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Real-world, long-running wireless sensor networks (WSNs) require intense user intervention in the devel-
opment, hardware testing, deployment, and maintenance stages. A majority of network design is network-
centric and focuses primarily on network performance, e.g., efficient sensing and reliable data delivery.
Although several tools have been developed to assist debugging and fault diagnosis, it is yet to systemati-
cally examine the underlying heavy burden that users face throughout the lifetime of WSNs. In this paper,
we proposed a general Multi-mode user-CentriC (MC2) framework that can, with simple user inputs, adjust
itself to assist user operation and thus to reduce the users’ burden at various stages. In particular, we have
identified utilities that are essential at each stage and grouped them into modes. In each mode, only the
corresponding utilities will be loaded, and modes can be easily switched using the customized MC2 sensor
platform. As such, we reduce the run-time interference between various utilities and simplify their devel-
opment as well as their debugging. We validated our MC2 software and the sensor platform in a long-lived
microclimate monitoring system deployed at a wildland heritage site, Mogao Grottoes. In our current sys-
tem, 241 sensor nodes have been deployed in 57 caves, and the network has been running for over five years.
Our experimental validation showed that the MC2 framework shortened the time for network deployment
and maintenance, and made network maintenance doable by field experts (in our case historians).
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1. INTRODUCTION

Wireless sensor networks (WSNs) have changed the way people interact with the phys-
ical world. Without frequent field visits, scientists are able to glean real time data over
a wide variety of environments, especially from remote places where no power or com-
munication infrastructure is available. Considerable effort has targeted at building re-
liable data collection and delivery mechanisms using low-cost and fault-prone sensor
devices. Essentially, the design principle of those approaches is network-centric [Estrin
et al. 1999], attempting to design reliable yet energy-efficient strategies to sense, pro-
cess, and relay data using wireless communication. Such a design principle certainly
plays an important role towards building autonomous sensor networks. However, as
WSNs have been widely used by the experts in various disciplines and been commer-
cialized as commodity devices, developers can no longer afford to design, deploy, and
maintain networks themselves. As a result, the network design has to consider an
important aspect that affects the successful deployment and long-lived operation of
WSNs: users, which include field experts, technical support staff, network developers,
etc. Our experiences [Xia et al. 2012] in building long-term microclimate monitoring
WSNs in a wildland cultural heritage site, Mogao Grottoes [Getty 2010], as well as
experiences reported by other studies [Bai et al. 2009; Mainwaring et al. 2002; Buon-
adonna et al. 2005; Dyo et al. 2010] have revealed heavy user involvement and distinct
operational requirements at various stages of WSNs’ entire lifespan. Thus, it is advan-
tageous to take a user-centric viewpoint for system design.

Heavy User Intervention. In WSN systems, the level of user intervention involved
in various stages of the entire lifespan of a WSN is significantly heavier than what re-
searchers desire. As shown in Figure 1, a typical life cycle of a WSN consists of five
stages: development, hardware testing, deployment, network operation, and mainte-
nance. Except for the network operation stage, all other stages involve user interven-
tion, and those users may have little knowledge about networks or sensors, making it
challenging to perform tasks. For instance, quality control (QC) personnel in a hard-
ware factory may test hardware; technical support staff may deploy or diagnose WSNs,
and field experts may maintain the deployed WSNs or even perform simple fault diag-
nosis.

Known deployment practice, such as redundant [Deb et al. 2003] or random deploy-
ment [Akyildiz et al. 2002], is not always applicable as a means to reduce the amount
of time or effort for deployment, because of the environmental restriction. For instance,
in heritage sites, the available locations for mounting sensor nodes are limited due to
the concern of damaging original scenes.

For maintenance in long-running WSNs, system faults caused by battery depletion
or hardware failures are common. Although it is desirable to have networks grace-
fully recover themselves in the presence of network exceptions, lack of redundant
backup nodes means that maintenance, such as battery replacement, sensor calibra-
tion, abnormal-symptom diagnosis, or network hardware repair, has to be handled by
users. The overhead of such manual maintenance could be prohibitive in a network
with a large number of nodes, and a user-centric framework that can facilitate such
operation is needed.

Different User Operational Requirements at Various Stages. An increas-
ing amount of effort has been devoted to address user-related issues. For instance,
NodeMD [Krunic et al. 2007] and PAD [Liu et al. 2008] can assist fault detection and
diagnosis; Deluge [Hui and Culler 2004] and SDRP [He et al. 2012] provide over-the-
air programming (OAP); WASP [Bai et al. 2009] is a user-friendly programming lan-
guage designed for users with little programming experiences. However, each of those
research projects addresses challenges caused by the heavy user intervention in some
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Fig. 1. The life cycle of a WSN (other personnel include QC personnel, technical support staff and field
experts).

stages not all of them. In this paper, we propose a user-centric framework that is able
to address various user-related challenges arising at all stages throughout the lifetime
of WSNs, and the framework is extensible to accommodate emerging issues.

The design of a general-purpose user-centric framework is challenging, because the
users’ requirements are rather different at various stages and some of them may be
interfering with each other. For instance, the primary focus of the network operation
stage is to fulfill the application’s requirement (e.g., microclimate monitoring) with
minimum energy consumption. The maintenance oftentimes requires to obtain de-
tailed current status of each node as soon as possible for identifying what causes faults,
which is difficult if the network is running at a low duty cycle.

Furthermore, as the program size and complexity increase, so does the difficulty
of debugging and managing correct control flow for tiny embedded systems [Dunkels
et al. 2006]. A faulty application or program module may monopolize the CPU and pre-
vent the node from processing any further control requests [Gu and Stankovic 2006].

To balance the conflicting relationship between comprehensiveness and complexity,
we designed a general Multi-mode user-CentriC (MC2) framework, which will load
a subset of utilities (e.g., programs) according to the current mode. In particular, we
identified utilities that are essential in each stage and grouped them into one or several
modes. Each utility is loaded only if it belongs to the current mode. As such, we reduce
the number of concurrent utilities. For instance, the over-the-air programming utility
shall be loaded during hardware testing or maintenance but not in the regular network
operation stage. To switch between modes according to users’ need, a user-friendly
input means is required. Since no existing off-the-shelf sensor platforms can take users
input easily, we designed our own hardware. To our best knowledge, this is the first
attempt to design a user-centric framework that can quickly organize itself to reduce
the level of user intervention required at each stage. We believe this multi-mode user-
centric framework can be widely used in many long-running sensor networks. The
main contributions of this work are as follows:

— We emphasized the necessity of the user-centric design principle, based on the experi-
ences gained from our early in-situ experimental exploration. The goal of user-centric
design is to reduce the level of user-intervention in each stage of WSN life cycles.

— Guided by the user-centric design, we devised the MC2 framework, which can tailor
itself to meet users’ requirements in different stages of the WSNs’ lifespan.
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Fig. 2. Microclimate monitoring at Mogao Grottoes: [top left] a representative building, [top middle] a sen-
sor deployed inside Cave C158, [top right] a sensor deployed at the cave entrance, [bottom] 300 sensor nodes.

— To facilitate the mode switching of the MC2 framework, we developed supporting
software and hardware: the software component of the MC2 framework, reusable
sensor nodes, and a deployment assistant, which we call SensorMate.

— We have validated the MC2 framework in a microclimate monitoring system deployed
at Mogao Grottoes. Our validation effort showed that the MC2 framework shortened
network deployment and maintenance time, and made the network maintenance
manageable even by field experts.

The user-centric design principle is motivated by our ongoing microclimate monitor-
ing project deployed at Mogao Grottoes, a world heritage site containing 492 decorated
caves with murals and sculptures, as shown in Figure 2. We have installed over two
hundred sensor nodes to measure temperature, humidity, carbon dioxide (CO2) den-
sity, etc. Those measurements are used to study the impact of microclimate on mural
deterioration, and they are also used to detect harmful environmental changes to en-
force site conservation policies.

Early in our project, we found that many well-known approaches are not applica-
ble. For instance, node redundancy is not practical due to our limited budget and the
request to minimize the impact to the original scene. Random deployment is not an op-
tion, because the location of each sensor node must be carefully selected to avoid dam-
aging already deteriorated murals, and to preclude easy access from tourists. During
deployment, we observe heavy multi-path effects causing highly unpredictable radio
propagation. Serious radio irregularity, combined with the constraint of low redun-
dancy, make our deployment extremely laborious. Further, the manual maintenance
during the network operation phase demands frequent field visits, requiring a roughly
4-day traveling time plus the unpredictable time that needs to be spent on-site. With-
out the MC2 framework, it is time-consuming to deploy and to maintain the network.

