], [7], [12].

We adopt the most common power-attenuation model
from literature: the power needed to support a link uv is
assumed to be ‖uv‖β , where ‖uv‖ is the Euclidean distance
between u and v, β is a real constant between 2 and 5 de-
pending on the wireless transmission environment. Note
that in current wireless systems, the receiving node v will
consume power to receive the signal and the transmitting
node u will spend power to prepare the signal. In this pa-
per, the energy model that we adopted only accounts for
the emission power, because this can be a good approxi-
mation in case of long range techniques although the ac-
tual energy consumption is given by a fixed part (receiving
power and the power needed to keep the electric circuits
on) plus the emission power component. In other words,
we assume that the transmission range is large enough such
that the emission power is the major component and the
receiving power is negligible. Notice that, as pointed out by
an anonymous reviewer, even if the energy cost of receiv-
ing a packet is high, there are a number ways of reducing
this cost by reducing the number of packets received by
but not intended for a node. It includes, but is not limited
to, the following approaches: (1) signals are sent with spe-
cial small preambles that identify the intended recipient;
(2)the radios are frequency-agile and can choose different
frequency channels to communicate with different neigh-
bors; (3) the radios use directional antennas to limit the
volume over which their signals are received; (4) favoring
routes that traverse sparser portions of the network.

The localized 1 topology control technique lets each wire-

1In theory, a distributed method is called localized if it runs in
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less device locally adjust its transmission range and select
certain neighbors for communication, while maintaining a
decent global structure to support energy efficient routing
and to improve the overall network performance. By en-
abling each wireless node to shrink its transmission power
(which could be much smaller than its maximum trans-
mission power) sufficient enough to cover its farthest se-
lected neighbor in routing, topology control schemes can
not only save energy and prolong network life, but also
can improve network throughput through mitigating the
MAC-level medium contention by using possibly shorter
links. Unlike traditional wired and cellular networks, the
movement of wireless devices during the communication
could change the network topology in some extent. Hence,
it is more challenging to design a topology control algo-
rithm for ad hoc wireless networks: the topology should be
locally and self-adaptively maintained with low communi-
cation cost, without affecting the whole network.

The main contributions of this paper are as follows. We
present the first localized topology control strategy for all
nodes to maintain a unified energy-efficient topology for
unicast and broadcast in wireless ad hoc/sensor networks.
In one single structure, we guarantee the following network
properties:
1. power efficient unicast: given any two nodes, there is
a path connecting them in the structure with total power
cost no more than 2ρ + 1 times of the power cost of any
path connecting them in the original network. Here ρ > 1
is some constant that will be specified later in our algo-
rithm. We assume that each node u can adjust its power
sufficiently to cover its next-hop v on any selected path for
unicast.
2. power efficient broadcast: the power consumption
for broadcast is within a constant factor of optimum among
all locally constructed structures. To prove this, we essen-
tially prove that the structure is low-weighted : its total
edge length is within a constant factor of that of Euclidean
Minimum Spanning Tree (EMST). For broadcast or gener-
ally multicast, we assume that each node u can adjust its
power sufficiently to cover its farthest down-stream node
on any selected structure (typically a tree) for multicast.
3. bounded logical node degree: each node has to com-
municate with at most k−1 logical neighbors, where k ≥ 9
is an adjustable parameter.
4. bounded average physical node degree: the ex-
pected average physical node degree is at most a small
constant. Here the physical degree of a node u in a struc-
ture H is defined as the number of nodes inside the disk
centered at u with radius maxuv∈H ‖uv‖.
5. planar: there are no edges crossing each other. This
enables several localized routing algorithms, such as [2],
[15], [18], [19], to be performed on top of this structure and
guarantee the packet delivery without using the routing
table.

constant number of rounds [40]. In this paper, without causing con-
fusion, the term localized means localized communication, i.e., each
node makes decisions only according to its local or neighborhood in-
formation.

6. neighbors Θ-separated: the directions between any
two logical neighbors of any node are separated by at least
an angle θ, which as we will see reduces the signal interfer-
ence.

In graph theoretical terminologies, given a unit disk
graph modelling the wireless ad hoc networks, we propose
a localized method to build a low-weighted planar power-
spanner with a bounded logical node degree. Here a ge-
ometric structure is called low-weighted if its total edge
length is no more than a small constant factor of that of
the Euclidean minimum spanning tree. To the best of our
knowledge, it is the first known localized topology control
strategy for all nodes together to maintain such a single
structure with these desired properties. Previously, only a
centralized algorithm was reported in [3]. Moreover, by as-
suming that the node ID and its position can be represented
in O(log n) bits each for a wireless network of n nodes, we
show that the structure can be initially constructed using
5n to 13n messages.

In addition, we prove that the expected average node in-
terference in the structure is bounded by a small constant.
This is significant in its own due to the following reasons:
it has been taken for granted that “a network topology with
small logical node degree will guarantee a small interfer-
ence” and recently Burkhart et al. [4] showed that this is
not true generally. Our results show that, although gener-
ally a small logical node degree cannot guarantee a small in-
terference, the expected average interference is indeed small
if the logical communication neighbors are chosen carefully.
All our theoretical results are corroborated in simulations.

The rest of the paper is organized as follows. In Section
II, we review some prior arts in topology control, and sum-
marize some preferred properties of network topology for
unicast and broadcast. Section III presents an improved
algorithm based on [31] to build a degree-bounded pla-
nar spanner with Θ-separated property. We then propose,
in Section IV, the first localized topology control strat-
egy to construct planar spanner with bounded-degree and
low weight. We study the expected interference of various
structures in Section V. In Section VI, we conduct exten-
sive simulations to validate our theoretical results. Finally,
we conclude our paper in Section VII.

II. Current State of Knowledge

A. Energy-Efficient Unicast Topology

Several structures have been proposed for topology con-
trol in wireless ad hoc networks. The relative neighborhood
graph, denoted by RNG(V ) [32], consists of all edges uv
such that the intersection of two circles centered at u and
v and with radius ‖uv‖ do not contain any vertex w from
the set V . The Gabriel graph [10] GG(V ) contains an edge
uv if and only if disk(u, v) contains no other points of V ,
where disk(u, v) is the disk with edge uv as a diameter. For
convenience, also denote GG and RNG as the intersection
of GG(V ) and RNG(V ) with UDG(V ) respectively. Both
GG and RNG are planar. They are connected, and con-
tain the Euclidean minimum spanning tree(EMST ) of V if
UDG is connected. RNG is not power efficient for unicast,
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since the power stretch factor of RNG is n− 1. Both RNG
and GG are not degree-bounded. The Yao graph [38] with
an integer parameter k > 6, denoted by

−−→
Y Gk, is defined

as follows. At each node u, any k equally-separated rays
originated at u define k cones. In each cone, choose the
shortest edge uv ∈ UDG(V ) among all edges emanated
from u, if there is any, and add a directed link −→uv. Ties are
broken arbitrarily or by ID. The resulting directed graph is
called the Yao graph. It is well-known that the Yao struc-
ture is power efficient for unicast. Several variations [22] of
the Yao structure could have bounded logical node degree
also. However, all Yao related structures are not planar
graph.

