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SUMMARY

Consider a wireless sensor network consisting of n wireless sensors randomly distributed in a two-
dimensional plane. In this paper, we show that with high probability we can locally find a path for any
pair of sensors such that the length of the path is no more than a constant factor of the minimum.
By assuming each sensor knows its position, our new routing method decides where to forward the
message purely based on the position of current node, its neighbors, and the positions of the source
and the target. Our method is based on a novel structure called localized Delaunay triangulation [1]
and a geometric routing method [2] that guarantees that the distance traveled by the packets is
no more than a small constant factor of the minimum when the Delaunay triangulation of sensor
nodes are known. Our experiments show that the delivery rates of existing localized routing protocols
are increased when localized Delaunay triangulation is used instead of several previously proposed
topologies, and our localized routing protocol based on Delaunay triangulation works well in practice.
We also conducted extensive simulations of another localized routing protocol, face routing [13]. The
path found by this protocol is also reasonably good compared with previous one although it cannot
guarantee a constant approximation on the length of the path traveled theoretically.
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1. Introduction

Due to its potential applications in various situations such as battlefield, emergency relief,
environment monitoring, and so on, wireless sensor network has recently emerged as a premier
research topic. Sensor networks consist of a set of sensor nodes which are spread over a
geographical area. These nodes are able to perform processing as well as sensing and are
additionally capable of communicating with each other. With coordination among these sensor
nodes, the network together can achieve a larger sensing task both in urban environments and
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2 Y. WANG AND X.-Y. LI

in inhospitable terrain. There are two common types of sensor networks: sink-based sensor
networks and ad hoc sensor networks. In a sink-based sensor network, there is one or multiple
sink nodes (or called base-stations) which are in charge of collecting data from all sensor nodes
and managing the whole network. The traffic model in such sensor networks is usually one-to-
all/all-to-one or many-to-all/all-to-many, i.e., the sink is either the sender or the receiver of all
traffic. On the other hand, in an ad hoc sensor network there are no such sink nodes. All sensor
nodes are equal in terms of roles in both communication and network management. It is a pure
ad hoc network, and the traffic can be any peer-to-peer communications. While the sink-based
sensor network is widely used in environment monitoring, the ad hoc sensor network has its
own application, such as in battlefield and emergency relief. For example, in the battlefield,
the senor nodes with wireless devices are carried by soldiers, and the network should allow
any pair of soldiers exchange information and communicate with each other, thus this scenario
requires an ad hoc sensor network. In this paper, we will mainly focus on designing routing
protocols for ad hoc sensor networks, but our proposed protocol can also be used in sink-based
sensor networks.

One of the central challenges in the design of ad hoc sensor networks is the development of
dynamic routing protocols that can efficiently find routes between two communication sensors.
In recent years, a variety of routing protocols [3–8] targeted specifically for ad hoc environment
have been developed. For the review of the state of the art in ad hoc routing protocols, see
surveys [9–11].

Several researchers proposed another set of ad hoc routing protocols, namely the localized
routing, which select the next node to forward the packets based on the information in the
packet header, and the position of its local neighbors. Bose and Morin [2] showed that several
localized routing protocols guarantee to deliver the packets if the underlying network topology
is the Delaunay triangulation of all wireless nodes. They also gave a localized routing protocol
based on the Delaunay triangulation such that the total distance traveled by the packet is
no more than a small constant factor of the distance between the source and the destination.
However, it is expensive to construct the Delaunay triangulation in a distributed manner, and
routing based on it might not be possible since the Delaunay triangulation can contain links
longer than the transmission radius of the wireless devices. Then, several researchers proposed
to use some planar network topologies, that can be constructed efficiently in a distributed
manner, as the routing topology. Lin et al. [12], Bose et al. [13] and Karp et al. [14] proposed
to use the Gabriel graph [15] as the underlying routing topology. Routing according to the
right hand rule (or called face routing), which guarantees delivery in planar graphs [2], is used
when simple greedy-based routing heuristics fail.

Using Gabriel graph although can achieve the guarantee of the delivery of the packets
with the help of the right-hand rule, however, the distance traveled by the packet could be
much larger than the minimum required [16–18]. In other words, Gabriel graph is not a good
approximation of the communication graph (usually modeled by an unit disk graph which
we will define later) in terms of the pair-wise distance between wireless nodes. This is true
even when the points are randomly and uniformly distributed in a unit square [16]. Formally,
given a graph H, a spanning subgraph G of H is a t-spanner if the length of the shortest
path connecting any two points in G is no more than t times the length of the shortest path
connecting the two points in H. In [1], Li et al. designed a localized algorithm that constructs
a planar t-spanner for the unit-disk graph, such that some of the localized routing protocols
can be applied on it. They obtained a value of approximately 2.5 for the constant t. They
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EFFICIENT DELAUNAY-BASED LOCALIZED ROUTING FOR WIRELESS SENSOR NETWORKS 3

called the constructed graph planarized local Delaunay triangulation [1], denoted by PLDel .
Applying the routing methods proposed in [13, 14] on the planarized localized Delaunay

graph PLDel , a better performance is expected because the localized Delaunay triangulation
is denser compared to the Gabriel graph, but still with O(n) edges. However, these two methods
do not guarantee that the ratio between the distance traveled by the packets to the minimum
possible. The method proposed by Bose and Morrin [2] does guarantee this distance ratio, but
that needs the construction of the Delaunay triangulation, which cannot be constructed and
updated efficiently in a distributed manner.

Hence, in this paper, we are interested in studying the performances of several routing
protocols on localized Delaunay triangulation. We prove that the localized Delaunay
triangulation almost surely contains the Delaunay triangulation of the set n of randomly
distributed wireless sensor nodes when the transmission range rn satisfies nπr2

n ≥ 4 ln n+c(n)
n ,

where c(n) → ∞ as n goes infinity. Notice that, Gupta and Kumar [19] showed that the
unit disk graph is connected with high probability if the transmission range rn satisfies
π · r2

n ≥ ln n+c(n)
n for any c(n) with c(n) → ∞ as n goes infinity. When the unit disk graph

is connected, then with high probability, we can construct the Delaunay triangulation Del(V )
by constructing the local Delaunay triangulation instead.

We then present a localized routing method that guarantees that the distance traveled
by the packet is no more than a small constant factor of the minimum using the property
of Delaunay triangulation. We study the performance of this localized routing method by
simulations in which results show the delivery is guaranteed and the ratio of the length traveled
by packet to the minimum is small. Our simulations also show that the delivery rates of several
localized routing protocols are also increased when the localized Delaunay triangulation is
used. In our experiments, several simple local routing heuristics, applied on the localized
Delaunay triangulation, have always successfully delivered the packets, while other heuristics
were successful in over 90% of the random instances. Moreover, because the constructed
topology is planar, a localized routing algorithm using the right hand rule guarantees the
delivery of the packets from source node to the destination when simple heuristics fail. The
experiments also show that several localized routing algorithms (notably, compass routing [20]
and greedy routing) also result in a path whose length is within a small constant factor of the
shortest path; we already know such a path exists since the localized Delaunay triangulation
is a t-spanner.