The remainder of the paper is organized as follows. We give an overview of the prob-
lems users may encounter during the hardware testing, deployment and maintenance
stages in Section 2. Then, we present the MC2 software architecture in Section 3, and
user-centric hardware design in Section 4. Section 5 discusses a case study of applying
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the MC2 framework in a long-term microclimate monitoring system which is deployed
at Mogao Grottoes. Finally, we review the related work in Section 6 and conclude the
paper in Section 7.

2. PROBLEM OVERVIEW

In total, we deployed our systems in two rounds — the first round adopted the network-
centric design, and the second round used the user-centric design. In this section, we
outline the type of applications that we focus on in this paper, and share the experi-
ences and lessons learned from our initial explorative deployment, which suggest the
need of a user-centric design.

2.1. Our Application Paradigm

In this paper, we focus on the sensing applications with the following features:
Long Running. An important class of sensing applications are those monitoring a

valuable asset. Such asset monitoring applications are expected to operate for a long
time. For instance, our microclimate monitoring system at Mogao Grottoes should con-
tinuously provide real time measurement as long as the site is open to tourists, which
could be twenty years or more. We note that within the lifetime of the network (e.g.,
twenty years), node failures such as battery exhaustion will occur. Thus, users have to
maintain the network periodically to sustain long-term monitoring.

Low Redundancy. Applications are deployed with low redundancy with two rea-
sons. 1) Limited budget. The price of sensor nodes is far from predicted few dollars each
piece, beyond the budget of WSN projects in developing countries. 2) Limited deploy-
ment locations. The available spots to place sensor nodes are limited. Low redundancy
means that when a sensor node fails, a standby node is not always available to miti-
gate the impact of the node failure. Thus, quick run-time diagnosis and fault recovery
become critically important.

Real Time. Many sensing applications require obtaining the sensing data in real
time. For instance, our microclimate monitoring system was required to report data
within a minute, so that the caves with dangerous levels of humidity and CO2 can be
closed for tourists immediately.

Scalable and Extensible. In a long-running system, the network may require to
evolve as users demand to collect new types of data or to cover new areas. For instance,
we were requested to measure tourist numbers after our system has been stably oper-
ated for one year. The possibility of incremental deployment over time urges us to take
extensibility and scalability into consideration at the initial design phase.

Deployed in Harsh Environment. WSN systems are frequently deployed in harsh
environments, e.g., in an active volcano [Werner-Allen et al. 2006], or in rivers [Basha
et al. 2008]. The environment of our system is a desert. Such a harsh environment
can quickly wear out the electronic devices on sensor nodes, e.g., relative humidity and
temperature sensors are typically vulnerable to dust. Therefore, hardware must be
customized to suit for targeted sites and be maintained periodically after deployment.

Additionally, the deployment environment may have unusual radio propagation
properties. For instance, our microclimate monitoring project is deployed inside caves
at Mogao Grottoes. The thick rocks between caves make the nodes located in different
caves impossible to communicate. In addition, the shapes of caves, and the number of
people and their positions in caves create a highly irregular radio environment, mak-
ing the network deployment challenging.

2.2. First Round Exploration

In our first round exploration, we deployed 40 customized sensor nodes in 10 caves at
Mogao Grottoes, and performed a one-year in-situ study. This first attempt adopted
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the network-centric design principle, and it primarily focused on the correctness of
network operations. We defer our discussion on hardware design to Section 4, and
report the experiences we encountered in sequence.

Hardware Testing. After developing hardware and software for climate monitoring
in the development stage, we started the hardware testing phase, which consists of two
tasks: verifying the correctness of hardware and uploading the customized software to
all nodes. In total, we had to upload two different programs to each node, a program
designed to perform hardware self checking and a program for the sensing application.
The most time-consuming step in this phase was uploading codes to each node, because
it requires to open enclosures, plug/unplug the sensor nodes to/from the programming
board for each uploading, and finally close the node enclosures. We spent approximate
9 hours to ensure that all 40 nodes were ready for deployment.

Deployment. The main tasks in the deployment stage include sensor calibrations
to ensure accurate sensor readings, sensor node placement to guarantee good network
connectivity, and burn-in to detect any early in-use system failures.

Many types of sensors require in-site calibration before placing in service. For in-
stance, the Telaire 6004 CO2 sensor [Telaire 2004] in our system requires calibration
once the elevation changes. The 1300-meter elevation difference between our lab and
Mogao Grottoes demands calibration. To calibrate one Telaire 6004 CO2 sensor, we
have to unplug the sensor from the original node, plug it to a dedicated circuit board
(which is designed to bridge the communication between a CO2 sensor and a laptop
through an RS232 serial port), perform the calibration, and repack the sensor. It took
us about one hour to calibrate only four CO2 sensors, with most of the time spent in
unscrewing and screwing the enclosures.

Deploying sensor nodes in caves turned out to be difficult because the metal doors,
thick stone walls, and central columns form an indoor environment full of reflections,
multipath, and other radio propagation disturbances. Meanwhile, the communication
quality between nodes was affected by the location and the number of people (e.g.,
tourists) inside caves, as well as by whether the metal doors at the entrances of the
caves were open or closed. The resulted communication range of nodes became highly
unpredictable inside caves, which, combined with the limited number of deployable lo-
cations, forced us to take extra effort to assure stable network communication. During
deployment, each node underwent an initial placement and a burn-in process.

During the initial placement phase, we deployed as few nodes as needed for satisfy-
ing the monitoring requirements, and then tested the communication quality of each
node by measuring the data delivery ratio at the normal working cycle (i.e., 1 minute).
We created a few scenarios for evaluating the network connectivity of the deployment:
no people or a few people standing in front of the deployed nodes; the metal door was
closed or open. If the network connectivity was unstable in one of the test scenarios,
we re-positioned the nodes until finding a satisfying deployment, or until exhausting
all possible spots and having to insert an extra node. Because of the low data rate, al-
though we tried as many test scenarios as the time permitted during the deployment
phase, we were only able to test a small subset of possible scenarios that will occur
in the network operation phase. On average, we spent 40 minutes in deploying a few
nodes for each cave.

Shortly after the initial deployment phase, we found out that the network in many
caves failed. In our system, sensor nodes will retransmit the data if no acknowledge-
ment is received. After trying to retransmit for the maximum allowed times, the sensor
nodes will cache the data, wait until the next sensing cycle and try again. As a result,
an unstable network connection will introduce a large data collection delay, which not
only causes wasted energy on retransmissions but also prevents historians from clos-
ing caves for site protection in real time. We show a node’s data collection delay in
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Fig. 3. Data delay distribution of an inappropriately deployed node.

Figure 3. Only 52% of the time, the communication was stable enough for the node to
report its data within a minute. 48% of the time, the communication of the network
has been constantly disturbed. The longest delay could be up to 5 hours. Such commu-
nication quality difference between the deployment phase and the network operation
phase was caused by the insufficient deployment test.

To assure the network connectivity, burn-in process is necessary, which is essen-
tially a prolonged node placement phase for detecting any early in-use system failures.
During this processing, we were forced to revisit the cave frequently to adjust the
placement of the nodes that had unstable communication quality. This process became
laborious and costed us 3 days to adjust the node placement so that the connectivity
became stable in our first round deployment.

Maintenance. In our explorative system, we designed a preliminary node moni-
toring system which notifies users once a node failure occurs without reporting node
status information. However, status information is essential in recovering from the
node failure. For instance, a node may stop reporting data to the data server because
of a failed flash memory or because of the poor link quality. Replacing the failed node
with a new one can solve the problem caused by a failed flash memory but cannot ad-
dress the problem of poor link quality, which requires to re-position the node or to add
an extra node. Without tools to collect real time node status information, it is impossi-
ble for a field expert (e.g. historians in our case) to diagnose the fault type or to repair
the system, and we had to fly to Mogao Grottoes in person for diagnosis and repairing
whenever a system fault occurs. The travel overhead was overwhelming and the repair
operation frequently took a long time because of the lack of tools to collect node status
information.

In a long-lived WSN, besides the aforementioned fault-recovery maintenance, an-
other type of maintenance that has not receive its due attention is periodical mainte-
nance. Periodically, the drained batteries of sensor nodes have to be replaced, sensors
need to be calibrated, and the worn-out sensors have to be replaced to assure sens-
ing accuracy. All those procedures can be time-consuming using the existing sensor
framework.

2.3. Utility Wish List

The intense user intervention we encountered in testing, deploying, and maintaining
our explorative network calls for a user-centric framework for WSNs. The goal is to
reduce the workload of developers, field experts, QC personnel, or technical support
staff, rather than only focusing on improving the network performance. Thus, it is
desirable to have the following utilities supported by the framework:
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Local Hardware Verification. The hardware verification procedure we conducted
in the hardware testing phase turns out to be helpful to detect node failures in an
early stage. We envision that in a large-scale WSN, the QC personnel in hardware
manufactory but not developers will verify hardware. Because the QC personnel may
have little knowledge on WSNs, the user-centric framework should integrate a hard-
ware verification utility that can automatically check the correctness of all hardware
components and immediately return a short summary of verification results.