Li et al. [20] proposed the Cone Based Topology Control
(CBTC) algorithm to first focus on several desirable prop-
erties, in particular being an energy spanner with bounded
degree. It is basically similar to the Yao structure for topol-
ogy control. For each node u, the number of cones needed
to be considered in the method proposed in [20] is about
2n, where each node v could contribute two cones on both
side of segment uv. Hence, the final topology is not neces-
sarily a bounded degree graph. Bose et al. [3] proposed a
centralized method with running time O(n log n) to build a
degree-bounded planar spanner with low weight for a two-
dimensional point set. However, the distributed implemen-
tation of this centralized method takes O(n2) communica-
tions in the worst case for a set V of n nodes. Wang and Li
[34] proposed the first efficient localized topology control
algorithm to build a degree-bounded planar spanner BPS
for wireless ad hoc networks. Though their method can
achieve three desirable features: planar, degree-bounded,
and power efficient, the theoretical bound on the node de-
gree of their structure is a large constant. Especially, the
communication cost of their method can be very high, al-
though it is O(n) theoretically, which is achieved by ap-
plying the method in [5] to collect 2-hop neighbors infor-
mation. The hidden constant is large: it is several hun-
dreds. Recently, Song et al. [31] proposed two methods
to construct degree-bounded planar power spanner, by ap-
plying the ordered Yao structures on Gabriel graph. They
achieved better performance with much lower communica-
tion cost, compared with the method in [34]. One method
in [31] only costs 3n messages for the construction, and
guarantees that there is at most one neighbor node in each
of the k = 9 equal-sized cones. Worth to mention that,
the structures proposed in [34], [31] do not guarantee low-
weight, as will see later.

In summary, for energy efficient unicast routing, the
topology is preferred to have following features:
1. Power Spanner: Formally speaking, a subgraph H is
called a power spanner of a graph G if there is a positive
real constant ρ such that for any two nodes, the power
consumption of the shortest path in H is at most ρ times
of the power consumption of the shortest path in G. Here
ρ is called the power stretch factor or spanning ratio.
2. Degree Bounded: It is also desirable that the log-
ical node degree in the constructed topology is bounded
from above by a small constant. Bounded logical degree

structures find applications in Bluetooth wireless networks
since a master node can have only 7 active slaves simul-
taneously. A structure with small logical node degree will
save the cost of updating the routing table when nodes are
mobile. A structure with a small degree and using shorter
links could improve the overall network throughout [17].
3. Planar: A network topology is also preferred to be
planar (no two edges crossing each other in the graph) to
enable some localized routing algorithms work correctly
and efficiently, such as Greedy Face Routing (GFG) [2],
Greedy Perimeter Stateless Routing (GPSR) [15], Adap-
tive Face Routing(AFR) [18], and Greedy Other Adaptive
Face Routing (GOAFR) [19]. Notice that with planar net-
work topology as the underlying routing structure, these
localized routing protocols guarantee the message delivery
without using a routing table: each intermediate node can
decide which logical neighboring node to forward the packet
using only local information and the position of the source
and the destination.

B. Energy-Efficient Broadcast Topology

Broadcast is also a very important operation in wireless
ad hoc networks, as it provides an efficient way of com-
munication that does not require global information and
functions well with topology changes. For example, many
unicast routing protocols [14], [25], [28], [27], [30] for wire-
less multi-hop networks use broadcast in the stage of route
discovery. Similarly, several information dissemination pro-
tocols in wireless sensor networks use some forms of broad-
cast/multicast for solicitation or collection of sensor infor-
mation [11], [13], [39]. Since sensor networks mainly [1]
use broadcast for communication, how to deliver messages
to all the wireless devices in a scalable and power-efficient
manner has drawn more and more attention. Not until
recently have research efforts been made to devise power-
efficient broadcast structures for wireless ad hoc networks.

Notice that, a broadcast routing protocol can be inter-
preted as flood-based broadcasting on a subgraph of origi-
nal communication networks, since any broadcast routing
is viewed as an arborescence (a directed tree) T , rooted at
the source node of the broadcasting, that spans all nodes.
Once the structure is constructed, the broadcast is a simple
flooding: once a node got the broadcast message from its
logical neighbors for the first time, it will simply forward it
to all its logical neighbors either through one-to-one or one-
to-all communications. Let fT (p) denote the transmission
power of the node p required by broadcasting message on
top of the tree T . We assume that the tree T is a directed
graph rooted at the source of the broadcasting session: link
pq ∈ T denotes that node p forwarded message to node q.
For any leaf node p of T , clearly we have fT (p) = 0 since it
does not have to forward the data to any other node. For
any internal node p of T , fT (p) = maxpq∈T ‖pq‖β under
our energy model if an one-to-all communication model is
used; and fT (p) =

∑
pq∈T ‖pq‖β under our energy model if

an one-to-one communication model is used. In the litera-
ture, the one-to-all communication model (a node p trans-
mits once at power maxpq∈T ‖pq‖β and all its downstream
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nodes get the data) is typically assumed. The total energy
required by T is

∑
p∈V fT (p).

Minimum-energy broadcast routing (MEB) in a simple
ad hoc networking environment has been addressed in [8],
[16], [36]. It is known [8] that the MEB problem is NP-
hard, i.e., it cannot be solved in polynomial time unless
P=NP. Three greedy heuristics were proposed in [36] for
the MEB problem: EMST (minimum spanning tree), SPT
(shortest-path tree), and BIP (broadcasting incremental
power). Wan et al. [33] showed that the approximation
ratios of EMST and BIP are at most 12; on the other hand,
the approximation ratio of SPT is at least n

2 , where n is
the number of nodes. Unfortunately, none of the above
structures can be formed and updated locally.

RNG, which can be constructed locally, has been used
for broadcasting in wireless ad hoc networks [29]. However,
an example was given in [21] to show that the total energy
used by broadcasting on RNG could be about O(nβ) times
of the minimum. Several localized broadcasting protocols
[37], [6] are proposed recently, however, all of them did
not provide the theoretical performance bound. In fact, Li
[21] showed that, there is no deterministic localized algo-
rithm to find a structure that approximates the total en-
ergy consumption of broadcasting within a constant factor
of the optimum. Furthermore, in the worst case, the en-
ergy cost for broadcasting on any locally constructed and
connected structure is at least Θ(nβ−1) times the optimum
for a network of n nodes. On the other hand, given any
low-weighted structure H, i.e., ω(H) ≤ O(1) · ω(EMST ),
they proved the following lemma

Lemma 1: [21] ωβ(H) ≤ O(nβ−1) · ωβ(EMST ), where
H is any low-weighted structure.
Here ω(G) is the total length of the links in G, i.e.,
ω(G) =