In summary, the main unique contributions of this paper are as follows: (1) We show that,
given a set of randomly distributed sensor nodes over a region with node density n, when the
transmission range rn satisfies πr2

n ≥ 8 log n
n , the localized Delaunay triangulation equals the

Delaunay triangulation with probability at least 1− 1
n . This implies that with high probability

we can construct the Delaunay triangulation using the localized Delaunay triangulation if the
network is connected. We also conduct simulation of random graphs to confirm our analysis
results. (2) We present a complete and detailed localized routing method using Delaunay
triangulation based on the method from [2], which guarantees that the distance traveled by
the packets is no more than a small constant factor of the minimum. In [2], the authors did not
provide enough technique details to implement the routing method. (3) Putting together two
results above with the planarized local Delaunay triangulation from [1], we give an efficient
localized routing method based on local Delaunay triangulation, and with high probability, it
can find a path whose length is within a small constant factor of the minimum. To our best
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4 Y. WANG AND X.-Y. LI

knowledge, this is the first localized routing method that can guarantee such property. (4) We
also conduct experiments to study the performance of different localized routing protocols on
various previously proposed topologies. Notice that since our proposed method has theoretical
bound for minimum distance traveled by the packets between any pair nodes in ad hoc sensor
networks, it will also guarantee the bound for packets’ traveling distance between any sensor
and the sink in sink-based sensor networks.

The remaining of the paper is organized as follows. In Section 2, we review some definitions,
some related geometry structures, and previously known localized routing protocols for wireless
networks. We then show a fully localized routing algorithm that, with high probability,
guarantees that the distance traveled by the packets is no more than a small constant factor of
the minimum in Section 3. We study the performance of the localized routing algorithm based
on Delaunay triangulation and various routing protocols on various structures in Section 4.
In Section 5, we also discuss variations and possible improvements for our proposed routing
algorithms. Section 6 gives a brief conclusion of our paper.

2. Preliminaries

A wireless ad hoc sensor network consists of a set V of n wireless sensor nodes distributed in a
two-dimensional plane. For simplicity, we assume that each node has the same maximum
transmission range, denoted by rn. These wireless sensor nodes define a unit disk graph
UDG(V ) in which there is an edge between two nodes if and only if their Euclidean distance
is at most ru. In other words, we assume that two nodes can always receive the signal from
each other directly if the Euclidean distance between them is no more than the maximum
transmission range. We also use G(V, rn) to denote such induced unit disk graph. Hereafter,
UDG(V ) is always assumed to be connected. All sensor nodes have distinctive identities and
each node knows its position information either through a low-power Global Position System
(GPS) receiver or location service provide by some nodes or localization approaches. Most of
our results actually only requires that each node knows the relative positions of its neighbors,
which can be achieved by using the angle of arrival of the signal or the strength of the signal.
By one-hop broadcasting, each node u can gather the location information of all nodes within
its transmission range. Hereafter, a broadcast means a node sends out a message which will be
received by all nodes within its transmission range.

2.1. Spanner and Spanning Ratio

In an ad hoc sensor network, two far-apart nodes can communicate with each other through
the relay of intermediate nodes; hence, each node only needs to set small transmission ranges
which reduces the signal interference and saves power for transmissions. To guarantee the
advantage, a good network topology should be energy efficient for routing. Since the power
consumed to support a link is proportional to the length of that line (i.e., the power consumed
by link uv is ‖uv‖β , where β is a constant between 2 and 6 depended on the environment and
‖uv‖ is the Euclidean distance between u and v), that is to say, the length of the shortest
path between any two nodes in the constructed routing topology should not exceed a constant
factor of the length of the shortest path in original network. Let ΠG(u, v) be the shortest
path connecting u and v in a weighted graph G, and ‖ΠG(u, v)‖ be the length of ΠG(u, v). A
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EFFICIENT DELAUNAY-BASED LOCALIZED ROUTING FOR WIRELESS SENSOR NETWORKS 5

graph G is a t-spanner of a graph H if G is a subgraph of H and, for any two nodes u and
v, ‖ΠG(u, v)‖ ≤ t‖ΠH(u, v)‖. With H understood, we also call t the length stretch factor of
the spanner G. Notice that if a routing topology G is a t-spanner in term of length, the power
consumed by the shortest path in G is at most tβ of the minimum in the original network.
The proof can be found in [29].

Let �G(u, v) be the path found by a unicasting routing method � from node u to v in a
weighted graph G, and ‖�G(u, v)‖ be the length of the path. Here, the length of a path P is
the summation of the length of all edges in P , i.e., ‖P‖ =

∑
uv∈P ‖uv‖. The spanning ratio

achieved by a routing method � is defined as maxu,v ‖�G(u, v)‖/‖uv‖. Notice that the spanning
ratio achieved by a specific routing method could be much larger than the length stretch factor
of the underlying structure. Nonetheless, a structure with a small stretch factor is necessary for
some routing method to possibly perform well. In this paper, we will give a localized routing
method who can achieve constant spanning ratio. In other words, the length of path is no more
than a constant factor of the minimum.

2.2. Voronoi Diagram and Delaunay Triangulation

Delaunay triangulation is a well-known planar length spanner. We continue with definitions of
Delaunay triangulation and its geometric dual, Voronoi diagram. We assume that there are no
four sensor nodes of V that are co-circular. A triangulation of V is a Delaunay triangulation,
denoted by Del(V ), if the circumcircle of each of its triangles does not contain any other nodes
of V in its interior. A triangle is called the Delaunay triangle if its circumcircle is empty of
nodes of V . The Voronoi region, denoted by Vor(p), of a node p in V is the collection of two
dimensional points such that every point is closer to p than to any other node of V . The Voronoi
diagram for V , denoted by Vor(V ), is the union of all Voronoi regions Vor(p), where p ∈ V .
The Delaunay triangulation Del(V ) is also the dual of the Voronoi diagram: two nodes p and
q are connected in Del(V ) if and only if Vor(p) and Vor(q) share a common boundary. The
shared boundary of two Voronoi regions Vor(p) and Vor(q) is on the perpendicular bisector
line of segment pq. The boundary segment of a Voronoi region is called the Voronoi edge. The
intersection point of two Voronoi edge is called the Voronoi vertex. Each Voronoi vertex is the
circumcenter of some Delaunay triangle. See Figure 1 for an illustration of the dual relation
between Vor(V ) and Del(V ). It is well-known that the Delaunay triangulation Del(V ) is a