Wireless Code Distribution. The most time-consuming step in the hardware test-
ing phase is to upload programs to each sensor node, because it requires a serial of
mechanical operations, e.g., screwing enclosures or plugging nodes to programming
boards. To avoid such laborious yet low-tech operations, propagating code over the air
is desirable to accelerate the speed of code distribution.

Wireless Configuration. In-situ configuration gives users the flexibility to adjust
networks according to field situation. For instance, users may need to configure each
node with a unique ID or a different working cycle. Similar to code uploading, to avoid
arduous mechanical jobs when deploying networks, the user-centric framework should
support node configuration through wireless communication.

Online Calibration. Sensor calibration should be performed without dismount-
ing the sensing board. Towards this goal, the wireless modules should be able to di-
rectly access calibration-related parameters and to perform calibration. For instance,
we should customize our software and hardware to calibrate Telaire 6004 CO2 sensors.

Fast Deployment Validation. The amount of time required to search for a good
spot for placing a node is large. To speed up the deployment, a special software module
targeting at testing the deployed network stability within a short period of time should
be supported.

Remote Fault Diagnosis. In the network operation stage, it is desirable to peri-
odically monitor networks and notify users network failures remotely. Because of the
constrained energy budget or inability to communicate in a faulty scenario, only a lim-
ited amount of status information can be reported remotely. Nevertheless, remote fault
diagnosis can help users to discover network failure and to plan for the on-site failure
repairing.

On-Site Fault Diagnosis. Due to the limited node status information, remotely
identifying fault types can be challenging. To assist failure identification, the on-site
fault diagnosis module allows an on-site user to collect a status report with greater
details for a thorough diagnosis.

2.4. Utility Integration

The above-mentioned utilities exhibit diverse behaviors and may have conflicting re-
quirements. For instance, an energy-efficient monitoring program is typically run at a
low duty cycle for data sampling and reporting. The utility for fast deployment valida-
tion, however, demands sensor nodes to communicate at a much higher rate to reduce
the time for testing link quality. Additionally, utilities that support wireless code dis-
tribution, wireless configuration, online calibration, and on-site fault diagnosis require
the sensor nodes to respond to the user’s queries immediately (demanding nodes to
keep awake), yet they are not needed during the network operation stage. Thus, it is
difficult and complicated to have all utilities running simultaneously.

To integrate all utilities seamlessly without sacrificing the network normal opera-
tion performance, we developed a Multi-mode user-CentriC (MC2) framework, which
organizes utilities according to modes. The MC2 framework can cycle through various
modes based on users’ input, but can only be in one mode at a time. In each mode, only
those corresponding utilities with similar behaviors and requirements are executed.
To maneuver mode-switching and utility-loading, the MC2 framework consists of MC2
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Fig. 4. The high-level software architecture of the MC2 framework.

software and matching hardware. The hardware includes customized sensor nodes, a
TestKit, and a handheld device, which we call SensorMate. SensorMate serves as the
bridge to facilitate the direct user-node interaction in the field. We present the design
details of the MC2 software in Section 3, and discuss the hardware component of the
MC2 framework in Section 4.

3. MC2 SOFTWARE

The MC2 software component provides a user friendly interface between the hardware
and the users, and it incorporates many utilities that can reduce the level of user inter-
vention throughout the lifespan of WSNs. One natural way to incorporate all utilities
is to implement each utility as a module and build one program that contains all mod-
ules. However, such a strategy makes all modules share the same memory and have
the same privilege. As a result, the execution of those modules/utilities will be highly
interleaved, which makes it difficult to manage the correct control flow of the program.
Such a task is especially difficult in sensor platforms where event-driven programming
model is typically used. Developing one program containing all utilities is further com-
plicated by the fact that some utilities behave distinctively different, while some may
share similar behaviors. Thus, the key idea of the MC2 framework is to provide an ab-
stracted container, which we call mode, to group utilities with similar behaviors, and
a general Mode Management Component (MMC) to control mode switching. As such,
unrelated utilities are fully decoupled to avoid interference between each other, and we
can target at maximizing their run-time efficiency individually without compromising
the performance of others.

3.1. Modes

Instead of grouping utilities purely based on the stage, we classify them based on fac-
tors that will affect their behaviors, e.g., the duty cycle and boot-related characteristic.
Typically, a micro controller unit (MCU), such as ATmega128L [Atmel 2013], includes
an application flash section and a bootloader flash section. When booting up, the MCU
first executes the programs stored in the bootloader flash section and then loads pro-
grams stored in the application flash section. Reprogramming codes in the bootloader
flash section requires a special hardware, e.g. JTAG, while the programs stored in the
application flash section can be reprogrammed without any dedicated devices. Thus,
the program that may require updating must be stored in the application section.

Based on the required characteristics, we group the utilities into five modes: Data
Collection, Pre-Running, Local Access, Code Update, and Factory Test. Under each
mode, one or a few modules will be running simultaneously to support multiple utili-
ties, as depicted in Figure 4. Additionally, we introduce a special mode called Power-off
mode, which does not correspond to any utility, but provides a useful mode for trans-
portation. We summarize the relationship between modes, utilities and stages as well
as the software configuration and hardware resources for each mode in Table I. We
note that we developed one module for each utility except for the wireless code distri-
bution utility, which is implemented in two modules, and we will discuss the reason in
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Table I. The relationship between modes, utilities, and stages. The software configuration and hardware resources
used by each mode.

Software configuration HardwareMode Utility Stage
Routing Duty cycle resources

NetworkMonitoring
operation

Sensors,
Data

Network
Multi-Hop, RF,

Collection Remote fault diagnosis
operation

Tree Low
etc.

Fast deployment Multi-Hop, Sensors,Pre-Running
validation

Deployment
Tree

High
RF

Wireless code Hardware
distribution testing Sensors,

Wireless configuration Deployment RF,
Local Access Deployment,

Single-Hop,
External

Online calibration
Maintenance

Star 100%

storage,

On-site fault diagnosis Maintenance etc.

Wireless code Hardware ExternalCode Update
distribution testing

N/A 100%
storage
Sensors,
RF,

Local hardware Hardware Single-Hop, ExternalFactory Test
verification testing Point-to-Point

100%
storage,
Serial port,
etc.

Prior toPower-off N/A
deployment

N/A 0% None

Section 3.1.4. We emphasize the difference between modes and modules — a module
is a program implementing a utility, and a mode is a virtual container that supports
concurrent execution of one or more modules.

3.1.1. Data Collection Mode. The Data Collection mode is designed for the normal net-
work operation stage. In this stage, a sensor node typically runs at a low duty cycle
to conserve energy, and reports sensed data along a routing tree in a multi-hop man-
ner. Many modules belonging to this stage are application specific. For instance, our
microclimate monitoring application at Mogao Grottoes requires to sense and report
climate-related data once every minute, but a road traffic monitoring application may
require the network to continuously monitor the drive-by cars. Since the application
requirements may change over time and these modules may need to be reprogrammed
from time to time, they are stored in the application flash section.

The Data Collection mode includes three modules: Network Organization, Data

Collection, and Status Reporting. The Network Organization module handles rout-
ing, time synchronization, and other network related operations. The Data Collection

module samples, transmits, and relays data towards the data server. These two mod-
ules are designed to realize the functionality of the applications, while the Status

Reporting module is designed for remote fault diagnosis. It periodically reports the
node status to the data server, and the status report typically contains a hardware
status summary (e.g., battery voltage and the status of sensors) and a network status
summary (e.g., the parent node ID and the hop count of the node).

Essentially, most existing sensor nodes in the literature can be treated as working
in the Data Collection mode only, while our MC2 framework provides a richer set of
working modes to meet various user requirements.

3.1.2. Pre-Running Mode. The Pre-Running mode is designed for assisting network de-
ployment so that the deployed network exhibits stable communication quality. The
Pre-Running mode contains one module called Fast Running. Similar to those modules
reside in the Data Collection mode, the Fast Running module resides in the application
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flash section. This mode is essentially a fast-forwarding version of the Data Collection
mode with slight differences. For instance, in the Pre-Running mode, a node will report
the transmission delay at each hop, while in the Data Collection mode, only end-to-end
delay is reported. Such hop-by-hop delay information can help users to identify the
weak link and adjust the locations of nodes accordingly. To quantify the network sta-
bility, we use packet delivery ratio (PDR): a PDR higher than a threshold is considered
stable (e.g., 97% in our case). In total, each sensor node reports the network stability
in two ways: blinking the LEDs on its control panel and reporting the PDRs to the
data server. Thus, we can verify the network stability either visually in the field or
by analyzing the reported data at the data server. The Fast Running module helps us
to quickly make a good deployment decision. Because the Fast Running module lets
nodes exchange packets at a high frequency, it enables us to quickly emulate many
scenarios such as tourists blocking the communication propagation path in a short pe-
riod of time. Thus, the connectivity of the deployed networks will be relatively stable
in the network operation stage.