∑
uv∈G ‖uv‖, and ωβ(G) is the total power con-

sumption of links in G, i.e., ωβ(G) =
∑

uv∈G ‖uv‖β . Con-
sequently, low-weighted structure is asymptotically optimal
for broadcasting among any connected structures built in a
localized manner. Notice that, the above analysis is based
on the assumption that every link is used during the broad-
cast (one-to-one communication), such as using the TDMA
scheme. Even considering one-to-all communication (i.e.,
the broadcast signal sent by a node can be received by all
nodes in its transmission region simultaneously), the above
claim is also correct. The reason is basically as follows. Let
Bs(H) be the total energy consumed by broadcasting on
a structure H with sender s using the one-to-all commu-
nication model. Clearly, any flood-based broadcast based
on a structure H consumes energy at most

∑
ei∈H eβ

i if
the message received by an intermediate node v is not for-
warded to its parent, i.e., the node that just forwarded this
message to v; and the total energy is at most 2

∑
ei∈H eβ

i

if an intermediate node v blindly forward the data (i.e.,
may also forward the message to its parent). On the other
hand, the total energy Bs(H) used by any structure H

is at least
∑

ei∈EMST eβ
i /12 [33]. Thus, Bs(EMST ) ≥∑

ei∈EMST eβ
i /12 = ωβ(EMST )/12. Then, if H is a

low-weighted structure, we have Bs(H) ≤ 2
∑

ei∈H e2
i =

O(nβ−1) · ωβ(EMST ) ≤ 12 ·O(nβ−1) ·Bs(EMST ).
Consequently, we have the following lemma.
Lemma 2: The broadcast based on any low-weighted

structure H consumes energy at most O(nβ−1) times of
the minimum-energy broadcast. And the bound O(nβ−1)
is tight.

In summary, to enable energy efficient broadcasting, the
locally constructed topology is also preferred to be low-
weighted :

4. Low Weighted: the total link length of final topol-
ogy is within a constant factor of that of EMST .

Recently, several localized algorithms [21], [23] have been
proposed to construct low-weighted structures, which in-
deed approximate the energy efficiency of EMST as the
network density increases. However, none of them is power
efficient for unicast routing.

To our best knowledge, all known topology control algo-
rithm can not support power efficient unicast and broad-
cast in same structure. It is indeed challenging to design
a unified topology, especially due to the trade off between
spanner and low weight property. The main contribution of
this paper is to address this issue. We will present the first
efficient distributed method to construct a planar degree-
bounded spanner with low-weight.

III. Power-Efficient Topology for Unicast

The ultimate goal of this paper is to construct a unified
topology that is power-efficient for both unicast and broad-
cast, in addition to be planar and have a constant bounded
logical node degree. To achieve this ultimate goal, in this
section, we first present a new method that can construct
a power-efficient topology for unicast. We will prove that
the constructed structure is a power-spanner, planar and
has bounded node degree. Furthermore, it has an extra
property: any two neighbors of each node are separated
by at least a certain angle θ. Hereafter, we call it the Θ-
separation property. As we will see later that this property
further reduces the interference, especially when adopting
directional antennas for transmission. This property also
makes the proof much easier that the structure constructed
in the next section is also power-efficient for broadcast.

One possible way to construct a degree-bounded planar
power spanner is to apply the Yao structure on Gabriel
graph, since GG is already planar and has a power stretch
factor exactly 1. In [22], Li et al. showed that the final
structure by directly applying the Yao structure on GG is
a planar power spanner, called Y aoGG, but its in-degree
can be as large as O(n), as in the example shown in Figure
1(b). In [31], Song et. al proposed two new methods to
bound node degree by applying the ordered Yao structures
on Gabriel graph. The structure SY aoGG in [31] guaran-
tees that there is at most one neighbor node in each of the
k equal-sized cones. In this section, we will propose an im-
proved algorithm to further reduce the medium contention
by selecting less communication neighbors and separating
neighbors wider.

Before we give the algorithm, we first define a concept
called θ-Dominating Region.
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(a) UDG (b) RNG, GG (c) BPS (d) OrdY aoGG (e) SY aoGG (f) SΘGG

Fig. 1. Several planar power spanners on the UDG shown in (a). Here k = 9 during constructing SY aoGG and SΘGG.

Definition 1: θ-Dominating Region: For each neigh-
bor node v of a node u, the θ-dominating region of v is the
2θ-cone emanated from u, with the edge uv as its axis.

Using the concept of θ-dominating region instead of ab-
solute cone partition in SYaoGG [31], our new method can
further reduce the node degree bound by 1 and we are able
to prove that any two neighbors of each node are guaran-
teed to be separated by at least an angle θ. We call this as
Θ-separation property, which can further reduce interfer-
ence especially while sending message through directional
antennas. The final topology will be called SΘGG. In-
tuitively, the communication interference in SΘGG will be
smaller that the interference in SY aoGG, which is also ver-
ified later by simulations as shown in Figure 7(e) and (f).

The basic idea of our method is as follows. Since the
Gabriel graph is planar and power-spanner, we will remove
some links of GG to bound the nodal degree while not de-
stroy the power-spanner property. The basic approach of
bounding the nodal degree is to only keep some shortest
link in the θ-Dominating region for every node. We pro-
cess the nodes in a certain order. A node is marked White
if it is unprocessed and is marked Black if it is processed.
Originally all nodes are marked White. Initially, a node
elects itself to start processing its neighbors if its ID2 is
smaller than all its White logical neighbors in the Gabriel
graph. Assume that a node u is to be processed. It keeps
the link to the closest Black neighbor, say v, in GG, and
removes all links to all neighbors in the θ-dominating re-
gion of v. In other words, the neighbor v dominates all
other neighbors in its θ-dominating region. It then repeats
the above procedure until no Black logical neighbors in
GG are left. The similar rules will be applied to keep or
eliminate White logical neighbors. Node u then marks
itself Black. The algorithm terminates when all nodes
are marked Black. The remaining links form the final
structure, called SΘGG.

In our new algorithm, a data structure will be used:
N(u) is the set of neighbors of each node u in the final
topology, which is initialized as the set of neighbor nodes
in GG. We are now ready to present out algorithm, which
constructs a degree-(k−1) planar power spanner, as follows
(see Algorithm 1).

It is easy to show that the final topology based on Yao

2It is not necessary to use ID here. We can also use some other
mechanism to elect a certain node to perform the remaining pro-
cedures first. For example, we can use the RTS/CTS mechanism
provided in the MAC layer to achieve this: the node that first suc-
cessfully sent a RTS signal within its one-hop neighborhood will be
elected. In this paper, we use ID just for the sake of easy presentation.

Algorithm 1 SΘGG: Power-Efficient Unicast Topology
1: First, each node self-constructs the Gabriel graph GG

locally. The algorithm to construct GG locally is well-
known, and a possible implementation may refer to
[31]. Initially, all nodes mark themselves White, i.e.,
unprocessed.

2: Once a White node u has the smallest ID among all its
White neighbors in N(u), it uses the following strat-
egy to select neighbors:
1. Node u first sorts all its Black neighbors (if avail-
able) in N(u) in the distance-increasing order, then
sorts all its White neighbors (if available) in N(u) sim-
ilarly. The sorted results are then restored to N(u), by
first writing the sorted list of Black neighbors then
appending the sorted list of White neighbors.
2. Node u scans the sorted list N(u) from left to right.
In each step, it keeps the current pointed neighbor w
in the list, while deletes every conflicted node v in the
remainder of the list. Here a node v is conflicted with w
means that node v is in the θ-dominating region of node
w. Here θ = 2π/k (k ≥ 9) is an adjustable parameter.
Node u then marks itself Black, i.e. processed, and
notifies each deleted neighboring node v in N(u) by a
broadcasting message UpdateN.