Figure 1. Voronoi diagram and Delaunay triangulation (dash lines) of a set of two dimensional nodes.

planar t-spanner of the completed Euclidean graph K(V ). The best known upper bound on t
is 2π

3 cos π
6
≈ 2.42 [22,23] and the best known lower bound is π/2 [24].
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6 Y. WANG AND X.-Y. LI

2.3. Proximity Graphs

The following geometric structures or graphs have been used as routing topologies for ad hoc
networks. For convenience, let disk(u, v) be the closed disk with diameter uv and disk(u, v, w)
be the circumcircle defined by the triangle �uvw. The relative neighborhood graph [25], denoted
by RNG(V ), consists of all edges uv such that ‖uv‖ ≤ ru and there is no point w ∈ V such
that ‖uw‖ < ‖uv‖, and ‖wv‖ < ‖uv‖. The Gabriel graph [15], denoted by GG(V ), consists of
all edges uv such that ‖uv‖ ≤ ru and disk(u, v) does not contain any node from V . The Yao
graph [26] with an integer parameter k ≥ 6, denoted by Y Gk(V ), is defined as follows. At each
node u, any k equal-separated rays originated at u define k cones. In each cone, choose the
closest node v to u with distance at most ru, if there is any, and add a directed link −→uv. Ties
are broken arbitrarily.

Bose et al. [16] showed that the length stretch factor of RNG(V ) is at most n − 1 and the
length stretch factor of GG(V ) is at most 4π

√
2n−4
3 . Recently, Wang et al. [18] showed that the

length stretch factor of GG(V ) is precisely
√

n − 1 actually. Bose et al. also showed [16] that
the length stretch factor of Gabriel graph on a uniformly random n points set in a square is
almost surely at least O(

√
log n/ log log n). Several papers [27–29] showed that the Yao graph

Y Gk(V ) has length stretch factor at most 1
1−2 sin π

k
. Some researchers [29–31] proposed to

construct the wireless network topology based on Yao graph. However, the Yao graph is not
guaranteed to be planar. The relative neighborhood graph and the Gabriel graph are planar
graphs and have been used as the routing topology for ad hoc networks [13, 14, 32–34], but
they are not a spanner for the unit-disk graph.

2.4. Localized Algorithms

Let Nk(u) be the set of nodes of V that are within k hops distance of u in UDG(V ). A node
v ∈ Nk(u) is called the k-neighbor of the node u. In this paper, we always assume that each
node u of V knows its location and identity. Then, after one successful transmission by every
node, each node u of V knows the location and identity information of all nodes in N1(u).
The total communication cost of all nodes to do so is O(n log n) bits. A distributed algorithm
is a localized algorithm if it uses only the information of all k-neighbors of each node plus the
information of a constant number of additional nodes. In this paper, we concentrate on the case
k = 1. That is, a node uses only the information of the 1-hop neighbors. Notice that to collect
the information of Nk(u) when k > 1 may need several rounds of communication with number
of messages. A topology G can be constructed locally in the ad hoc wireless environment if
each node u can compute the edges of G incident on u by using only the location information
of all its k-neighbors. A routing algorithm is a localized routing if the decision of which node
it forwards packet to is based only on local information plus the source and the destination.

2.5. Previous Localized Routing Methods

The geometric nature of the multi-hop ad-hoc networks allows a promising idea: localized
routing protocols. A routing protocol is localized if the decision to which node to forward a
packet is based only on:

1. The information in the header of the packet. This information includes the source and
the destination of the packet, but more data could be included, provided that its total
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length is bounded.
2. The local information gathered by the node from a small neighborhood. This information

includes the set of 1-hop neighbors of the node, but a larger neighborhood set could be
used provided it can be collected efficiently.

Randomization is also used in designing the protocols. A routing is said to be memory-less
if the decision to which node to forward a packet is solely based on the destination, current
node and its neighbors within some constant hops. Localized routing is sometimes called in
the literature stateless [14], online [2, 35], or distributed [12].

We summarize some localized routing protocols proposed in the networking and
computational geometry literature. Let u be the current node and t be the destination node.

• Compass Routing(Cmp) [20]: Current node u finds the next relay node v such that
the angle ∠vut is the smallest among all neighbors of u in a given topology.

• Random Compass Routing(RCmp) [20]: Let v1 be the node on the above of line ut
such that ∠v1ut is the smallest among all such neighbors of u. Similarly, we define v2 to
be nodes below line ut that minimizes the angle ∠v2ut. Then node u randomly choose
v1 or v2 to forward the packet.

• Greedy Routing(Grdy) [13]: Current node u finds the next relay node v such that
the distance ‖vt‖ is the smallest among all neighbors of u in a given topology.

• Most Forwarding Routing (MFR) [12]: Current node u finds the next relay node v
such that ‖v′t‖ is the smallest among all neighbors of u in a given topology, where v′ is
the projection of v on segment ut.

• Nearest Neighbor Routing (NN): Given a parameter angle α, node u finds the
nearest node v as forwarding node among all neighbors of u in a given topology such
that ∠vut ≤ α.

• Farthest Neighbor Routing (FN): Given a parameter angle α, node u finds the
farthest node v as forwarding node among all neighbors of u in a given topology such
that ∠vut ≤ α.

• Greedy-Compass(GCmp) [2, 36]: Current node u first finds the neighbors v1 and v2

such that v1 forms the smallest counter-clockwise angle ∠tuv1 and v2 forms the smallest
clockwise angle ∠tuv2 among all neighbors of u with the segment ut. The packet is
forwarded to the node of {v1, v2} with minimum distance to t.

It was shown in [13,20] that the compass routing, random compass routing and the greedy
routing guarantee to deliver the packets from the source to the destination if Delaunay
triangulation is used as network topology. They proved this by showing that the distance
from the selected forwarding node v to the destination node t is less than the distance from
current node u to t. However, the same proof cannot be carried over when the network
topology is Yao graph, Gabriel graph, relative neighborhood graph, and even the localized
Delaunay triangulation. When the underlying network topology is a planar graph, the right
hand rule is often used to guarantee the packet delivery after simple localized routing heuristics
fail [12–14, 37, 38]. Morin proved the following results in [36]. The greedy routing guarantees
the delivery of the packets if the Delaunay triangulation is used as the underlying structure.
The compass routing guarantees the delivery of the packets if the regular triangulation is used
as the underlying structure. Delaunay triangulation is a special regular triangulation. There
are triangulations (not Delaunay) that defeat these two schemes. The greedy-compass routing
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8 Y. WANG AND X.-Y. LI

works for all triangulations, i.e., it guarantees the delivery of the packets as long as there is a
triangulation used as the underlying structure. Every oblivious routing method is defeated by
some convex subdivisions.