3.1.3. Local Access Mode. The Local Access mode aims at incorporating all utilities
that require to fetch/feed information from/to a node directly, e.g., on-site fault diagno-
sis or online calibration. A node in the Local Access mode will remain awake in order
to respond to users’ queries or to react to users’ instructions immediately. We call this
mode local access, because communication involved in this mode is one hop between a
sensor node and SensorMate. This is different from the one in the Data Collection or
Pre-Running mode, where data are delivered through a multi-hop routing tree. One-
hop communication makes the protocol between sensor nodes and SensorMate simple
yet reliable, e.g. independent of other nodes’ status.

The Local Access mode contains four modules running simultaneously: Code

Reception, Configuration, Node Inspection and Calibration. Each module handles
one of the following utilities.

Wireless Code Distribution. The Code Reception module keeps waiting for code
blocks that might arrive at the RF interface. Once it receives the code blocks dis-
tributed by SensorMate, it checks the correctness of every block and stores the block
in an external nonvolatile memory. If a code block is lost or damaged, the node will
blink its red LED to indicate a code reception failure, and users can rebroadcast the
code. The Code Reception module is usually used during the hardware testing stage,
the simple network communication pattern and “always on” feature of sensor nodes in
this mode ensure the high efficiency in code distribution.

Wireless Configuration. The Configuration module is designed to fulfill the task
of wireless configuration. As soon as the module receives parameters of sensor nodes
wirelessly, such as network ID and duty cycle, it stores them in MCU’s EEPROM,
where the Data Collection and other modules will fetch relevant parameters. The
Configuration module is also able to return the system current parameters to the
user. We note that the configurable parameters can easily be extended by increasing
editable fields inside EEPROM.

On-Site Fault Diagnosis. User can perform the on-site fault diagnosis by leverag-
ing the Node Inspectionmodule. Once received commands sent from SensorMate, this
module conducts user-intended inspections on peripheral circuit components, such as
flash writing and reading, sensor data sampling, etc., and reports a detailed inspection
result to SensorMate.

Online Calibration. The Calibration module starts to calibrate after receiving
the calibration command sent by SensorMate, and then returns a calibration result to
SensorMate. The advantage of the Calibration module is that it eliminates the need
to plug sensors to a dedicated device, and the module can handle most calibration
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calculation tasks automatically. A user only needs to provide necessary calibration
parameters. For instance, the Calibration module for the Telaire 6004 CO2 sensor
requires taking the zero and span values for calibration. A detailed example about
zero and span calibration is discussed in Section 5.2.2.

3.1.4. Code Update Mode. The Code Update mode is a special mode designed to com-
plete the wireless code distribution process. The first step of wireless code distribution
involves propagating the code blocks to a node. Once the entire codes are successfully
received and stored in the external non-volatile storage space during the Local Access
mode, the node will start the second step: reboot and enter the Code Update mode.
This mode has one module, Reprogramming, which reads the code from the external
storage and replaces the current program that is stored in the application flash sec-
tion of MCU. We place the Reprogrammingmodule in the bootloader flash section, since
only routines running in the bootloader flash section can rewrite the application flash
section of MCU. Unless necessary, we do not store modules in the bootloader flash sec-
tion because of its limited size. Since the Code Reception module requires routing and
MAC protocols, it is relatively large and is stored in the application flash section.

3.1.5. Factory Test Mode. The Factory Test mode is meant for hardware verification in
the hardware testing stage, and it includes one module, Self Checking module. This
module automatically conducts a comprehensive hardware check on each component of
a sensor node, and returns a hardware status summary to a user. For example, to test
the RF chip, the Self Checking module first sends several testing packets. A spectrum
analyzer verifies whether the RF transmission (TX) power meets the requirements and
returns an acknowledgement packet containing the verification result. Then, the Self

Checking module turns the node into listening state, and we transmit several testing
packets to the node to verify the RF receiving (RX) sensitivity. The Self Checking

module will blink the green LED to indicate success, and blink the red LED if an error
occurs in any step of verification.

We note that this module is different from the Node Inspection module running in
the Local Access mode, since they are designed for different stages with different user
focuses. In the hardware testing stage, a user typically has to verify a large number
of sensor nodes, and the Self Checking module is targeted at maximizing the speed of
retrieving compact hardware status summaries of a large collection of nodes. Thus, the
Self Checking module is located in the bootloader flash section for fast checking. In
comparison, during in-situ maintenance, a user is interested in searching for detailed
hardware status to assist diagnosis. Thus, the Node Inspection module emphasizes
on providing a highly detailed status report of the interested component in a well-
organized format for easy access.

3.1.6. Power-off Mode. A node may need to stay in a deep sleep mode to reduce unnec-
essary power consumption when it is transported from a lab to a field. The Power-off
mode is designed to assist fast node shut-down. Without this mode, to turn off a sensor
node, one may need to open the enclosure to take off batteries. Later on, to resume
the node, a battery installing is required. Although one can avoid opening enclosure by
adding a hard switch on the enclosure, such operation is still time-consuming and not
scalable, and makes the enclosure hard to seal. By introducing a Power-off mode, a user
can turn off a large collection of sensor nodes via the MMC without physical contacts.
Such soft switches greatly reduce the overhead involved in the hardware testing and
deployment stages. To turn on a node, a user can press the button on the enclosure.
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3.2. Mode Management Component (MMC) Overview

The Mode Management Component (MMC) fulfills two main functions: managing the
list of supported modes of the MC2 framework and switching the current working
mode. To accomplish them, the MMC contains three key routines:

— a mode register for adding/removing modes and corresponding modules,
— a mode switching manager for changing the current working mode according to mode

switching commands,
— a mode resource manager for managing hardware resources for each mode.

Meanwhile, the MMC accepts three types of mode switching commands from various
interfaces (details will be discussed in Section 3.3):

— internal switching commands that are issued by a program,
— button switching commands that are issued by users through input devices (i.e., a

hardware button),
— wireless switching commands that are issued by users wirelessly.

The entire workflow of the MMC consists of an initialization phase and a mode-
switching phase. Once a sensor node boots up, the MMC immediately starts initial-
ization by registering modules and modes, and records information essential for mode
switching in a mode resource table. The mode resource table contains a complete list of
modules that shall be loaded for each mode, the hardware resources that shall be used
for each mode (e.g., sensors, RF, or external storage), and the software configuration
information (e.g., duty cycles). One of the biggest benefits of dynamically registering
modules and modes during the initialization phase is that it makes the MMC compact
and mode modification flexible, i.e., modifying modes does not require to change the
MMC but changing the mode register. After initialization, the MMC enters the mode-
switching phase. Every time the mode switching manager receives a mode switch-
ing command, either from users or programs, the mode switching manager will stop
all running modules, request the mode resource manager to revoke the allocated re-
sources for the old mode, allocate resources required for the new mode, and load the
set of modules for the new mode.

Instead of walking through a complete workflow of the MMC in the MC2 framework
at the full scope, we illustrate the overall work process of the MMC via a simplified
yet representative example that supports two modes and three modules. As shown in
Figure 5, during the initialization phase, Modules 1 and 2 were registered under Mode
1, and Module 3 under Mode 2. Then, both modes were registered. After initialization,
either a user or the application issued a mode switching command for entering Mode 1,
and the MMC set the current working mode to Mode 1 with Modules 1 and 2 running.
In response to the second command for switching to Mode 2, the MMC stopped Modules
1 and 2, revoked resources for Mode 1, allocated corresponding resources for Mode 2
and loaded Module 3. At this point, the MC2 framework entered Mode 2.

Our MC2 framework currently supports six modes (listed in Table I). Similar to the
above example, during the initialization phase, a mode resource table that records con-
figuration information for all six modes is created when all modes and corresponding
modules are registered one by one.

3.3. Mode Switching Prototype

In total, three types of the mode switching commands can initiate a mode switch-
ing: internal switching commands, button switching commands, and wireless switch-
ing commands. However, not every switching command is applicable in each mode. In
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Fig. 5. A simplified workflow of the MMC in the MC2 framework.

this section, we elaborate the relationship between mode switching commands and the
applicable modes.

One of the main factors that determines whether a switching command is able to
initiate a mode switch is the mode’s flash section. Thus, we divide the mode switch-
ing scenarios into two categories: the set of mode switching commands that control
the modes in the application flash section, and the ones controlling the bootloader
flash section. Figure 6 depicts the mode switching flow chart with regard to the flash
sections, and it summarizes the applicable mode switching commands for triggering
switches.