3: Once a node v receives the message UpdateN from a
neighbor u in N(v), it checks whether itself is in the
nodes set for deleting: if so, it deletes the sending node
u from list N(v), otherwise, marks u as BLACK in
N(v).

4: When all nodes are processed, all selected links {uv|v ∈
N(u), ∀v ∈ GG} form the final network topology, de-
noted by SΘGG. Each node can shrink its transmis-
sion range as long as it sufficiently reaches its farthest
neighbor in the final topology.

graph, such as SY aoGG [31], may vary as the choice of the
direction of cones varies. Here, SΘGG does not rely on the
absolute cone partition by adopting the new concept of θ-
dominating region. Hence, given the point set V , SΘGG is
unique. In addition, the average logical node degree, inter-
ference and transmission range of SΘGG is expected to be
smaller than SY aoGG too. Furthermore, it is interesting
to notice that the theoretical bound on the spanning ratio
for SΘGG is same as SY aoGG, which is proved later in
Theorem 4.

Lemma 3: Graph SΘGG is connected if the underlying
graph GG is connected. Furthermore, given any two nodes



6

u and v, there exists a path {u, t1, ..., tr, v} connecting them
such that all edges have length less than

√
2‖uv‖.

Proof: We prove the connectivity by contradiction.
Suppose a link uv is the shortest link in UDG whose con-
nectivity is broken by Algorithm 1. W.l.o.g, assume the
link uv is removed while processing node u, because of the
existence of another node w.

w

u v

w

u v

(a) ‖uw‖ < ‖uv‖ (b) ‖uw‖ > ‖uv‖
Fig. 2. Two cases when uv is removed while processing u.

As shown in Figure 2, there are only two cases (ties are
broken by ID) that the link uv can be removed by node u:
1. Case a: ‖uw‖ < ‖uv‖. Notice that ∠vuw ≤ θ < π/4,
hence ‖wv‖ < ‖uv‖. In other words, both link wv and uw
are smaller than link uv. Since there are no paths u ! v
according to the assumption, either the path u ! w or
v ! w is broken. That is to say, either the connectivity
of wv or uw is broken. Thus, uv is not the shortest link
whose connectivity is broken, it is a contradiction.
2. Case b: ‖uw‖ > ‖uv‖. It happens only when node w
is processed and node v is unprocessed. Similarly, ∠vuw ≤
θ < π/4 < ∠uwv (otherwise ∠uvw > π/2 violates the
Gabriel graph property), hence ‖wv‖ < ‖uv‖. Since node w
is a processed node and node u decides to keep link uw, the
link uw will be kept in SΘGG. According to assumption
that u and v are not connected in SΘGG, w and v are not
connected either. That is to say, uv is not the shortest link
whose connectivity is broken. It is a contradiction.

This finishes the proof of connectivity. Notice that the
above proof implies that the shortest link uv in UDG is
kept in the final topology. Clearly, the shortest link uv is
in GG. Link uv cannot be removed in our algorithm due to
the case illustrated by Figure 2 (a). Assume, for the sake
of contradiction, that uv is removed due to the case (b)
where ‖uw‖ > ‖uv‖ and w is processed when processing
u. Then ‖wv‖ < ‖uv‖ is a contradiction to that uv is the
shortest link in UDG.

We then show by induction that, given any link uv in
UDG, there is a path connecting them using edges with
length at most

√
2‖uv‖. Assume uv is removed when pro-

cessing u, due to the existence of link uw. We build a path
connecting u and v by concatenating u ! w and w ! v,
as shown in Figure 2. It is easy to see that the longest link
of the path is less than

√
2‖uv‖, which occurs in case (b).

In this case, the link uw must be kept because both end-
points are processed, and ‖uw‖ <

√
2‖uv‖. This finishes

the proof.
The property that for any link uv, there is a path con-

necting them such that the links on the path have length
at most

√
2‖uv‖ is crucial for our later proof that our Al-

gorithm 2 builds a low-weighted bounded degree planar
spanner.

Theorem 4: The structure SΘGG has node degree at
most k − 1 and is planar power spanner with neighbors
Θ-separated. Its power stretch factor is at most ρ =√

2
β

1−(2
√

2 sin π
k )β

, where k ≥ 9 is an adjustable parameter.

Proof: The proof would be similar with the proof of
SY aoGG in [31]. The only difference is that, we used the
concept of dominating cones instead of Yao graph. While
the power stretch factor remains the same theoretically,
the degree bound is reduced from k to k − 1. Obviously,
the links in SΘGG are Θ-separated, in other words, the
direction of any two neighbors of a node is Θ-separated.

Figure 1 (e) and (f) show the difference of SY aoGG and
SΘGG. Compared with SY aoGG, SΘGG is more evenly
distributed and has a lower node degree.

IV. Unified Power-Efficient Topology for
Unicast and Broadcast

To the best of our knowledge, so far, no localized topol-
ogy control algorithm has achieved all the desirable prop-
erties summarized in Section II: degree-bounded, planar,
power spanner, low-weighted. Those properties have at-
tracted lots of research interest in computational geometry
area. As shown in section II, they also enable energy ef-
ficient unicast and broadcast routings in wireless ad hoc
networks. Recall that, spanner property ensures that an
energy efficient path is always kept for any pair of nodes,
hence it is a necessary condition to support energy effi-
cient unicast. While low-weighted structure is optimal for
broadcast among any connected structures built in local-
ized manner. Unfortunately, all the known spanners, in-
cluding Yao [38], GG [10] and the recent developed degree-
bounded planar spanners BPS [34], SY aoGG, OrdY aoGG
[31] and SΘGG, are not low-weighted. As illustrated in
Figure 1, all of them will keep at least n−1

2 links between
the two circles, while EMST (in Figure 4(b)) will keep only
one link between them. Hence the weight of any of them
is at least O(n) · w(EMST ).

Worth to clarify that, in this section, we are interested in
finding a subgraph to enable efficient broadcast routings,
even based on the simple-flooding method. We do not aim
to substitute known broadcasting protocols. In fact, the
methods used in those localized broadcasting protocols [37],
[6] can be applied on the low-weighted structures to con-
serve more energy. The main contribution of low-weighted
structure is that it bounds the worst case performance for
broadcasting.