Applying the right hand rule in planar graphs, a routing protocol called face routing is
proposed by [20] (in the paper they call the algorithm Compass Routing II ). The authors [20,39]
also proved that the face routing algorithm guarantees to reach the destination t after traversing
at most O(n) edges where n is the number of nodes when the underlying network topology
is a planar graph. Though face routing terminates in linear time, it is not satisfactory, since
already a very simple flooding algorithm will terminate in O(n) steps. Then Kuhn et al. [37,39]
proposed two new methods adaptive face routing and other adaptive face routing, in which,
restricted search areas are used to avoid exploring the complete boundary of faces.

Although some of the localized routing protocols guarantee the delivery of the packet if
some special geometry structures are used as the routing topology, none of these guarantees
the ratio of the distance traveled by the packets over the minimum possible. Bose and Morrin [2]
proposed a method to bound this ratio using the Delaunay triangulation. They showed that
the distance traveled by the packet is within a constant factor of the distance between the
source and the destination. Notice that constructing Delaunay triangulation in a distributed
manner is communication expensive.

2.6. Location Service

In order to make the localized routing work, the source node has to learn the current
(or approximately current) location of the destination node. In some applications of sensor
networks which use sensor networks to collect data, the destination node is often fixed and
called the sink node, thus, location service is not needed in these applications. However, the
help of a location service is needed in most other application scenarios. Mobile nodes register
their locations to the location service. When a source node does not know the position of the
destination node, it queries the location service to get that information. In cellular networks,
there are dedicated position severs. It will be difficult to implement the centralized approach
of location services in ad-hoc sensor networks. Therefore, many distributed location service
systems have been proposed [40–43]. For more detailed, please refer these references.

3. Localized Routing Works

In this section, we propose a fully localized routing algorithm that, with high probability,
guarantees that the distance traveled by the packets is no more than a small constant
factor of the minimum. The localized routing algorithm is based on an efficient Delaunay-
based routing method proposed in [2] and uses localized Delaunay triangulation [1] as the
routing topology. We will answer the following questions in this section: When and how the
Delaunay triangulation could be constructed locally? How to do efficient localized routing on
the Delaunay triangulation? First, we show the Delaunay triangulation could be constructed
locally with high probability when the nodes are randomly distributed. Then, we review how
to construct it locally by novel localized algorithms. At last, we adopt the method in [2] to
give our first localized routing algorithm that, with high probability, guarantees that bounds
the distance traveled by the packets by a small constant factor of the minimum.

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Commun. Syst. 2000; 00:1–6
Prepared using dacauth.cls



EFFICIENT DELAUNAY-BASED LOCALIZED ROUTING FOR WIRELESS SENSOR NETWORKS 9

3.1. When Delaunay Could Be Constructed Locally?

Although the method [2] works perfectly if the Delaunay triangulation of the set of nodes
is known in advance, it is communication-intensive to construct the Delaunay triangulation
in a distributed manner in the worst case. We will show that the Delaunay triangulation
can be constructed using some localized approach with high probability when the nodes are
randomly distributed and the transmission range is larger than some threshold (with high
probability we can do so when the network is connected). Gupta and Kumar [19] showed that
the unit disk graph is connected with high probability if the transmission range rn satisfies
π · r2

n ≥ ln n+c(n)
n for any c(n) with c(n) → ∞ as n goes infinity. Our construction is based

on the local Delaunay triangulation by showing that all edges in the Delaunay triangulation
is no more than the transmission radius with high probability when the nodes are randomly
and uniformly distributed.

We assume that the wireless sensor nodes are randomly and uniformly distributed in a
unit area disk. It was proved in several papers [19,44] that the random point process bears the
same stochastic property as the homogeneous Poisson point process. The standard probabilistic
model of homogeneous Poisson process is characterized by the property that the number of
nodes in a region is a random variable depending only on the area (or volume in higher
dimensions) of the region and the density of the process. Let λ be the density.

• The probability that there are exactly k nodes appearing in any region Ψ of area A is
(λA)k

k! · e−λA.
• For any region Ψ, the conditional distribution of nodes in Ψ given that exactly k nodes

in the region is joint uniform.

Here after, we let Pn be a homogeneous Poisson process of intensity n on the unit area disk.
We will consider the homogeneous Poisson point process instead of the random point process
in our proof.

Let D be the variable denoting the length of the longest edge pq of the Delaunay triangulation
of all wireless sensor nodes generated by a homogeneous Poisson process with density n.
Consider any edge e with length � contained in some triangle �pqs. Then the circumcircle
of triangle �pqs has area at least π�2/4. This circumcircle must contain no other nodes inside
from the property of the Delaunay triangulation. The probability, denoted by p1, that this
circumcircle is empty of nodes is (nπ�2/4)0

0! · e−nπ�2/4 = e−nπ�2/4. The probability that the
longest edge of the Delaunay triangulation T is dn satisfies

Pr(D ≥ dn) = Pr(∪e∈T e ≥ dn) ≤
∑

e∈T

Pr(e ≥ dn) ≤ 3n · e−nπd2
n/4.

Notice that, there are at most 3n edges in the two-dimensional Delaunay triangulation of n
nodes. By solving the inequality 3n · e−nπd2

n/4 ≤ 1
β , we know that, with probability at most 1

β ,
the longest edge of the Delaunay triangulation has length dn, where πd2

n ≥ 4 ln n+ln β+ln 3
n . In

other words, with probability at least 1 − 1
β , the longest edge of the Delaunay triangulation

has length dn, where

πd2
n ≤ 4

ln n + lnβ + ln 3
n

.

Penrose [45] showed that the longest edge of the minimum spanning tree of homogeneous
Poisson point process Pn is at most Mn with probability e−e−α

, where nπM2
n ≤ ln n + α. In
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10 Y. WANG AND X.-Y. LI

other words, if the transmission radius rn satisfies

πr2
n ≥ ln n + α

n
,

then the induced graph G(V, rn) is connected with probability at least e−e−α

when n goes
infinity. By substituting eα = γ, we know that, with probability at least 1 − 1

γ , the induced
unit disk graph is connected if the transmission range rn of every node satisfies that

πr2
n ≥ ln n + ln γ

n
.

Combining the above analysis, the induced network is a connected graph with probability at
least 1− 1

n7 if πr2
n ≥ 8 ln n

n ; meanwhile, with probability at least 1− 1
n , the longest edge dn of the

Delaunay triangulation is at most rn. Note that to make the induced network connected with
probability 1− 1

n , we need set the transmission radius rn satisfies πr2
n ≥ 2 ln n

n . In other words,
the required transmission range so that local Delaunay triangulation equals the Delaunay
triangulation is just twice of the minimum transmission range to have a connected network
with high probability. Practically, the transmission range is often larger than the minimum
requirement to get connectivity with high probability.