3.3.1. Mode Switching Management within the Application Flash Section. The Power-off mode,
Pre-Running mode, Local Access mode, and Data Collection mode are implemented in
the application flash section. To switch modes among them, both the button switching
and the wireless switching can be used.

Button Switching. A mode switch button is designed on the enclosure for an easy
access. By pressing the button, a user can cycle through four modes. Given that the
initial mode is the Power-off mode, a short pressing of the button will make the node
change from the Power-off mode into the Data Collection mode. As the user keeps hold-
ing the button, the node will enter the Local Access mode and the Pre-Running mode
in sequence. The user can enter the Local Access mode or the Pre-Running mode by
releasing the button once the LEDs on the node indicate entering that mode. Addition-
ally, a node can return to the Power-off mode by pressing the button. The advantage
of button switching is that the node will immediately switch to the intended mode.
However, a physical access to the node is mandatory, which might create scalability is-
sues to switch a large number of nodes. To address these issues, we designed wireless
switching.

Wireless Switching. Wireless switching relies on SensorMate to broadcast mode
switching commands. To initiate the mode switching, SensorMate broadcasts a spe-
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cial control packet while sensor nodes are awake, e.g., in a non Power-off mode. The
nodes that receive the control packet will immediately switch to the Local Access
mode, and reply an acknowledgement to SensorMate. From the Local Access mode,
a user can instruct a node to switch to any other three modes via SensorMate. The
wireless switching is useful when nodes are difficult to access or the number of nodes
is large.

During deployment or maintenance, switching between those four modes are ade-
quate most of the time. The only exception is that after the Code Reception module in
the Local Access mode successfully receives a new program, the MMC will mark the
reprogramming flag in the external storage and reset the nodes. We now discuss how
to enter the Code Update mode and the Factory Test mode.

3.3.2. Mode Switching Management within the Bootloader Flash Section. Both the Code Up-
date and Factory Test modes are stored in the bootloader flash section. To enter ei-
ther mode, a node reset is needed. Both the battery installation and code update will
cause a node to reset. After being reset, the node will switch its mode according to the
predefined internal switching sequence. That is, the node will try to enter the mode
implemented in the bootloader flash section one by one. The MMC first checks if repro-
gramming is required by examining the reprogramming flag in the external storage. If
the reprogramming flag is set, the node will enter the Code Update mode to finish the
reprogramming task. Otherwise, the MMC determines whether the node need to enter
the Factory Test mode by checking whether a special control pin on the mother board
of the node has been set to high. The TestKit, which will be introduced in Section 4,
can be connected with the mother board to set the pin to high. A typical hardware
arrangement is displayed in Figure 7(b).

Once finishing executing the modules stored in the bootloader flash section, the
MMC will enter the application flash section. In particular, the MMC will execute a
special routine, mode redirection, to determine which mode in the application flash
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Fig. 7. Customized MC2 hardware: (a) the control panel of a sensor node, (b) TestKit, (c) sensor nodes’
internal structures, (d) sensor nodes’ appearances, and (e) SensorMate (left).

section it should redirect to. The MMC stores the node current mode in a nonvolatile
storage once a mode switching in the application flash section occurs. As such, the
mode redirection routine will resume the same working mode prior to resetting. This
routine is designed to reduce the manual operation of battery replacement, since in
most cases nodes are expected to continue running under the same old mode after
battery replacement.

4. MC2 HARDWARE

Existing WSN hardware designs involve sealing the node within an enclosure to
achieve better protection against a harsh wildland environment, but typically at the
cost of operation convenience. In contrast, we take the viewpoint that the WSN hard-
ware should provide a user-friendly operational interface while assuring the device
resilience against a harsh environment. We design our WSN hardware to support the
MC2 software and thus to reduce the amount of time and effort that users have to
spend in hardware testing, deployment, and maintenance.

4.1. Sensor Node

One of the key features that makes our sensor nodes user-friendly is the control panel
on the weatherproof enclosure, as shown in Figure 7(a). In particular, we have in-
cluded two unique features. Firstly, the control panel contains a button for local mode
switching, and two LEDs for displaying the current mode and data transmission re-
sults (succeeded/failed). Together, the mode switching button and LEDs facilitate users
to maneuver through the MC2 working modes without opening the enclosures.

Secondly, we have designed a layout that can facilitate pluggable sensor integra-
tion, which makes sensor replacement and encapsulation easy. Our system uses hu-
midity and temperature (RH/Temp) sensors. The accuracy of RH/Temp sensors will
gradually degrade and need to be replaced every few years. Replacing RH/Temp sen-
sors at a large scale can be laborious. Thus, we chose Sensirion’s SHT75 [Sensirion
2011b] sensor module instead of the most widely used SHT11 [Sensirion 2011a], since
SHT75 provides a 4-pin, fully pluggable interface while SHT11 must be soldered on a
circuit board. This 4-pin interface enables us to easily replace the sensor module. In
addition, we placed the plug interface of SHT75 on the control panel and designed a
dust-resistant, ventilated hood to protect it, as shown in Figure 7(a). As such, to re-
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(a) (b)

Fig. 8. The screen snapshots of SensorMate: (a) node information summary, and (b) sensor calibration GUI.

place the SHT75 sensor, a user only needs to open the hood rather than unscrewing
the enclosure, greatly reducing the maintenance time.

In addition to common humidity and temperature sensors, many monitoring appli-
cations may require to use a special sensor. For instance, the microclimate monitor-
ing at Mogao Grottoes requires CO2 sensing. Thus, we integrated Telaire 6004 digital
CO2 sensor module [Telaire 2004] by connecting it to the sensor node’s mother board
through a 12-pin connector, as shown in Figure 7(c). Such a pluggable sensor inte-
gration reduces the difficulty of encapsulation. To allow the air pass through the CO2

sensors, we added a ventilation window to the enclosure specially for CO2 sensors, as
shown in Figure 7(d).

As far as the architecture of the node mother board is concerned, our node archi-
tecture is similar to the one of MICAz [Crossbow 2007], except the following improve-
ments to support a user-friendly design: 1) a customized shape for the specially de-
signed enclosure; 2) customized interfaces for sensor module connections; and 3) in-
tegrating AT45DB161D (a 16-Mbit flash [Adesto 2013]) and FM24CL64 (a 64-Kbit
F-RAM [Ramtron 2011]) to support wireless software programming and data caching.

4.2. Testing and Diagnosis Tools

To provide a friendly user-node interaction, we have developed two pieces of hardware.
One is SensorMate and the other is a TestKit.

SensorMate. We have implemented SensorMate on a HP iPAQ PDA (hx2490c [HP
2013]). We chose a PDA over a laptop, because it is lighter and its battery lasts for a
longer time. Meanwhile, it provides an easy-to-operate, touch-screen-based user inter-
face. To enable the PDA to communicate with sensor nodes directly, we extended the
PDA by attaching a Telegesis’s ZigBee card [Telegesis 2013] to its CF slot, as shown
in Figure 7(e). Additionally, we developed a suite of GUI to facilitate user-node inter-
action. Figure 8 demonstrates two sample GUI snapshots of SensorMate: Figure 8(a)
displays the node information page which contains the node’s running status and pa-
rameters. Figure 8(b) illustrates an interface for sensor calibration.

TestKit. We designed a TestKit for two purposes: to set a node to the Factory Test
mode, and to bridge the communication between a node and a laptop. The TestKit
consists of a customized 12-pin wire and a converting board with a USB port. The
converting board is essentially a USB/UART converter that connects to a laptop via a
USB port and supplies UART output through the customized 12-pin wire to a sensor
node. When the 12-pin wire is connected to a sensor node, the factory test pin on sensor
node will be set to high, and the node will immediately be reset and enter the Factory
Test mode. Furthermore, the sensor node can output testing results to a terminal.
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5. CASE STUDY: THE MICROCLIMATE MONITORING AT MOGAO GROTTOES

In this section, we discuss our experiences in building a long-term system for Mo-
gao Grottoes, employing the proposed MC2 framework. The historic relics of Mogao
Grottoes are deteriorating due to the inappropriate microclimate inside caves [Shi and
Zhang 1997]. Our project aims to set up a long term monitoring system to collect real-
time microclimate measurements (e.g., temperature, humidity and CO2 density) that
are used for scientific studies and site protection.

Battery-powered WSN technology becomes almost the only applicable solution to
monitor the microclimate at Mogao Grottoes, because power and communication
wiring inside caves is prohibited and solar power is not available inside closed caves.
The requirements of continuous and large scale monitoring, complex landform, and
minimal number of nodes in caves make the deployment at Mogao Grottoes a chal-
lenging as well as a representative long-term environmental monitoring application.
We illustrate that the user-centric design helps to reduce the burden of users despite
of the challenges.