Several known localized algorithms are given in [21], [23]
to generate low-weighted graphs. In their algorithms, given
a certain structure G, for any two links uv and xy of a graph
G, they remove xy if xy is the longest link among quadri-
lateral uvxy, as illustrated in Figure 3(a). They proved
that the final structures are low-weighted if G is RNG’
[21] or LMST2 [23]. Obviously, they are not spanners. In
fact, their techniques can not be applied to spanner graphs
to bound the weight without losing the spanner property.
Figure 3(b) illustrates an example by applying their algo-
rithms to SΘGG.
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(a) the basic idea (b)the previous methods do not work on SΘGG

Fig. 3. Illustration of the method to build low-weighted graph

The node ID of vi is i, ∠v1v3v4 < θ and ‖v1v3‖ >
‖v3v4‖ > max(‖v1v2‖, ‖v2v4‖). While constructing SΘGG,
first node v1 selects v1v2 and v1v3 as its incident logical
links and node v2 selects v2v1 and v2v4, then node v3 se-
lects v3v1 and deletes v3v4. Hence v3v4 /∈ SΘGG. If apply-
ing the rule described in [21], [23], the link v1v3 will also
be deleted because ‖v1v3‖ > max(‖v1v2‖, ‖v2v4‖, ‖v3v4‖).
Then the graph will be disconnected. Then we can con-
clude that simple extension of methods in [23] on top of
SΘGG does not even guarantee the connectivity, nor to
say power-spanner property.

Indeed, the spanner property and low-weight property
are not easy to be achieved at same time. Intuitively, the
spanner property requires to keep more links, while the
low-weight property requires to keep less links from original
graph. In the following, we will describe a novel algorithm
to build a low-weighted structure from SΘGG, while keep-
ing enough links to guarantee the power efficiency. Figure
4 illustrates the difference of LSΘGG from SΘGG and
LMST2.

(a) SΘGG (b) LMST2 (c) LSΘGG

Fig. 4. The difference between LSΘGG, SΘGG and LMST2.

Algorithm 2 presents our new method that constructs
a bounded degree planar power-spanner that is also low-
weighted. Although our algorithm produces only power-
spanner here, it can be extended to produce also the length-
spanner if it is needed. To get a length-spanner, we con-
struct the structure LDel2 (defined in [35]) instead of the
Gabriel graph used in our algorithm. It was proved in [35]
that LDel2 is a planar, length-spanner, and can be con-
structed using only O(n) messages. The basic idea of our
new method is as follows. Since the graph SΘGG is al-
ready planar, power-spanner, and has bounded-degree, we
will remove some of its edges to guarantee that the resulting
topology is low-weighted while not destroying the power-
spanner property. Notice that removing edges will not
break the planar property and the bounded-degree prop-
erty. In all previous methods presented in the literature,
a node x decides to remove or keep links that are incident
on x, i.e., it only cares about the incident edges. While, in
the method presented here, a node x will decide whether

to keep or remove links for not only incident links, but
also the links that are incident on one of its neighbors. To
guarantee a low-weight property the methods presented in
[21], [23] remove some links from a certain structure such
that the remaining links satisfy the isolation property : for
each remaining link xy, the disk centered at the midpoint
of xy using a radius proportional to ‖xy‖ does not inter-
sect with any other remaining links. They achieved this
property by removing a link xy if there is another link uv
such that xy is the longest link in the quadrilateral uvyx.
However, this simple heuristic cannot guarantee the span-
ner property. Consider a link xy in some shortest path
from s to t. See Figure 3(a) for an illustration. Link xy
will be removed due to the existence of link uv. Link uv
could also later be removed due to the existence of another
link u1v1, which could also be removed due to the existence
of another link u2v2, and so on. See Figure 5 (b) for an
illustration of the situation where a sequence of links will
be removed: all links uivi, for i ≥ 2 will be removed. Con-
sequently, the shortest path connecting nodes un and vn

could be arbitrarily long in the resulting graph.
Thus, instead of blindly removing all such links xy when-

ever it is the longest link in a quadrilateral uvyx, we will
keep such a link when the links in its certain neighbor-
hood have been removed. To do so, among all links from
a graph, such as SΘGG, that is planar, bounded-degree,
power-spanner, we implicitly define an independent set of
links. A link is in this independent set, which will be kept
at last, if it has the smallest ID among unselected links
from its neighborhood. Specifically, we implicitly define a
virtual graph G′ over all links in SΘGG: the vertex set of
G′ is the set of all links in SΘGG and two links xy and
uv of SΘGG are connected in G′ if one end-point of uv
is in the transmission range of one end-point of link xy.
For example, the links u1v1 and u3v3 are not independent
in network topology illustrated by Figure 5 (a); while the
links u1v1 and unvn are independent. Notice that links
u1v1 and u1u2 are independent since they do not form a
four vertices convex hull. Notice that in our method pre-
sented later, we did not explicitly define such graph G′, nor
compute the maximal independent set of such graph G′ ex-
plicitly. We will prove that the selected independent set of
links in SΘGG indeed is low-weighted and still preseves
the power-spanner property, although with a larger power
spanning ratio. Our method will keep link u1v1 since it has
the smallest ID among all links that are not independent.
When link u1v1 is kept, all links that are not independent
(here are u2v2 and u3v3) will be removed. Then link u4v4

will be kept. The above procedure will be repeated until
all links are processed. The final structure resulted from
our method is illustrated by Figure 5 (c).

Obviously, the construction is consistent for two end-
points of each edge: if an edge uv is kept by node u, then
it is also kept by node v. Worth to mention that, the
number 3 in criterion ‖xy‖ > max(‖uv‖, 3‖ux‖, 3‖vy‖) is
carefully selected, as we will see later that .

Theorem 5: The structure LSΘGG is a degree-bounded
planar spanner. It has a constant power spanning ratio
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(a) original graph SΘGG (b) graph resulted using [21] (c) graph based on our method
Fig. 5. The difference between our method and previous method.

Algorithm 2 Construct LSΘGG: Planar Spanner with
Bounded Degree and Low Weight
1: All nodes together construct the graph SΘGG in a lo-

calized manner, as described in Algorithm 1. Then,
each node marks its incident edges in SΘGG unpro-
cessed.

2: Each node u locally broadcasts its incident edges in
SΘGG to its one-hop neighbors and listens to its neigh-
bors. Then, each node x can learn the existence of the
set of 2-hop links E2(x), which is defined as follows:
E2(x) = {uv ∈ SΘGG | u or v ∈ NUDG(x)}. In other
words, E2(x) represents the set of edges in SΘGG with
at least one endpoint in the transmission range of node
x.

3: Once a node x learns that its unprocessed incident edge
xy has the smallest ID among all unprocessed links in
E2(x), it will delete edge xy if there exists an edge uv ∈
E2(x) (here both u and v are different from x and y),
such that ‖xy‖ > max(‖uv‖, 3‖ux‖, 3‖vy‖); otherwise
it simply marks edge xy processed. Here assume that
uvyx is the convex hull of u, v, x and y. Then the
link status is broadcasted to all neighbors through a
message UpdateStatus(xy).

4: Once a node u receives a message UpdateStatus(xy),
it records the status of link xy at E2(u).

5: Each node repeats the above two steps until all edges
have been processed. Let LSΘGG be the final structure
formed by all remaining edges in SΘGG.

2ρ + 1, where ρ is the power spanning ratio of SΘGG.
The node degree is bounded by k − 1 where k ≥ 9 is a
customizable parameter in SΘGG.

Proof: The degree-bounded and planar properties are
obviously derived from the SΘGG graph, since we do not
add any links in Algorithm 2.