In the previous analysis, we did not consider the boundary effects. Our simulation results
will show that the Delaunay edges near the domain boundary is often larger than the expected
value of theoretical analysis for the domain without boundary. This is due to two reasons.
First, our theoretical analysis holds only when n is large enough. Second, when the geometry
domain in which the wireless sensor nodes are distributed is bounded, the circumcircle of the
Delaunay triangle near the domain boundary is not fully contained in the geometry domain.
Thus, the probability that the circumcircle is empty of other nodes does not depend on the
area of the circumcircle; instead, it depends on the area of the intersection of the circumcircle
with the geometry domain.

3.2. How to Construct Delaunay Locally?

Recall that a triangle �uvw belongs to the Delaunay triangulation Del(V ) if its circumcircle
disk(u, v, w) does not contain any other node of V in its interior. It is easy to show that
nodes u, v and w together can not decide if they can form a triangle �uvw in Del(V ) by
using only their local information. For example, there is a node y inside the circumcircle
disk(u, v, w) but the distances between y and u, v, w are all larger than 1 (i.e., nodes u, v,
w can not see node y). Since constructing Delaunay triangulation in a distributed manner is
communication-intensive, we will rely on some localized construction method, more specifically,
localized Delaunay triangulation [1]. For completeness of presentation, we give a brief review
of the definition of localized Delaunay triangulation.

Definition 3.1. A triangle �uvw satisfies k-localized Delaunay property if (1) the interior
of disk(u, v, w) does not contain any node of V that is a k-neighbor of u, v, or w; (2) all edges
of the triangle �uvw have length no more than one unit. Triangle �uvw is called a k-localized
Delaunay triangle.

Definition 3.2. The k-localized Delaunay triangulation over a node set V , denoted by
LDel (k)(V ), has exactly Gabriel edges (edges in Gabriel graph) and edges of k-localized
Delaunay triangles.
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EFFICIENT DELAUNAY-BASED LOCALIZED ROUTING FOR WIRELESS SENSOR NETWORKS11

Li et al. [1] first proved that LDel (k)(V ) is a length spanner for all k and is a planar
graph for k ≥ 2. Then they presented a localized algorithm to construct LDel (1)(V ) and
remove the intersections in LDel (1)(V ). The algorithm generates a planar graph PLDel(V )
with communication cost of O(n log n) bits. They proved that PLDel(V ) is also a t-spanner
of UDG(V ). The constant behind the O() in the communication cost is bounded by 37 [1],
i.e, the total communication cost to compute the local Delanauy triangulation is at most
37n log n bits. Notice that log n is the number of bits required to represent a node ID. In
the construction algorithm, each node first constructs Delaunay triangulation based on 1-hop
neighbor information and proposes to add the adjacent Delaunay edges, then nodes exchange
the proposed Delaunay edges with neighbors and only keep those consistent Delaunay edges.
Due to space limit, we do not review the construction algorithm. The reader interested in
the detailed algorithm can find it in [1]. Notice that if the longest edge of the Delaunay
triangulation is at most ru, obviously, PLDel is the Delaunay triangulation actually.

Gao et al. [46] also proposed another structure, called restricted Delaunay graph RDG to
locally approximate Delaunay triangulation. They showed that it has constant stretch factor
properties and can be maintained locally. Our Delaunay-based localized routing can also be
well performed on the restricted Delaunay graph since when the transmission range satisfies
the condition derived from previous subsection the restricted Delaunay graph also equals the
Delaunay triangulation with high probability.

3.3. How to Do Efficient Routing on Delaunay?

Bose and Morrin [2] have proposed a method to route the packets using the Delaunay
triangulation. Their routing strategy is based on a remarkable proof by Dobkin, Friedman
and Supowit [21] that the Delaunay triangulation is a spanner. However, there are plenty of
technique details left to be discussed. In this subsection, we present a complete and detailed
localized routing method using the Delaunay triangulation.

To discuss the localized routing algorithm, we need a quick review of the proof by Dobkin,
Friedman and Supowit [21]. They proved that the Delaunay triangulation is a t-spanner by
constructing a path Πdfs(u, v) in Del(V ) with length no more 1+

√
5

2 π‖uv‖. The constructed
path consists of at most two parts: one is some direct DT paths, the other is some shortcut
subpaths.

Given two nodes u and v, let b0 = u, b1, b2, · · · , bm−1, bm = v be the nodes corresponding
to the sequence of Voronoi regions traversed by walking from u to v along the segment uv. See
Figure 2 for an illustration. If a Voronoi edge or a Voronoi vertex happens to lie on the segment
uv, then choose the Voronoi region lying above uv. Assume that the line uv is the x-axis. Let
x(v) and y(v) be the value of the x-coordinate and y-coordinate of a node v respectively. The
sequence of nodes bi, 0 ≤ i ≤ m, defines a path from u to v. In general, they [21] refer to the
path constructed this way between some nodes u and v as the direct DT path from u to v. If
the direct DT path connecting u and v is lying entirely above or entirely below the segment
uv, it is called one-sided.

Define the tunnel, denoted by T (u, v), of segment uv as the set of triangles in the Delaunay
triangulation, whose interior intersects the segment uv. The triangles illustrated in Figure 2 is
the tunnel T (u, v) defined for nodes u and v.

The path constructed by Dobkin et al. uses the direct DT path as long as it is above the
x-axis. Assume that the path constructed so far has brought us to some node bi such that
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u v
b

b
b

1

2

3b

4

x

Figure 2. The direct DT path ub1b2b3b4v between u and v shown by thickest lines. The tunnel T (u, v)
is shown by shaded lines. The thin lines represent the Voronoi diagram.

y(bi) ≥ 0, bi �= v, and y(bi+1) < 0. Let j be the least integer larger than i such that y(bj) ≥ 0.
Notice that here j exists because y(bm) = 0 by assuming that uv is the x-axis. Then the path
constructed by Dobkin et al. uses either the direct DT path from bi to bj or takes a shortcut,
which is the upper boundary of the tunnel T (u, v) that connects bi and bj . See [21] for more
detail about the condition when to choose the direct DT path from bi to bj and when to choose
the shortcut path from bi to bj . Let cdfs = (1 +

