
1

Message in a Sealed Bottle: Privacy Preserving
Friending in Mobile Social Networks

Lan Zhang, Member, IEEE, Xiang-Yang Li, Senior Member, IEEE, Kebin Liu, Member, IEEE,
Taeho Jung, Student Member, IEEE, and Yunhao Liu, Senior Member, IEEE

Abstract—Many proximity-based mobile social networks are developed to facilitate connections between any two people, or to help a
user to find people with a matched profile within a certain distance. A challenging task in these applications is to protect the privacy of
the participants’ profiles and communications.
In this paper, we design novel mechanisms, when given a preference-profile submitted by a user, that search persons with matching-
profile in decentralized mobile social networks. Meanwhile, our mechanisms establish a secure communication channel between the
initiator and matching users at the time when a matching user is found. These techniques can also be applied to conduct privacy
preserving keywords based search without any secure communication channel. Our analysis shows that our mechanism is privacy-
preserving (no participants’ profile and the submitted preference-profile are exposed), verifiable (both the initiator and any unmatched
user cannot cheat each other to pretend to be matched), and efficient in both communication and computation. Extensive evaluations
using real social network data, and actual system implementation on smart phones show that our mechanisms are significantly more
efficient than existing solutions.
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1 INTRODUCTION

A Boom in mobile hand-held devices greatly enriches the
social networking applications. Many social networking

services are available on mobile phones (e.g., WeChat, QQ,
Whatsup, JuiceCaster, MocoSpace and WiFace [31]) and ma-
jority of them are location-aware (e.g., FourSquare, BrightKite,
Loopt, Gypsii, meetMoi and frenzo). However, most of them
are designed for facilitating people connections based on their
real life social relationship [20], [26]. There is an increasing
difficulty of befriending new people or communicating with
strangers while protecting the privacy of real personal infor-
mation [29].

Friending and communication are two important basic func-
tions of social networks. When people join social networks,
they usually begin by creating a profile, then interact with
other users. The content of profile could be very broad, such
as personal background, hobbies, contacts, places they have
been to, etc. Profile matching is a common and helpful way
to make new friends with mutual interests or experiences, find
lost connections or search for experts [30]. Some applications
help a user automatically find users with similar profile within
a certain distance. For example, in the social network Col-
or, people in close proximity (within 50 meters) can share
photos automatically based on their similarity. MagnetU [1]
matches one with nearby people for dating and friend-making.
Small-talks [28] connects proximate users based on common
interests. These applications use profiles to facilitate friending
between proximate strangers and enable privacy preserving
people searching to some extent.

Observe that in practice the mobile Internet connection
may not always be available and it may incur high expense.
Thus, in this work we focus on proximity-based decentralized

mobile social networks (MSN) based on short-range wireless
technologies such as WiFi and Bluetooth, e.g. [23], [31].
However the increasing privacy concern becomes a barrier for
adopting MSN. People are unwilling to disclose personal pro-
files to arbitrary persons in physical proximity before deciding
to interact with them. The insecure wireless communication
channel and potentially untrusted service provider increase the
risk of revealing private information.

Friending based on private profile matching allows two
users to match their personal profiles without disclosing them
to each other. There are two mainstreams of approaches to
solve this problem. The first category treats a user’s profile as a
set of attributes and provides private attributes matching based
on private set intersection (PSI) and private cardinality of set
intersection (PCSI) [16], [27]. The second category considers
a user’s profile as a vector and measures the social proximity
by private vector dot product [6], [10], [35]. They rely on
public-key cryptosystem and homomorphic encryption, which
results in expensive computation cost and usually requires a
trusted third party. Multiple rounds of interactions are required
to perform the presetting (e.g. exchange public keys) and
private matching between each pair of users, which causes
high communication cost. Moreover, most of those protocols
are unverifiable: in the final step of these protocols, only
one party learns the matching result and there lack efficient
methods to verify the result. Furthermore, in these approaches,
matched users and unmatched users all get involved in the
expensive computation and learn their matching results (e.g.
profile intersection) with the initiator. These limitations hinder
the adoption of the SMC-related private matching methods in
MSN.

A secure communication channel is equally important but
often ignored in MSN. Although the matching process is



2

private, the following chatting may still be disclosed to the
adversary and more privacy may be leaked. One simple solu-
tion is to build a secure communication channel using public
key cryptosystem. This involves a trusted third party and key
management, which is difficult to manage in decentralized
MSN.