To prove the spanner property, we only need to show
that the two endpoints of any deleted link xy ∈ SΘGG is
still connected in LSΘGG with a constant spanning ratio
path. We will prove it by induction on the length of deleted
links from SΘGG.

Assume xy is the shortest link of SΘGG which is deleted
by Algorithm 2 because of the existence of link uv with
smaller length. Obviously, path x ! y can be con-
structed through the concatenation of path x ! u, link
uv and path v ! y, as shown in Figure 3(a). Since
‖xy‖ > max(‖ux‖, ‖vy‖) and link xy is the shortest among
deleted links in Algorithm 2, we have p(x ! u) < ρ‖ux‖β

and p(v ! y) < ρ‖vy‖β . Hence, p(x ! y) < ‖uv‖β +

ρ‖ux‖β + ρ‖vy‖β
< (2ρ + 1)‖xy‖β .

Suppose all the i-th (i ≤ t − 1) deleted shortest links
of SΘGG have a path connecting their endpoints with
spanning ratio 2ρ + 1. For the t-th deleted shortest link
xy ∈ SΘGG, according to Algorithm 2, it must have
been deleted because of the existence of a link uv: such
that ‖xy‖ > max(‖uv‖, 3‖ux‖, 3‖vy‖) in a convex hull
uvyx. Now, we have p(x ! u) < (2ρ + 1)‖ux‖β and
p(v ! y) < (2ρ + 1)‖vy‖β . Thus,

p(x ! y) = ‖uv‖β + p(u ! x) + p(v ! y) < ‖uv‖β + (2ρ + 1)‖ux‖β + (2ρ + 1)‖vy‖β

< ‖xy‖β + (2ρ + 1)(‖xy‖/3)β + (2ρ + 1)(‖xy‖/3)β ≤ (2ρ + 1)‖xy‖β

Thus, LSΘGG has a power spanning ratio ≤ 2ρ + 1.
We then show that graph LSΘGG is low-weighted. To

study the total weight of this structure, inspired by the
method proposed in [21], we will show that the edges in
LSΘGG satisfy the isolation property [9].

Theorem 6: The structure LSΘGG is low-weighted.
See the appendix for the proof. We continue to ana-

lyze the communication cost of Algorithm 1 and 2. First,
clearly, building GG in Algorithm 1 can be done using only
n messages: each message contains the ID and geometry
position of a node. Second, to build SΘGG, initially, the
number of edges, say p, in Gabriel Graph is p ∈ [n, 3n− 6]
since it is a planar graph. Remember that we will remove
some edges from GG to bound the logical node degree.
Clearly, there are at most 2n such removed edges since we
keep at least n− 1 edges from the connectivity of the final
structure. Thus the total number of messages, say q, used
to inform the deleted edges from GG is at most q ∈ [0, 2n].
Notice that p − q is the edges left in the final structure,
which is at least n− 1 and at most 3n− 6. Thirdly, in the
marking process described in Algorithm 2, the communi-
cation cost of broadcasting its incident edges (or its neigh-
bors) and updating link status are both 2(p−q). Therefore
the total communication cost is n + 4p − 3q ∈ [5n, 13n].
Then the following theorem directly follows.

Theorem 7: Assuming that both the ID and the geome-
try position can be represented by log n bits each, the to-
tal number of messages during constructing the structure
LSΘGG is in the range of [5n, 13n], where each message
has at most O(log n) bits.

Compared with previous known low-weighted structures
[21], [23], LSΘGG not only achieves more desirable proper-
ties, but also costs much less messages during construction.
To construct LSΘGG, we only need to collect the informa-
tion E2(x) which costs at most 6n messages. Our algorithm
can be generally applied to any known degree-bounded pla-
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nar spanner to make it low-weighted while keeping all its
previous properties, except increasing the spanning ratio
from ρ to 2ρ + 1 theoretically.

V. Expected Interference in Random Networks

This section is devoted to study the average physical
node degree of our structure when the wireless nodes are
distributed according to a certain distribution. For av-
erage performance analysis, we consider a set of wireless
nodes distributed in a two-dimensional unit square region.
The nodes are distributed according to either the uniform
random point process or homogeneous Poisson process. A
point set process is said to be a uniform random point pro-
cess, denoted by Xn, in a region Ω if it consists of n inde-
pendent points each of which is uniformly and randomly
distributed over Ω. The standard probabilistic model of
homogeneous Poisson process is characterized by the prop-
erty that the number of nodes in a region is a random
variable depending only on the area of the region, i.e., (1)
The probability that there are exactly k nodes appearing in
any region Ψ of area A is (λA)k

k! · e−λA; (2) For any region
Ψ, the conditional distribution of nodes in Ψ given that
exactly k nodes in the region is joint uniform.

Definition 2: Given a structure H, the adjusted trans-
mission range rH(u) is defined as maxuv∈H ‖uv‖, i.e., the
longest edge of H incident on u. The physical node degree
u in H is defined as the number of nodes inside the disk
disk(u, rH (u)). The node interference, denoted by IH(u),
caused by a node u in a structure H is simply the physical
node degree of u. The maximum node interference of a
structure H is defined as maxu IH(u). The average node
interference of a structure H is defined as

∑
u IH(u)/n.

Theorem 8: For a set of nodes produced by a Poisson
point process with density n, the expected maximum node
interferences of EMST, GG, RNG and Yao are at least
Θ(log n).

Proof: Let dn be the longest edge of the EMST of n
points placed independently in 2-dimensions according to
standard Poisson distribution with density n. In [26], they
showed that limn→∞ Pr(nπd2

n−log n ≤ α) = e−e−α

. Notice
that the probability Pr(nπd2

n − log n ≤ log n) will be suffi-
ciently close to 1 when n goes to infinity, while the prob-
ability Pr(nπd2

n − log n ≤ − log log n) will be sufficiently
close to 0 when n goes to infinity. That is to say, with high
probability, nπd2

n is in the range of [log n−log log n, 2 log n].
Given a region with area A, let m(A) denote the num-

ber of nodes inside this region by a Poisson point process
with density δ. According to the definition of Poisson
distribution, Pr(m(A) = k) = e−δA(δA)k

k! . Thus, the ex-
pected number of nodes lying inside a region with area A

is E(m(A)) =
∑

k · Pr(m(A) = k) =
∑∞

k=1
e−δA(δA)k

k! k =

δA
∑∞

k=1
e−δA(δA)k−1

(k−1)! = δA. For a Poisson process with
density n, let uv be the longest edge of the Euclidean min-
imum spanning tree, and dn = ‖uv‖. Then, the expec-
tation of the number of nodes that fall inside disk(u, dn)
is E(m(πd2

n)) = nπd2
n, which is larger than log n almost

surely when n goes to infinity. That is to say, the ex-

pected maximum interference of EMST is Θ(log n) for a
set of nodes produced according to a Poisson point process.
Consequently, the expected maximum node interference of
any structure containing EMST is at least Ω(log n). Thus,
the expected maximum node interference of structure GG,
RNG and Yao structures are also at least Ω(log n). A sim-
ilar analysis can show that all commonly used structures
for topology control in wireless ad hoc networks generally
have a large maximum node interference even for nodes
deployed with uniform random distribution.