√
5)π/2. It was proved in [21] that either the

length of the direct DT path from bi to bj is at most cdfs(x(bj) − x(bi)) or the length of the
shortcut between bi and bj is at most cdfs(x(bj)− x(bi)). For example, in Figure 2, node b2 is
below the axis uv. Thus, node u either takes path ub2b3 or path uxb3 to node b3. Path ub2b3

is the direct DT path, which is below the axis. Path uxb3 is the shortcut path from u to b3.
Routing the packets along the direct DT path is a localized routing method, but it is

not competitive on its own for all Delaunay triangulations. Bose and Morin [2] presented an
example such that the distance traveled in this approach could be arbitrarily larger than the
minimum. The routing strategy by Bose and Morin uses the direct DT path as long as it is
above the x-axis. When the direct DT path lead us to an edge bibi+1 that intersects uv, it
either continues to use the direct DT path or the shortcut to node bj . The difficulty occurs
as the strategy does not know prior which of these two paths is shorter. Their solution is to
simulate exploring both paths in a parallel manner whenever the first one reaches node bj .
However, many technique details need to be filled so it can be implemented. Basically, we have
to answer the following questions: (1) how to find the neighbor in the direct DT path locally,
(2) how to find the neighbor in the shortcut path locally, and (3) how to determine whether
node bj is reached. We call this routing method Delaunay triangulation based routing, denoted
by DTR.

For simplicity, let v1 = u, v2, · · · , vk−1, vk = v be the k vertices of all bi’s that is on or above
the segment uv.

First, we study how to find the neighbor of a node bi in the direct DT path locally. Notice
that, by definition, the Voronoi region of a vertex is always a convex region. Thus, line segment
uv only intersects at most two Voronoi edges of a Voronoi region. In other words, the direct
DT path is uniquely and well defined. Assume that the current vertex bi wants to find its next
neighbor in the direct DT path. Then node bi can compute Vor(bi) locally since it knows all
Delaunay edges incident on bi and the Voronoi diagram is a dual of the Delaunay triangulation.
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Then node bi+1 is the node that (1) shares the Voronoi edge of Vor(bi) that is intersected by
uv, and (2) has larger x-coordinate than node bi. See Figure 3 for an illustration.

x

w

p

bi

bi+1

u v

Figure 3. Find the next neighbor of bi in the direct DT path or the neighbor of x in the shortcut path.

Second, we show how to find the next neighbor of a node x in the shortcut path locally.
Remember that the shortcut path is the boundary segments of T (u, v), which connects two
consecutive vertices vi and vi+1, of tunnel T (u, v). Vertex x first sorts all Delaunay edges
incident on x in count-clockwise order. Then x finds the incident neighbor vertex w such that
xw does not intersect the segment uv, but the previous Delaunay edge intersects uv. See Figure
3 for an illustration. Here node w is the next node on the short-cut path.

Thirdly, we reach the node bj if the following conditions hold: (1) the Voronoi diagram of
the current node intersects uv, (2) the y-coordinate is not negative, and (3) if we are exploring
the shortcut path, then the Voronoi Diagram of the previous visited node does not intersect
uv; if we are exploring the direct shortcut path, then the y-coordinate of the previous visited
node is negative. In Figure 3, node w will be that node bj .

Node u computes its Voronoi region as follows when knowing all Delaunay triangles incident
on u. For each incident Delaunay triangle �vuw, u computes the circumcenter c of �vuw.
Node u connects two circumcenters if the corresponding Delaunay triangles share a common
edge. All such edges connected circumcenters form the Voronoi region of u. If u is a boundary
node, special treatment is needed to compute the Voronoi region. Notice that, u is a boundary
node if and only if the Delaunay triangles incident on u only covers at most half of the space
surrendering u. Assume that edges uv and uw are the two boundary Delaunay edges incident
on u. Let x be the circumcenter of the unique triangle �uvp; y be the circumcenter of the
unique triangle �uvq. Then a ray starting at x and is perpendicular to uv is drew, and a ray
starting at y and is perpendicular to uw is drew. These two rays, together with all segments
connecting the circumcenters of the Delaunay triangles incident on u form the Voronoi region
of u.

The routing algorithm works as following. Let v0 = u and i = 0. Let node vi+1 be the
node returned by Explore(vi). If vi+1 is not node v, then increase i by one and continue
Explore(vi). Algorithm 1 is the detailed description of the algorithm Explore(vi).

Notice that, originally, Bose and Morin [2] always start exploring the shortcut path first.
However, this may lead to a long traveling distance when the first edge of the shortcut path
is much longer than the direct DT path. Morin [36] proved the following theorem.

Theorem 3.3. The distance traveled by the above routing strategy is 9cdfs-competitive.

Proof. Assume that the Explore algorithm starts from node bi and ends with node bj .
It was proved in [21] that either the length of the direct DT path from bi to bj is at most
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14 Y. WANG AND X.-Y. LI

Algorithm 1 Explore(vi)
1: Let p0 be the next neighbor of vi in the direct DT path, and q0 be the next neighbor of vi

in the shortcut path. Let j = 0 and l0 = min(‖vip0‖, ‖viq0‖).
2: repeat
3: if ‖vipj‖ ≤ ‖viqj‖ then
4: Explore direct DT path:

Route the packet along the direct DT path from node vi until reaching a node vi+1,
which is on the direct DT path and is above the segment uv, or reaching a node pj+1,
such that the distance traveled from p0 to pj+1 is larger than 2lj for the first time.

5: if node vi+1 is reached then
6: return vi+1 and quit.
7: else
8: set j = j + 1 and lj be the distance traveled from p0 to pj+1

9: travel back to node vi.
10: end if
11: else
12: Explore shortcut path:

Route the packet along the shortcut path from node vi until reaching node vi+1, which
is on the direct DT path and is above the segment uv, or reaching a node qj+1, such
that the distance traveled from q0 to qj+1 is larger than 2lj for the first time.

13: if node vi+1 is reached then
14: return vi+1 and quit.
15: else
16: set j = j + 1 and lj be the distance traveled from q0 to qj+1

17: travel back to node vi.
18: end if
19: end if
20: until vi+1 is reached.

cdfs(x(bj)−x(bi)) or the length of the shortcut between bi and bj is at most cdfs(x(bj)−x(bi)).
We only have to show that the actual distance traveled by the Explore algorithm is at most
9 times the distance between bi and bj , denoted by L. Notice that, lj ≤ 2j l0 and the distance
from p0 to pj is traveled back and forth. The total distance traveled by exploring the direct
DT path is at most

∑k
j=0 2lj ≤ ∑k

j=0 2 · 2j l0 ≤ 4L, where k is the maximum integer such that
lk < L. Similarly, the total distance traveled by exploring the shortcut path is at most 4L. At
last, it travels distance L when node bj is reached. Thus, total traveled distance is at most 9L.
The theorem follows from L ≤ cdfs(x(bj) − x(bi)).