Facing these challenges, we first formally define the privacy
preserving verifiable profile matching problem in decentralized
MSN (Section 2). We then propose several protocols (Section
3) to address the privacy preserving profile matching and
secure communication channel establishment in decentralized
social networks without any presetting or trusted third party.
We take advantage of the common attributes between matching
users, and use it to encrypt a message with a secret channel
key in it. In our mechanisms, only a matching user can decrypt
the message. A privacy-preserving profile matching and secure
channel construction are completed simultaneously with only
one round of communication. The secure channel construction
resists the Man-in-the-Middle attack by any unmatched users.
Both precise and fuzzy matching/search in a flexible form
are supported. The initiator can define a similarity threshold,
the participant whose similarity is below the threshold learns
nothing. A sequence of well-designed schemes make our
protocols practical, flexible and lightweight, e.g., a remainder
vector is designed to significantly reduce the computation
and communication overhead of unmatched users. Our profile
matching mechanisms are also verifiable which thwart cheat-
ing about matching result. We also design a mechanism for
location privacy preserved vicinity search based on our basic
scheme. Compared to most existing works (Section 6) relying
on the asymmetric cryptosystem and trusted third party, our
protocols require no presetting and much less computation.
Our methods can also be applied to conduct efficient privacy
preserving keywords based search without any secure com-
munication channel, e.g., private image search and sharing
[33], [32]. To the best of our knowledge, these are the first
privacy-preserving verifiable profile matching protocols based
on symmetric cryptosystem.

We analyze the security and performance of our mechanisms
(Section 4). We then conduct extensive evaluations on the
performances of our mechanisms using large scale social net-
work data. Our results (Section 5) show that our mechanisms
outperform existing solutions significantly. We also implement
our protocols on laptop and mobile phone and measure the
computation and communication cost in real systems. In our
mobile-phone implementation, a user only needs about 1.3ms
to generate a friending request. On average, it only takes a
non-candidate user about 0.63ms and a candidate user 7ms to
process this request.

2 SYSTEM MODEL AND PROBLEM DEFINITION
2.1 System Model
A user in a mobile ad hoc social networking system usually
has a profile (a set of attributes). The attribute can be anything
generated by the system or input by the user, including his/her
location, places he/she has been to, his/her social groups,
experiences, interests, contacts, keywords of his/her blogs,
etc. According to our analysis of two well-known social

networking systems (Facebook and Tencent Weibo [2]), more
than 90% users have unique profiles. Thus for most users, the
complete profile can be his/her fingerprint in social networks.
The profile could be very useful for searching and friending
people. But it is also very risky to reveal the fingerprint to
strangers. Then, in most social networks, friending usually
takes two typical steps: profile matching and communication.
These applications cause a number of privacy concerns.

1) Profile Privacy: The profiles of all participants, including
the initiator, intermediate relay users and the matched
targets, should not be exposed without their consents. For
participants, protecting their profiles is necessary and can
reduce the barrier to participate in MSN. Note that, the
exact location information is also a part of the user’s
profile privacy.

2) Communication Security: The messages between a
pair of users should be transmitted through a secure
communication channel. We emphasize that the secure
communication channel establishment has been ignored
in most previous works which address the private profile
matching in decentralized MSN. In practice, after profile
matching, more privacy, even profile information, may be
exposed via communication through an insecure channel.

TABLE 1
An example profile.

Attribute Header Attribute Value
Name Jim Green
Sex Male
Age 30

Home Town New York City
University Columbia
Profession engineer

Interest basketball, computer game
Location 40.758663,-73.981329

In this paper, we address the verifiable privacy preserving
profile matching and secure communication channel estab-
lishment in decentralized MSN without any presetting or
trusted third party. Formally, each user vk in a social network
has a profile set Ak consisting of mk attributes, Ak =
{a1k, a2k, ..., a

mk

k }. Here the value aik, the i-th dimension of
the profile Ak, represents the i-th attribute of the user vk.
Each attribute consists of a header indicating its category (e.g.,
”profession” and ”interest”) and a value field. The number
of attributes is not necessary the same for different users.
Table 1 shows an example profile. An initiator vi represents
his/her desired user by a request profile with mt attributes as
At = {a1t , a2t , ..., a

mt
t }. Our mechanism allows the initiator to

search a matching user in a flexible way by constructing the
request profile in the form of At = (Nt, Ot). Here

• Nt consists of α necessary attributes. All of them are
required to be owned by a matching user;

• Ot consists of the rest mt−α optional attributes. At least
β of them should be owned by a matching user.

The acceptable similarity threshold of a matching user is

θ =
α+ β

mt
. (1)
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Let γ = mt−α−β. When γ = 0, a perfect match is required.
A matching user vm with a profile Am must satisfy that

Nt ⊂ Am and |Ot ∩Am| > β. (2)

When At ⊂ Am, vm is a perfect matching user. In a
decentralized MSN, a request will be spread by relays until
hitting a matching user or meeting a stop condition, e.g.
expiration time. Then the initiator vi and the matching user
vm decide whether to connect each other.

2.2 Adversary Model

In the profile matching phase, if a party obtains one or
more users (partial or full) attribute sets without their explicit
consents, it is said to conduct user profiling [16]. Two types
of user profiling are taken into consideration.

In the honest-but-curious (HBC) model, a user tries to
learn more profile information than allowed by inferring from
only the information he/she receives but honestly follow the
mechanism. In a malicious model, an attacker tries to learn
more profile information using background knowledge beyond
his/her received data or by deliberately deviating from the
mechanism. In this work we consider the following powerful
malicious attacks.