We will briefly introduce our communication architecture in Section 5.1. We present
our experiences on time saving by using the MC2 framework in Section 5.2, and show
the overhead and performance of the customized MC2 framework in Section 5.3.

5.1. Communication Architecture

All caves of Mogao Grottoes are not naturally formed but were excavated into 1.6 kilo-
meters of a cliff face in the Gobi desert. Due to the constraints of the landform as
shown in Figure 9, the only place we can setup the data server is a few hundred me-
ters away from the caves. At the time of deployment, there is no wired communication
infrastructure available between the data server and the caves, and the distance be-
tween the data server and the caves is beyond sensor nodes’ communication capability.
Therefore, we employed a multi-tiered communication architecture to relay data from
nodes located inside caves to the data server, as shown in Figure 10. In total, there are
three tiers, sensor nodes, gateway nodes, and a sink node.

We deployed a group of sensor nodes in each cave. We found that the thick rock walls
exhibit a high degree of radio attenuation and they can almost completely block radio
propagation. Thus, we let nodes inside the same cave form a cluster. For each cluster,
the sensor node located at the cave entrance is selected as the cluster header, since it
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is the only node that can reliably relay data to the upper tier, e.g. gateway nodes. All
nodes in the same cluster will wake up and sleep synchronously, and they wake up
once every minute to satisfy the monitoring requirement.

Outside the caves, we have installed several gateway nodes along the precipice to re-
lay microclimate data between nearby cluster headers and the sink node. As shown in
Figure 11, the gateway nodes are equipped with two wireless communication modules:
One is a short-range communication module (CC2420 [TI 2013]), used to communicate
with the WSN cluster headers; and the other is a long distance communication mod-
ule, HAC-LM [HAC 2010] 433MHz, whose communication range can reach several
kilometers in open space and is adequate to deliver data to the sink node. The sink
node is also equipped with the long distance communication module and is connected
to Internet via a wired connection.

5.2. Second Round Trial

In our second round trial, we deployed 241 sensor nodes in 57 caves. In each cave,
around 3-7 sensor nodes were sufficient to form a reliable network that meets the
monitoring requirement. The number of nodes deployed in the second round trial is
six times of the one in our first round exploration. Fortunately, by employing the MC2

framework, we managed to finish deploying the entire network using approximately
the same amount of time. The detailed time spent in each step is listed in Table II.

5.2.1. Hardware Testing. Hardware testing involves verifying node hardware and up-
loading customized programs for application. In total, 300 nodes were prepared prior
to deployment. The hardware verification job was done by the QC personnel of our
hardware OEM factory. We provided them a simplified MC2 software with only the Lo-
cal Access, Code Update, Factory Test, and Power-off modes. Our hardware OEM fac-
tory will program the MCUs during manufacturing. They used the Factory Test mode
to test hardware, and spent at most 1 minute for verifying one node. Thus, only about
5 hours were spent for verifying all 300 sensor nodes, which is a great improvement
compared with spending 6 hours in testing 40 nodes in our first round exploration.
The biggest saving of time was due to improved code uploading. When uploading cus-
tomized programs, we spent 3 hours to program nodes one by one in our first round
exploration. In our second round trial, nodes can be programmed wirelessly in a batch.
Given that about one minute was needed to broadcast the code and the success rate
was more than 90%, we completed software programming for the 300 nodes within 10
minutes. We note that we still needed to switch on the nodes one by one before wireless
programming, which took us about 50 minutes.

5.2.2. Deployment. The online calibration feature enables us to calibrate a CO2 sensor
without taking it off the node, which was a mandatory hassle in the first round ex-
ploration. To calibrate a CO2 sensor, we first switch the CO2 sensor node to the Local
Access mode, and peer SensorMate with the node. Then we start an elevation cali-
bration and a two-point calibration. To perform the elevation calibration, SensorMate
notifies the node the current elevation over the air. To conduct the two-point calibra-
tion, we connect the sensor to the 0 PPM standard CO2 gas and run “zero calibration”,
and then connect it to the 5K PPM standard CO2 gas and run “span calibration”. At
the same time, the Calibration module notifies the CO2 sensor that the current mea-
surements map to 0 PPM and 5K PPM respectively. The final step of calibration is
to confirm that the reading of calibrated sensor is accurate. Following those steps, we
only spent about 3 hours in calibrating 31 CO2 sensor nodes1, a big improvement from
4 sensors per hour in our first round trial.

1Out of 241 nodes, 31 of them contain CO2 sensors.
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Fig. 11. (a) A deployed gateway node, and (b) the sink node.
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The fast deployment validation and wireless configuration have shown to greatly
speed up the sensor node placement process and the burn-in process. It took us 5 days
in total to deploy 40 nodes in our first trial, but took about the same amount of time
to deploy 241 nodes in our second trial. Similar to the first round exploration, in the
second trial, we started with a few nodes and inserted new ones if the connectivity
was tested as unstable. We learned the test results by visually observing the blinking
LEDs, which indicate whether data transmissions are successful. Because of the Fast

Running module, we can test a larger number of scenarios in a shorter period of time.
Figure 12 shows two examples of the WSN placement in two caves: cave C148 and cave
C332, whereby node 0099 and node 0022 were added to the initial deployment so that
the network connectivity became stable.

In cave C332, initially we placed node 0015 and node 0016, but they were insufficient
to form stable connections with the cluster header F009. Because the thick stone walls
blocked the direct communication between node 0015 and the cluster header F009,
their link was unstable: they failed to communicate in scenarios when several people

Table II. The time usage in each task.

First round (10 caves, Second round (57 caves,
40 nodes) 241 nodes)Stage Job
Time spent note Time spent note

Hardware 9 minutes 1 minute
verification

6 hours
per node

5 hours
per node

Hardware 50 minutes for
testing Software Programming mode switching

programming
3 hours

in sequence
1 hour

10 minutes for
code broadcasting

Sensor 1 hour 15 minutes 3 hours 6 minutes
calibration (4 nodes) per node (31 nodes) per node

40 minutes 10 minutesPlacement 2 days
per cave

3 days
per cave

Redeployment Redeployment

Deployment

Burn-in 3 days
in 80% caves

3 days
in 10% caves
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Fig. 13. Network topology plots of nodes in Cave C332: (a) the cumulative distribution of the data delivery
delay between node 0015 and the cluster header F009, (b) data delay distribution, (c) hop count distribution,
and (d) hop count distribution of node 0015.

stood on the signal propagation path or when the metal door was closed. The Fast

Running module reported that the average packet delivery ratio between node 0015
and the cluster header was only about 70% on average, indicating that an additional
node should be added. To improve the placement, we added node 0022 at the corridor
end, as shown in Figure 12. Figure 13(a) depicts the cumulative distribution of the
data delivery delay from node 0015 to the cluster header F009, i.e., the time from
when the data were sampled to when the data were delivered to the cluster header.
Prior to adding node 0022, 27% of the data delivered by node 0015 had a delay greater
than 1 minute, which suggests that at least the first attempt to transmit data failed,
and 10% of data took more than 1 hour to deliver. After adding a new node (0022),
we improved the delay distribution of node 0015: most of the data from node 0015
were delivered within several minutes. A detailed analysis of data delivery delay of all
nodes in C332 after adding node 0022 is given in Figure 13(b), which shows that all
nodes had data delay less than several minutes. Another important metric to evaluate
the stability of a link is the hop count towards the cluster header. The hop count of a
stable link usually remains unchanged. Figure 13(c) shows that node 0016 and node
0022 had stable link quality as their hop counts remained the same most of the time.
However, node 0015 was 1 hop 20% of the time and 2 hops 80% of the time, indicating
slightly unstable network connection. A further study of the hop count distribution
over a 24 hour period reveals the relationship between the position of the metal door
and the network topology. As shown in Figure 13(d), when the door was closed, node
0015 could not communicate with the cluster header F009 directly, and the hop count
of node 0015 became two. When the door was open in the daytime for tourists, the hop
count of node 0015 dropped to 1 and they can communicate directly.
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Sink node Gateway nodes Sensor nodes

Fig. 14. Graphical system status summary (partial). Green nodes are healthy, while red nodes are faulty.

The Fast Runningmodule has made the deployment process 4 times faster. Although
we have spent less amount of time in placing sensor nodes, the quality of placement
has been improved, because we were able to emulate a larger number of scenarios
for verifying the network connectivity, and the time needed to spend on system burn-
in has been reduced. Such improvement in placement is the direct payoff of the Pre-
Running mode, since we are able to sample larger number of packets in a shorter period
of time. The network connectivity between nodes was stable after deployment, and on
average 95% microclimate data could be delivered within 1 minute.