Notice that so far the Delaunay-based method is the only localized routing method that can
guarantee the total distance traveled by packets is constant competitive even in the worst case
scenario. The above theorem only bounds the total distance traveled by the Delaunay routing.
If we consider the total power consumed by the route comparing with the optimal least-power
path in the original network, unfortunately, the constant bound does not exist. In other words,
for routing, if a routing scheme finds a path that has constant length spanning ratio, the path
not necessarily has constant power-spanning ratio. We prove this as Theorem 3.4. Note that
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this is different with the stretch factor of topologies. If a topology has a constant length stretch
factor, it must have a constant power stretch factor. See Lemma 2 in [29] for the proof of this
claim.

Theorem 3.4. The total power consumed by the route obtained by the above routing strategy
could be sufficiently larger than the total power consumed by the optimal least-power path in
the original network (unit disk graph). In other words, the ratio of the total power consumed to
the optimal is not bounded by a constant, could be as bad as O(n) where n is the total number
of nodes. Here the total power consumed by a route P is the summation of the power consumed
by each link on P , i.e., p(P ) =

∑
uv∈P p(uv).

Proof. We prove the theorem by constructing examples. Notice the total power consumed
by the route is depended on the definition of the energy model for each link.

If the energy model is that the power p(uv) consumed by a link uv is ‖uv‖β , then the
following example proves the theorem. Assume a unit link uv is part of Delaunay, and there
is another path connecting uv with almost infinite number of nodes w1, w2, · · · , wn (no wi is
inside the circle formed by uv). Assume the length of path w1w2 · · ·wn is a constant time of
the length of uv (say l) and nodes wi are evenly distributed. Delaunay-based routing will use
uv, however the best energy path is w1w2 · · ·wn with total energy almost n(l/n)2 = l2/n (if
β = 2) of that by uv (12 = 1). Therefore, the power consumed by Delaunay routing could be
sufficiently larger (O(n)) than the optimal least-power path.

If the energy model is that the power p(uv) consumed by a link uv is ‖uv‖β + c where c is
a constant, then the following example will prove the theorem. Assume that there is a unit
link uv and all n nodes wi are evenly distributed on uv. Delaunay routing will take the path
w1w2 · · ·wn which has energy cost about n(1/n)2 + nc = 1/n + nc and the direct path from u
to v has cost of 12 + c = 1 + c. When n is sufficiently large, the former could be sufficiently
larger than the later.

Notice that the examples shown in the above proof happen rarely in a randomly deployed
network. In Section 5, we further discuss some variations of our routing method to improve its
power efficiency or other performances.

4. Simulations

In this section, we evaluate the performance of our routing method by conducting simulations
with random networks. Before testing our routing algorithm, we first study the transition
phenomena of the longest edge of the Delaunay triangulation.

In our experiments, three different geometry regions Ω: disk with radius 200m, square with
side 400m, and unbounded region of grids (with unit 400m), are tested. The node density
n is 50, 100, 200, 300, 400, and 500. For each choice of Ω and n, 10000 sample of n points
is generated, and the longest Delaunay edge is generated for each sample. Left figures of
Figure 4 illustrate the longest Delaunay edge length Dn distribution, while the right figures
illustrate its transition phenomena. The statistics for Dn is from 0 to 400 meters, using 4 meters
increment. Interestingly, for square region, varying density n does not change the distribution
and transition at all statistically. The transition in the circular region is slower than the
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16 Y. WANG AND X.-Y. LI

counterpart in the unbounded region. We found Dn ≤ 130m almost surely for circular region
with n = 100.

We then present our experiments of various routing methods on different topologies. We
choose 100 nodes distributed randomly in a circular area with radius 100 meters. Each node is
specified by a random x, y coordinate, with transmission radius 30 meters. Figure 5 illustrates
some discussed topologies. We randomly select 20% of nodes as source; and for each source,
we randomly choose 20% of nodes as destination. The statistics are computed over 10 different
node sets. We found that LDel (2)(V ) and PLDel(V ) are almost the same as Del(V ). The
differences lie near the boundary. These two graphs are preferred over the Yao graph because
we can apply the right hand rule when the simple heuristic localized routing fails.

Interestingly, we found that when the underlying network topology is Yao graph, Del(V ),
LDel (2)(V ), or PLDel(V ), the compass routing, random compass routing and the greedy
routing delivered the packets in all our experiments. Notice that it was proved that the
Delaunay triangulation guarantees the delivery of the packets for these three routing methods.
We also found that the local Delaunay triangulation and the planarized local Delaunay
triangulation are almost the same as the Delaunay triangulation. The only differences lye
near the domain boundary, which does not affect the localized routing too much. Thus, as we
expected, the compass routing, random compass routing and the greedy routing delivered the
packets in all our simulations for Delaunay related structures. The reason they also delivered
the packets when Yao structure is used as the underlying topology could be there is a node
within the transmission range in the direction of the destination with high probability when
the number of nodes within transmission range is large enough.

Table I. Delivery rate.

Yao RNG GG Del LDel(2) PLDel
NN 98.7 44.9 83.2 99.1 97.8 98.3
FN 97.5 49 81.7 92.1 97 97.6
MFR 98.5 78.5 96.6 95.2 96.6 99.7
Cmp 100 86.6 99.6 100 100 100
RCmp 100 91.7 99.9 100 100 100
Grdy 100 87.5 99.6 100 100 100
GCmp 93 95.5 99.9 100 100 100
DTR 100 100 100

Table I illustrates the delivery rates of different localized routing protocols on various
network topologies. For nearest neighbor routing and farthest neighbor routing, we choose
the angle α = π/3. In other words, we only choose the nearest node or the farthest node
within π/3 of the destination direction. The LDel (2)(V ) and PLDel(V ) graphs are preferred
over the Yao graph because we can apply the right hand rule when previous simple heuristic
localized routing fails. Both [13] and [14] use the greedy routing on Gabriel graph and use the
right hand rule when greedy fails.

Table II illustrates the maximum spanning ratios of ‖Π(s, t)‖/‖st‖, where Π(s, t) is the path
traversed by the packet using different localized routing protocols on various network topologies
from source s to destination t. Because the localized Delaunay triangulation is much dense
than all previous known planar network topologies such as Gabriel graph and the relative
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Figure 4. Transition phenomena of Dn when Ω is circle, square, and unbounded.
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GG RNG Yao

Del LDel(2) PLDel

Figure 5. Various planar network topologies (except Yao).

Table II. Maximum spanning ratio.