Our following analysis will show that the average inter-
ference of all nodes of these structures is small for a ran-
domly deployed network. Notice that all our following re-
sults also hold for nodes deployed with uniform random
distribution.

Theorem 9: For a set of nodes produced by a Poisson
point process with density n, the expected average node
interferences of EMST are bounded from above by a con-
stant.

Proof: Consider a set V of wireless nodes produced by
Poisson point process. Given a structure G, let IG(ui) be
the node interference caused by (or at) a node ui, i.e., the
number of nodes inside the transmission region of node ui.
Here the transmission region of node ui is a disk centered at
ui with radius ri = maxuiv∈G ‖uiv‖. Hence, the expected
average node interference is

E(
∑n

i=1 IG(ui)
n

) =
1
n

E(
n∑

i=1

IG(ui)) =
1
n

n∑

i=1

E(IG(ui)) =
1
n

n∑

i=1

E(m(πr2
i ))

=
1
n

n∑

i=1

(nπr2
i ) =

n∑

i=1

(πr2
i ) ≤ 2

∑

ei∈G

(πe2
i ).

The last inequality follows from the fact that ri is the length
of some edge in G and each edge in G can be used by at
most two nodes to define its radius ri.

Let ei, 1 ≤ i ≤ n − 1 be the length of all edges of the
EMST of n points inside a unit disk. It was shown in [33]
that

∑
ei∈EMST e2

i ≤ 12. Thus, the expected average node

interference of the structure EMST is E(
∑n

i=1 IEMST (ui)

n ) ≤
2

∑
ei∈EMST (πe2

i ) ≤ 24π. This finishes our proof.

u vγ γ o

u

v

x y

(a) the diamond subtended from link uv (b)any pair of diamonds do not overlap
Fig. 6. The proof illustration of expected average node interference

Theorem 10: The expected average node interferences of
LSΘGG are bounded from above by a constant.

Proof: We prove it by showing that in LSΘGG,
all the diamonds D(uv, γ) subtended from each link seg-
ment uv ∈ LSΘGG do not overlap with each other, where
sin 2γ = 1

3 . Here, the diamond D(uv, γ) is defined as the
rhombus subtended from a line segment uv, with sides of
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length ‖uv‖/(2 cos γ), where 0 ≤ γ ≤ π/3 is a parameter.
See Figure 6 (a) for an illustration.

Figure 6 (b) illustrates the basic idea of the proof. For
any two segments uv and xy, we can show that either
the angle between them is at least 2γ (implies that two
diamonds D(uv, γ) and D(xy, γ) do not overlap), or the
distance between them is far enough to separate these
two diamonds. The detail of the proof is omitted here
due to space limit and it is not difficult to verify. It
is easy show that the total area of these diamonds is
tan γ

2

∑
ei∈LSΘGG e2

i ' 0.084
∑

ei∈LSΘGG e2
i . Then we can

show that
∑

ei∈LSΘGG e2
i ≤ 12π. Thus, the expected av-

erage node interference is at most 2
∑

ei∈LSΘGG e2
i ≤ 24π.

VI. Performance on Random Networks

In this section we evaluate the performance of our new
energy efficient unicast and broadcast topology SΘGG by
conducting simulations. In our experiments, we randomly
generate a set V of n wireless nodes and UDG(V ), then test
the connectivity of UDG(V ). If it is connected, we con-
struct different localized topologies on UDG(V ), includ-
ing our new topology SΘGG and some well-known planar
topologies GG [10], RNG [32], and SY aoGG [31]. Then
we measure the sparseness, the power efficiency and the
interference of these topologies.

In the experimental results presented here, we generate
n random wireless nodes in a 16 × 16 unit squares; the
parameter k is set to 9 when we construct SY aoGG and
SΘGG; the transmission range is set to 4 unit. Typically,
a unit represents about 50 meters here. We test the power
efficiency, and node degree of these planar structures by
varying node number from 30 to 300, where 500 vertex sets
are generated for each case to smooth the possible peak
effects caused by some exception examples. The average
and the maximum are computed over all these 500 vertex
sets.

A. Power Efficiency for Unicast

The most important design metric of wireless network
topology is perhaps the power efficiency, as it directly af-
fects both the node and the network lifetime. First, we test
power stretch factors of all structures. In our simulations
we set power attenuation constant β = 2. Figure 7(a) and
(b) summarizes our experimental results of power stretch
factors of all these topologies. It shows all power span-
ners (GG, SY aoGG, SΘGG, LSΘGG) indeed have small
power spanning ratio in practice: less than 1.021, while
RNG, LMST2, EMST are less power efficient as proved.
Hence, for unicast application, we only need compare the
performance among power spanners. The average power
stretch factors of LSΘGG are at the same level of those of
GG though they are sparser and low-weighted.

B. Logical Node Degree

In unicast routings, each node is preferred to have
bounded number of communication neighbors. Otherwise
a node with large degree has to communicate with many

nodes directly. This increases the interference and the over-
head at this node. The average and maximum logic node
degrees of each topology are shown in Figure 7 (c) and
(d). It shows that SΘGG and LSΘGG have less number
of edges (average node degrees) than SY aoGG and GG. In
other words, our new structure is sparser.

C. Physical Node Degree

Beside the logical node degrees of all these structures, we
are also interested in another kind of node degrees, called
physical node degrees (or called node interference) and de-
fined as follows. For each node u, it has a longest link,
say uv, in a constructed structure. Then the node interfer-
ence of u is defined as all nodes w such that ‖uw‖ ≤ ‖uv‖.
This is the total number of nodes that could cause direct
interference with u. The average and maximum node inter-
ference of each topology are shown in Figure 7 (e) and (f).
They are higher than the logical node degrees as expected,
however they follow the same pattern of curves. Moreover,
the possible maximum interference increases slightly when
the number of wireless nodes grows. As predicted in sec-
tion III, both average and maximum node interference of
SΘGG are lower than SY aoGG. The average node inter-
ference of LSΘGG is indeed bounded, which is around 6
in our simulations.

D. Power Assignment for Broadcast

After forming the sparse structures, for broadcast, each
node can shrink its transmission energy as long as it is
enough to cover the longest adjacent neighbor in the struc-
ture. By this way, we define the node transmission power
for each node u in a constructed structure as follows. If
u has a longest link, say uv, in the structure, then the
node transmission energy of u is ‖uv‖β . Recall the discus-
sion in section II-B, once a structure is constructed, the
broadcast is simple flooding: every node will forward the
received broadcast message once to all logical neighbors in
the structure. The average and the maximum node trans-
mission energy of each topology are shown in Figure 7 (g)
and (h), which decrease as the network density increases
as expected.

Moreover, simulation results in all charts also show that
the performances of our new topologies LSΘGG are stable
when the number of nodes changes.