5.2.3. Maintenance. The design goal of the MC2 framework is to let users (historians
in our case) be able to maintain the microclimate monitoring system on their own.
Historians are not expected to become an expert in networking but should be able to
identify the correct types of faults and repair them accordingly. Towards this goal, we
have designed two utilities to help historians to make the right decision: the remote
fault diagnosis utility and the on-site fault diagnosis utility.

The remote fault diagnosis utility will analyze the node status collected via the
multi-hop networks and provide users fault symptom analyzing results. In particu-
lar, we extracted four fault symptoms that were encountered most often in our first
deployment trial: (1) incorrect data, i.e., the sensed data are out of the normal range
(e.g., -30◦C to 70◦C for temperature sensor), (2) a high data delay (e.g., 3 minutes on
average) between a node and its cluster header, (3) a high battery drain rate, i.e., the
drain speed of a node’s battery is much faster than the empirical normal rate (e.g.,
0.06V/week) , and (4) a low battery voltage, e.g., lower than 2.7V. The remote fault di-
agnosis utility consists of two parts: the Status Reporting module that reports node
status periodically, and the symptom analysis program that runs at the data server.
This program continuously analyzes the node status information and displays ana-
lyzed results graphically, as shown in Figure 14.

Different fault symptoms may be caused by different types of faults and require
different ways of repairing. Table III summarizes the relationship between symptoms
and fault types. For instance, a poor link quality is typically manifested by a high data
delay. A high battery drain rate can be caused by several reasons: poor link quality
(whereby nodes have to spend a large amount of energy on retransmission), software
errors (e.g., mis-configured with a higher duty cycle than desired), or hardware errors.
To repair the system, a historian has to visit the field for node examination and repairs.
Based on the relationship summarized in Table III, we have designed a step-by-step
maintenance manual for historians, as described below and depicted in Figure15.
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Table III. Remote diagnosing.

Fault types
Hardware orSymptoms Poor link quality

software error

Incorrect data •

High data delay •

High battery drain rate & high data delay •

High battery drain rate & normal data delay •

Is data 

delay high? 

Run the fast deployment 

validation utility in the 

Pre-Running mode 

Y 

N 

Is battery 

drain rate 

high? 

N 

Run the on-site fault 

diagnosis utility in the 

Local Access mode 

Y 

Is link 

quality 

poor? 

Battery replacement 

Hardware 

fault? 

Y 
Node re-position 

N 

Y 
Hardware 

replacement 

Software 

fault? 

N 

N 

Y 

Node 

works OK? 

N 

Maintenance failed 

Maintenance 

succeeded 

Y 

Maintenance 

start 

Is data 

incorrect? 

N 

Y 

Node reprogramming 

Fig. 15. The flow chart of the step-by-step maintenance manual.

(1) Incorrect data. The incorrect data symptom is typically caused by hardware
faults (e.g., a malfunctioning sensor or flash memory). As a result, a historian will
visit the field and run the Node Inspectionmodule in the Local Access mode. If the
inspection report shows a hardware problem of sensors, the sensor will be replaced.
Otherwise the entire sensor node will be replaced.

(2) High data delay. A high data delay indicates that the link quality is not satisfy-
ing, and thus a historian will visit the field to adjust the node position. To improve
the link quality in the field, a historian lets the faulty nodes switch to the Pre-
Running mode and observe the LEDs of the nodes: a blinking red LED means the
data transmission fails constantly and a blinking green LED means the data trans-
mission is successful. The historian continues to adjust the locations of the nodes
until observing a blinking green LED, just like how we deploy the network.

(3) High battery drain rate. If the battery voltage drops fast and the data delay is
normal, there might be a hardware or software fault, and a historian will obtain
local status reports when nodes are in the Local Access mode. If the report shows
a hardware error, the node will be replaced. If a software error is discovered (e.g.,
the duty cycle is higher than required), then the node will be reprogrammed using
SensorMate.

Although a historian may not be able to identify the exact root causes of faults and
solve the problem permanently, the symptom reports have made it possible for a his-
torian to keep the network operation normal. For example, the historian has observed
that a few sensor nodes had high battery drain rates without the symptom of the high
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Table IV. Typical time for maintenance tasks.

Average time spent per node
First round Second roundTask

(done by developers) (done by historians)

Node re-position 20 minutes 3 minutes
Hardware replacement 25 minutes 2 minutes
Node reprogramming 10 minutes 1 minute

data delay. Through on-site diagnosis using SensorMate, they learned that the status
of flash memory on all faulty nodes was abnormal. Thus, the historian replaced those
nodes and solved the problem temporarily. Later, we acquired those sensor nodes by
mails. A detailed diagnosis in our lab revealed that a small set of the flash memory
(AT45DB161D) chips in the system tended to run into a faulty state after repeated
wakeup/sleep operations. In this faulty state, the memory chip will not respond to any
READ/WRITE or even software RESET commands, but it will continuously consume
high energy with a 3-4mA current draw. The only way to exit this abnormal state is to
pull the hardware RESET pin of the memory chip. Because of the rare occurrence, this
problem was not discovered during system deployment. Nevertheless, the historian
was able to repair the network with the help of the MC2 framework. After identifying
the problem, we updated the node firmware by adding a routine for resetting the flash
chip once it runs into the faulty state. The updated firmware was emailed to the histo-
rian and was distributed to nodes using SensorMate; hence, they helped to solve this
type of fault permanently.

Currently, the daily system maintenance and the system repairing operations (e.g.,
node replacement and node placement adjustment) are conducted by the historian,
which frees us from traveling to Dunhuang every time a system fault is detected. In
the first round, we traveled to Mogao Grottoes three times with each trip lasted for up
to 10 days. In the second round, we didn’t need to visit the site, but sent new nodes and
sensor parts by mails, because the historian managed to maintain the network with
the help of the MC2 framework.

Depending on the symptoms, the historian will perform one of the three on-site
maintenance tasks, and Table IV summarizes the time spent for each task. For com-
parison, we listed the time spent by us in the first round exploration.

— Node re-position. The Pre-Running mode is used to examine the link stability. In
our systems, 3 minutes were sufficient for the historian to search for a new location
that creates stable links. In comparison, in the first round exploration, we spent 20
minutes on average to re-position one node, because the low duty cycle made it time
consuming to confirm the link stability.

— Hardware replacement. The Node Inspection module in the Local Access mode
checks hardware and informs the historian if there is a hardware fault. Then the
historian will replace the hardware and check the network status using the Pre-
Running mode. In total, 2 minutes were sufficient for the entire operation, much
shorter than what was needed in the first round (e.g. 25 minutes).

— Node reprogramming. The Configuration, Code Reception and Reprogramming

modules make software related repairing efficient: 1 minute on average sufficed to
identify the problem and to update the nodes with a correct program, much shorter
than 10 minutes where most time was spent on connecting JTAG to the nodes.

Because our MC2 framework greatly reduces the maintenance workload, currently
only one historian is in charge of maintenance. Based on his feedback, he is satisfied
with the MC2 framework and considers the maintenance manageable. A formal user-
ability study involving a larger number of users will be our future work.
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5.3. MC2 Framework Overhead and Performance

In this subsection, we examine the overhead and performance of adopting a MC2

framework in two aspects: the memory usage, and the loading time of the MMC and
modes.

5.3.1. Memory Usage. The size of the MC2 software is on the order of a few kilo bytes
(KB). Table V summarizes the itemized binary-code sizes. In general, the MC2 software
contains three categories of source codes: modes and modules (including the MMC), the
network protocol stack, and hardware drivers. The MMC contains the source code for
managing modes, and its code size is about 17.91KB. The Data Collection mode and
the Pre-Running mode share the same source code but have different configuration
files. Since each mode will share a portion of source codes (e.g., hardware drivers), the
total size of the entire framework in the application flash section (57.66KB) is smaller
than the sum of the code for each mode. The other two modes resided in the bootloader
flash section are smaller: the Factory Test mode and the Code Update mode only occupy
7.05KB and 4.71KB.

5.3.2. Loading time. The MMC switches between modes according to a user’s input.
Table V shows the loading time of the MMC and modes. When a node boots up, it
will first spend about 8.4 ms to load the MMC with most time spent in hardware
initialization. The time for loading the Data Collection mode is about 1.75 seconds with
almost all the time spent on checking external memories, which are used to buffer
data. The time for loading the Pre-Running mode and other modes are only on the
order of a few milliseconds, because they do not need to check external memories.
Among them, the time for the loading the Factory Test mode is the longest (e.g., 5.6
ms) because it requires initializing serial ports, which are used for reporting testing
results to terminals.

In summary, the MC2 framework incurs modest overhead and loading delay, and is
applicable to sensor platforms.