Yao RNG GG Del LDel(2) PLDel
NN 1.9 2.1 1.9 1.7 1.8 1.9
FN 4.2 2.8 2.7 5.2 3.4 3.1
MFR 4.8 3.2 2.4 4.5 3.9 4.1
Cmp 3.3 2.9 2.8 1.6 1.8 2.0
RCmp 2.7 3.0 2.4 1.7 2.0 1.8
Grdy 2.1 3.5 2.2 2.0 1.9 1.9
GCmp 2.8 3.2 2.6 1.7 1.8 2.0
DTR 6.4 6.4 6.5

neighborhood graph, the delivery rates of many online routing methods are near or equal
100%. However, we have to admit that the traveled distance by the Delaunay based routing
method DTR is larger than that by most previous methods for most source and destination
pairs, although the actual distance of the traveled path is at the same level. Remember that,
Delaunay based routing method has to travel some path back and forth to explore a better
path. Nevertheless, Delaunay based routing is the only method known that can guarantee that
the total traveled distance by the packet is within a constant factor of the minimum in any
case.

We also conducted extensive simulations of the face routing on Gabriel graph and the local
Delaunay triangulation LDel1(V ). We choose n = 20, 30, · · · , 90, 100 nodes randomly and
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Table III. Maximum spanning ratio of face routing: (GG/LDel).

n r=30 r=40 r=50 r=60 r=70
20 64.9/16.2 30.7/12.4 66.0/17.4 46.4/12.3 18.9/13.3
30 14.2/11.0 15.3/13.6 15.7/11.9 15.1/13.0 15.3/13.4
40 39.8/18.4 36.2/13.7 31.1/13.1 33.6/12.4 15.4/12.6
50 12.7/13.2 33.7/13.9 33.6/13.4 47.6/12.5 28.5/11.1
60 26.6/13.6 42.6/13.1 27.5/13.7 34.1/13.7 41.5/13.2
70 49.8/16.7 31.8/13.6 29.3/18.2 71.4/14.4 32.2/14.3
80 31.4/14.0 34.3/14.9 67.5/16.0 52.2/14.8 26.5/13.0
90 41.5/14.0 44.4/13.9 39.1/14.3 60.2/16.3 33.4/14.8
100 41.7/18.4 57.3/14.7 50.6/15.0 79.2/19.2 86.1/14.3

Table IV. Average spanning ratio of face routing: (GG/LDel).

n r=30 r=40 r=50 r=60 r=70
20 3.2/2.9 3.0/2.8 2.9/2.9 2.9/2.7 2.9/2.7
30 4.7/4.4 4.8/4.5 4.6/4.4 4.4/4.5 4.3/4.1
40 5.0/5.2 5.2/5.5 5.1/4.8 5.0/4.8 5.1/4.9
50 5.5/4.9 5.9/5.3 5.9/5.4 5.7/5.5 5.3/5.3
60 6.1/5.3 6.1/5.7 6.1/5.4 6.3/5.7 6.0/6.1
70 6.5/5.9 6.5/5.6 6.6/6.1 6.4/6.2 6.6/5.8
80 6.9/5.9 6.7/6.1 7.1/6.4 6.9/5.9 6.6/5.8
90 7.0/6.0 7.1/6.4 7.4/6.5 7.5/6.4 7.1/6.0
100 7.3/6.4 7.4/6.5 7.7/6.8 7.3/6.6 7.3/6.5

uniformly distributed in a square of length 100 meters. The uniform transmission range of
nodes are set as r, where r varies from 30, 40, 50, 60, 70 meters. See Tables III and IV for
the maximum and the averaged spanning ratio achieved. The maximum and the average is
computed for all pair of nodes. Given n and r, we generate 10 sets of random n points. We
found that the spanning ratio of the face routing is significantly less when LDel is used instead
of GG. It may be due to LDel has more edges, thus the faces traversed by the face routing is
often smaller when LDel is used than the case when GG is used.

5. Discussion

In this paper, we proposed a Delaunay based localized routing method. Our Delaunay based
routing can be combined with greedy routing to make the routing protocol simpler and more
efficient. We can apply our Delaunay based routing only when greedy routing fails. If greedy
routing works, we will keep using it until the local minimum happens. Thus, the performance
measurement in this paper is only to compare the improvement of the routing part when the
greedy routing fails. Notice that the total cost of this kind of combined routing (such as those
in [13, 14]) is composed of two parts: the cost of greedy routing and the cost of path found
to get out of local minimum when greedy routing fails. Here, we focused on comparing the
second part.
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For our proposed Delaunay based routing, actually, some improvements can also be made.
Assume that uv and vw are links in Delaunay and Delaunay routing selects both links uv
and vw for routing. If u and w are within the transmission range of each other (clearly they
may not be Delaunay neighbors), we can short-cut the route by replacing uv and vw with
direct link uw only. Similar improvement can be made till no such improvement exists. This
will reduce the hop number of the found path. We can also add another criterion to decide
whether to do short-cut: we do short-cut only if it saves more energy under the considered
energy model. Notice that depending on the energy model, short-cut may save energy, or may
not save energy.

Another variation of the proposed Delaunay based routing is that instead of using the binary
search to find the route we can use the face routing on localized Delaunay to find the route.
Notice that the binary search method may not work when using localized Delaunay instead of
Delaunay (although the probability that this happens is small) while face routing can always
work on all planar graphs. If compared with greedy face routing [13,14] on Gabriel graph, the
face routing on localized Delaunay always uses less links, since localized Delaunay is denser
and contains Gabriel graph as a subgraph.

6. Conclusion

In this paper, we showed that, given a set of randomly distributed wireless sensor nodes over a
unit-area region with node density n, when the transmission range rn satisfies πr2

n ≥ 8 log n
n , the

localized Delaunay triangulation equals the Delaunay triangulation with probability at least
1 − 1

n . If πr2
n ≥ 8 log n

n , the induced network topology is connected with probability at least
1 − 1

n7 . In other words, with high probability, we can construct the Delaunay triangulation
using the localized Delaunay triangulation if the network is connected. Thus, we can apply a
localized routing protocol [2] that guarantees that the distance traveled by the packets is no
more than a small constant factor of the minimum. We also conducted simulations to show that
the delivery rates of existing localized routing protocols are increased when localized Delaunay
triangulation is used instead of several previously proposed topologies.

Notice that the Delaunay based routing method DTR works only when a Delaunay
triangulation is obtained. Though in this paper we showed with high probability localized
Delaunay triangulation can be used instead of Delaunay triangulation, there are still cases
Delaunay triangulation is needed. Currently, when we found that Delaunay triangulation
is not constructed or cannot be approximated by localized Delaunay triangulation, we rely
on other heuristic to route the packets. We leave it as a future work to design a localized
routing protocol that can guarantee the traveled distance using only the localized Delaunay
triangulation. Also we are interested in designning a localized routing protocol such that the
found path consumes energy within a constant factor of the optimum with high probability,
since Theorem 3.4 showed that the path found by Delaunay-based routing may be not power
efficient.
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