VII. Conclusion

Energy conservation is critical to the network perfor-
mance in wireless ad hoc networks. Topology control
has drawn significant research interests from different ap-
proaches for energy conservation in wireless ad hoc net-
works. In this paper, we proposed an efficient algorithm
in which all wireless nodes maintain an network topology,
called LSΘGG, which is the first known single structure to
support both energy efficient unicast and broadcast. We
gave distributed method to construct it with 5n to 13n
messages. We proved that, for unicast, it has following
attractive properties: power spanner, bounded node de-
gree, planar, and low average interference. Furthermore,
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Fig. 7. The average and maximum performances of various structures. (a)(b) average and maximum power spanning ratio; (c)(d) average
and maximum logical degree; (e)(f) average and maximum physical degree; (g)(h) average and maximum node power

the total energy of broadcast based on this structure is
also within a constant factor of the power consumption of
broadcast based on any locally constructed topology. Pre-
vious known localized topology control algorithms can only
achieve part of those nice properties, especially, none of
them can support both efficient unicast and broadcast si-
multaneously. There are still lots of challenging questions
we did not address in this paper. Throughout this paper,
we assumed that the emission power is the major compo-
nent of the power consumption. In current wireless devices,
the emission power is at the same level of the power needed
for being idle or to receive packets. It is then necessary to
design a structure with theoretically proven worst case per-
formance under this new energy model when the receiving
power is not negligible. We also leave it as a future work
to design an energy efficient unicast and broadcast routing
protocol, utilizing the desirable properties of this unified
communication structure.
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Appendix

Das et al. [9] proved that if a set of line segments E satisfies the
isolation property, then ω(E) = O(1) · ω(SMT ). Here SMT is the
Steiner minimum tree over the end points of E, and total edge weight
of SMT is no more than that of the minimum spanning tree. The
isolation property is defined as follows. Let c > 0 be a constant and
E be a set of edges in d-dimensional space, and let e ∈ E be an edge
of length l. If it is possible to place a protecting disk B of radius c · l
with center on e and B does not intersect with any other edge, then
edge e is said to be isolated [9]. If all the edges in E are isolated, then
E is said to satisfy the isolation property. We define the protecting

disk of a segment uv as disk(o,
√

35
36

‖uv‖), where o is the midpoint of
segment uv. Obviously, we need all such disks do not intersect any
edge except the one that defines it.

Theorem 6: The structure LSΘGG is low-weighted.
Proof: We will prove this by showing that all edges E in LSΘGG

satisfy the isolation property. For the sake of contradiction, assume

that E does not satisfy the isolation property.
Assume there is one edge uv that is not isolated. Thus, there is

an edge, say xy, that intersects the protecting disk of uv. Figure 8
illustrates the hypothetical situation: a link xy intersects the protect-

ing disk of link uv, i.e., disk(o,
√

35
36

‖uv‖). First notice that, both x

and y can not locate inside disk(o, 1
2
‖uv‖), otherwise the property of

Gabriel graph is violated.

w’

ou v

x x’
yy’

w
t’ t

x

ou v

x’
t

y
w y’

(a)‖xy‖ < ‖uv‖ (b)‖xy‖ > ‖uv‖
Fig. 8. Two hypothetical cases that an edge uv is not isolated

We further divide the hypothetical situation into two cases:
Case 1: ‖xy‖ < ‖uv‖. We will show that the link uv itself must

have been removed by our algorithm, by proving that both ‖ux‖
and ‖vy‖ are no more than 1

3
‖uv‖ in the hypothetical situation. To

prove this by inducing contradiction, w.l.o.g., we assume that ‖vy‖ >
1
3
‖uv‖.
Figure 8(a) illustrates our proof that follows. The link xy intersects

the disk(o, 1
2
‖uv‖) with two points x′ and w, and intersects the right

half of disk(v , 1
3
‖uv‖) with the point y′. Let t be a point on the

top half of disk(v , 1
3
‖uv‖) such that ‖ut‖ = ‖uv‖. The segment

ut intersects the disk(o, 1
2
‖uv‖) with point t′. It is easy to verify

that ut is the tangent line of protecting disk(o,
√

35
36

‖uv‖). From

the assumption ‖vy‖ > 1
3
‖uv‖, node y is out of the disk(v , 1

3
‖uv‖).

Hence, ‖xy‖ > ‖x′y′‖. We continue to induce contradiction that
‖xy‖ > ‖uv‖ by showing ‖x′y′‖ > ‖ut‖ = ‖uv‖.
1. Obviously, ‖x′w‖ > ‖ut′‖, because the chord x′w of
disk(o, 1

2
‖uv‖) is closer the center o than the chord ut′ (because x′w

intersects the protecting disk while ut is the tangent line).
2. Similarly, ‖wy′‖ > ‖tt′‖, because ‖ww′‖ > 2‖tt′‖ (In
disk(v , 1

3
‖uv‖), the chord ww′ is closer to center v than line tt′,

and segment tt′ is half of the chord overlapping tt′ since vt′ is per-
pendicular to ut′ in disk(o, 1

2
‖uv‖).) and ‖wy′‖ > 1

2
‖ww′‖ (In

disk(v , 1
3
‖uv‖), ∠x′wv > ∠uwv = π

2
, hence ‖wy′‖ is more than

half of the chord ww′.).
Consequently, ‖xy‖ > ‖x′y′‖ = ‖x′w‖ + ‖wy′‖ > ‖ut′‖ + ‖tt′‖ =
‖ut‖ = ‖uv‖, hence we get the contradiction. In other words, uv
should have been deleted if ‖uv‖ > ‖xy‖ and xy intersects the pro-
tecting disk of uv. The hypothetical case is fake.

Case 2: ‖xy‖ > ‖uv‖. We will show that xy will be deleted by
Algorithm 2 by showing max(‖ux‖, ‖vy‖) < 1

3
‖xy‖ if xy intersects

the protecting disk(o,
√

35
36

‖uv‖) of link uv. We prove it by inducing

contradiction. W.l.o.g., assume that ‖vy‖ > 1
3
‖xy‖.

Figure 8(b) illustrates our proof that follows. Here ut is a tangent
line of the protecting disk, the link xy intersects the disk(o, 1

2
‖uv‖)

with two points x′ and w. The segment y′v is perpendicular to xv.
Here point y′ is on line xy. Obviously, ∠vxy < ∠vx′y. And ∠vx′y <
∠vut because the arc v̂w is smaller than the arc v̂t. We have, ‖vy′‖ =

‖xy′‖ sin(∠vxy) < ‖xy′‖ sin(∠vut) =
√

35
18
‖xy′‖ < 1

3
‖xy‖. On the

other hand, ‖vw‖ < ‖vt‖ < 1
3
‖uv‖ < 1

3
‖xy‖. Hence, node y can not

be on the left side of y′, instead only possible on the right side since
‖vy‖ > 1

3
‖xy‖. Then, we have ∠xvy > π

2
, i.e., link xy cannot be

in GG. Contradiction is induced. Consequently, xy should have been
deleted if ‖uv‖ < ‖xy‖ and xy intersects the protecting disk of uv.
The hypothetical case is also fake.

In summary, each link uv ∈ LSΘGG satisfies the isolation prop-
erty, that is to say, LSΘGG is low-weighted. This finishes the proof.