6. RELATED WORK

Several sensor network systems have been deployed for monitoring purposes. Early
example monitoring systems include the habitat monitoring system on Great Duck Is-
land (GDI) [Mainwaring et al. 2002], the zebra tracking system [Juang et al. 2002],
the volcano monitoring system [Werner-Allen et al. 2006], and the heritage monitor-
ing system deployed at Torre Aquila [Ceriotti et al. 2009]. Those deployments provide
precious first-hand experience towards future successful deployments. However, those
systems essentially follow a network-centric design. They are primarily interested in
network issues that arise in the network operation stage instead of reducing the users’
burden. We believe that such a focus is because many prior work of WSNs involved de-
ploying a few nodes and were studied intensively for a relatively short period of time,
e.g., the 44-day test running on a redwood tree consisting of 33 sensor nodes [Tolle et al.
2005] and a two-month testing deployment of SensorScope on a rock glacier using 16

Table V. The MC2 framework overhead and performance.

Name Memory usage Loading time

MMC 17.91KB 8.4 ms
Data Collection mode 1.75 s
Pre-Running mode

27.94KB
2.8 ms

Local Access mode 17.19KB 2.8 ms
Factory Test mode 7.05KB 5.6 ms
Code Update mode 4.71KB 0.03 ms
Power-off mode Uncountable 0.16 ms
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sensor stations [Barrenetxea et al. 2008]. In comparison, many real-world sensing ap-
plications are expected to run for a long time in various environments to provide a
stream of real time data for scientific studies, e.g., an automated wildlife monitoring
system lasting for one year [Dyo et al. 2010] and our deployment at a heritage site for
more than five years [Xia et al. 2012]. Our work addresses the challenges caused by
the growing need of user-intervention for long-term monitoring WSNs.

Much prior work does propose ‘tools’ to assist system deployment and maintenance.
The designers of the Great Duck Island monitoring system have identified two external
tools to assist deployment and maintenance: field tools running on small PDA-class de-
vices and client tools running on PC-class devices [Mainwaring et al. 2002]. However,
these tools were not their focus. Thus, they did not present the design details. The
researchers from Berkeley adopted TASK (Tiny Application Sensor Kit) [Buonadonna
et al. 2005] in building their microclimate monitoring system on redwoods [Tolle et al.
2005]. To enable non-network specialists to deploy and manage WSNs, TASK includes
a set of tools to assist software installation, deployment, reconfigurability, and sen-
sor nodes health monitoring, etc. Our MC2 framework incorporates all these tools and
has included additional utilities (e.g., the Self Checking module, the Node Inspection

module, and the Calibration module). In addition, our framework coordinates the ex-
ecution of these tools and enables users to quickly change nodes’ behaviors according
to user requirements(e.g., inspecting node status or collecting data).

Deployment assessment has been addressed in FireWxNet [Hartung et al. 2006],
LUSTER [Selavo et al. 2007], and SensorTune [Costanza et al. 2010]. FireWxNet is
a weather monitoring system deployed in wildland fire environments. During the de-
ployment phase, the sensor nodes in FireWxNet exchange packets at a higher rate for
verifying the communication quality than the regular runtime rate. LUSTER designed
a deployment-time tool, SeeMote, which can gather a rich set of network measurement
(e.g. RSSI or residual battery power) to access the health of the network. SensorTune
is a mobile interface for assisting WSN deployment, and it provides audio feedback to
indicate the connectivity of the network. The Pre-Running mode in our MC2 framework
is also designed to expedite deployment. The differences are that our MC2 framework
integrates modes not only for deployment but also for hardware testing, maintenance,
etc., and it allows a user to easily switch between modes.

Calibration is one of the most challenging issues in real-world deployments, espe-
cially in a large scale WSN. Ramanathan et al. presented Suelo, which actively re-
quests the help of a human when necessary to validate, calibrate, repair, or replace
sensors [Ramanathan et al. 2009]. To alleviate the large workload in calibrating sen-
sors, researchers have proposed pairwise calibrating or iterative calibrating [Akcan
2013], in which the calibrated sensors can be used to calibrate uncalibrated sensors as
long as they can observe the same event. Similar idea was also adopted by Xiang et
al. to improve accuracy of mobile sensing systems [Xiang et al. 2012]. Our MC2 frame-
work is complementary to the work because prior work requires calibrating at least a
subset of sensors manually and the MC2 framework reduces the workload of manual
calibration.

Remote debugging systems, such as NodeMD [Krunic et al. 2007] and Clairvoy-
ant [Yang et al. 2007], enable a user to remotely debug a program running on sensor
nodes. Identifying sensor failures is one of the key tasks for maintenance. Sharma et al.
focused on three types of sensor faults, and analyzed methods to detect them [Sharma
et al. 2007]. Ni et al. employed a hierarchical Bayesian spatio-temporal (HBST) mod-
eling approach to detect faulty data [Ni and Pottie 2012]. To cope with a broader range
of system failures, Sympathy collects run-time status information of sensor nodes to
detect possible system faults [Ramanathan et al. 2005]. To reduce additional traffic
overhead caused by information collection, PAD employs a packet marking algorithm
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for detecting and diagnosing faults [Liu et al. 2008]. Similarly, DSD uses data traces
to analyze the type of failure [Nie et al. 2012]. Hnat et al. proposed to use data losses
to identify failures in their residential sensing deployments [Hnat et al. 2011]. Wu et
al. proposed a methodology for run-time assurance (RTA), which validates whether
the system can meet application requirements [Wu et al. 2010]. Khan et al. presented
tele-diagnostic powertracer [Khan et al. 2010], which uses device-wise power mea-
surements to determine the healthiness of an unresponsive node and deduce the most
likely failure cause. Alternatively, field diagnosis tools, such as Sensible Doctor [Cha
et al. 2008], enable users to monitor a subset of the deployed sensor networks in the
field. Those systems are useful for system maintenance and can be integrated into our
MC2 framework.

In the area of hardware design, a group at Berkeley has proposed a building block
approach to support the three phases in sensornet hardware platform development:
prototype, pilot and production [Dutta et al. 2008]. Our work complements theirs, as
we focus on the stages after hardware development.

The aforementioned systems cover issues associated with some stages of the WSN
life cycle. In contrast, we have identified a set of utilities to address user-related issues
throughout the entire WSN life cycle, and we have proposed a MC2 framework that
organizes those utilities in a way that improves the runtime efficiency of the individual
utility without compromising the performance of others. We note that our framework
is essentially a container, and it can be extended to incorporate many existing and
future tools, such as remote fault diagnosis utilities.

The proposed MC2 framework is similar to the concept of middleware. Middleware
provides an abstract layer between the application and operating system to improve
the extensibility and portability of application software. Most of WSN middlewares fo-
cus on data management (e.g., COUGAR [Bonnet et al. 2001], TINYDB [Madden et al.
2005], Mires [Souto et al. 2006], and PerLa [Schreiber et al. 2012]) and runtime node
programming or configuration (e.g., Impala [Liu and Martonosi 2003], Maté [Levis
and Culler 2002], Agilla [Fok et al. 2005], RemoWare [Taherkordi et al. 2013], and
REED [Fei and Magill 2012]). There are also other middlewares trying to improve the
simultaneousity of application programs [Horré et al. 2008] and support complex in-
network processing [Lachenmann et al. 2010]. We are not aware of any middleware
design that targets at reducing the levels of user intervention throughout the lifetime
of WSNs.

7. CONCLUDING REMARKS

A user-centric design is critical to reduce the amount of time for deploying and main-
taining large-scale long-running WSN applications. As such, we have proposed in this
paper a Multi-mode user-CentriC (MC2) framework. Based on our experiences gained
in our early explorative deployment, we have identified a set of utility programs that
can alleviate the burden imposed to users because of the poor user-node interface. As
those utility programs have different requirements on bootstrapping and duty cycles,
it is inefficient, if possible, to have them running simultaneously. Thus, we carefully
examined the utilities’ behaviors and their applicable scenarios, and designed the MC2

framework that can efficiently integrate them by clustering utility programs with sim-
ilar requirements into a mode. Our current system supports six modes, and they can be
switched easily by the Mode Management Component (MMC) in the MC2 framework.
Further, we have presented our design of a matching sensor node platform which con-
tains a user-friendly control panel to assist mode switching. We have implemented
and evaluated our MC2 framework in a long-term microclimate monitoring system de-
ployed at Mogao Grottoes. By using the MC2 framework, we were able to deploy 241
sensor nodes in 57 caves within one week, which is a significant improvement com-
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pared with our first round exploration where we spent the same amount of time only
to deploy 40 nodes in 10 caves. Meanwhile, we showed that the MC2 framework has
greatly reduced the maintenance overhead, and enabled field experts (in our case his-
torians) to maintain the network in the past five years.
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