Definition 1 (Dictionary profiling): A powerful attacker
who has obtained the dictionary of all possible attributes tries
to determine a specific user’s attribute set by enumerating or
guessing all combinations of attributes.

Definition 2 (Cheating): In the process of profile matching,
a participant may cheat by deviating from the agreed protocol,
e.g., cheat the initiator with a wrong matching conclusion.
Most existing private profile matching approaches are vulner-
able to the dictionary profiling attack and cheating.

In the communication phase, an adversary can learn the
messages by eavesdropping. The construction of a secure
channel may suffer the Man-in-the-Middle (MITM) attack.

There are also other saboteur attacks. In this work, we focus
on addressing above attacks. For example, the deny of service
(DoS) attack can be prevented by restricting the frequency of
relaying requests from the same user. Some saboteur behaviors
are precluded, such as inputting fake attributes, altering or
dropping the requests or replies.

2.3 Design Goal

The main goal and great challenge of our mechanism is
to conduct efficient matching against the user profiling and
cheating, as well as establish a secure communication channel
thwarting the MITM attack in a decentralized manner. In our
mechanism, a user’s privacy is protected from the user whose
similarity is not up to his/her defined threshold. Specifically,
we define different privacy protection levels PPL(Ak, vj) of
a profile Ak of vk against a user vj .

Definition 3 (Privacy Protection Level): Four different pri-
vacy protection levels will be discussed in this work:

PPL0: If PPL(Ak, vj) = 0, vj can learn the profile Ak.
PPL1: If PPL(Ak, vj) = 1, vj can learn the intersection

of Ak and Aj .

PPL2: If PPL(Ak, vj) = 2, vj can learn the α necessary
attributes of Ak and the fact that at least β optional attributes
are satisfied. Specially, when α = 0, vj learns the fact that the
cardinality of Ak

∩
Aj exceeds the threshold.

PPL3: If PPL(Ak, vj) = 3, vj learns nothing about Ak.

We design our mechanism to achieve PPL2 against match-
ing users and PPL3 against unmatched users in both HBC
and malicious model and thwart cheating. In mobile social
networks, our private profile matching and secure communi-
cation channel establishment mechanisms are also designed
to be lightweight and practical, i.e., low computation and
communication cost, requiring no presetting, server and trusted
third party. We also optimize the mechanism to reduce the
overhead for unmatched users. Furthermore, in our mechanism
human interactions are needed only to decide whether to
connect their matching users.

3 PRIVACY PRESERVING PROFILE MATCHING
AND SECURE COMMUNICATION

Here we present our lightweight privacy preserving flexible
profile matching in decentralized mobile social networks with-
out any presetting or trust third party. A secure communication
channel is simultaneously constructed between matching users.
In fact, this mechanism can also be applied to other social
networks without a trust server or services provider.

3.1 Basic Mechanism
Observe that the intersection of the request profile and the
matching profile is a nature common secret shared by the
initiator and the matching user. Our main idea is to use the
request profile as a key to encrypt a message. Only a matching
user, who shares the secret, can decrypt the message efficiently.

Figure 1 illustrates our basic privacy preserving search and
secure channel establishment mechanism. Here, we first draw
an outline of how the initiator creates a request and how a
relay user handles the request.

The initiator starts the process by creating a request profile
characterizing the matching user and a secret message con-
taining a channel key for him/her. The request profile is a set
of sorted attributes. Then he/she hashes the attributes of the
request profile one by one to produce a request profile vector.
A profile key is generated based on the request profile vector
using some publicly known hashing function. The initiator
encrypts the secret message with the profile key. A remainder
vector of the profile vector is yield for fast exclusion by a
large portion of unmatched persons. To support a flexible
fuzzy search requiring no perfect match, the initiator can
define the necessary attributes, optional attributes and the
similarity threshold of the matching profile. And a hint matrix
is constructed from the request profile vector according to
the similarity definition, which enables the matching person
to recover the profile key. In the end, the initiator packs the
encrypted message, the remainder vector and the hint matrix
into a request package and sends it out. Note that the required
profile vector will not be sent out.

When a relay user receives a request from another user,
he/she first processes a fast check of his/her own profile vector
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Fig. 2. The procedure to generate the profile key and
remainder vector with a sample user profile.

with the remainder vector. If no sub-vector of his/her profile
vector fits the remainder vector, he/she knows that he/she
is unmatched and will forward the request to other relay
users immediately. Otherwise, he/she is a candidate target and
will generate a candidate profile vector set by some linear
computation with his/her profile and the hint matrix. Then a
candidate profile key set is obtained. In the basic mechanism,
If any of his/her candidate keys can decrypt the message
correctly, he/she is a matching user and the searching and
secret key exchange complete. Otherwise, he/she just forwards
the request to other relay users.

3.2 Profile Vector and Key Generation

To protect the profile privacy and support a fuzzy search, a
cryptographic hash (e.g. SHA-256) of the attribute is adopted
as the attribute equivalence criterion in this mechanism. How-
ever, due to the avalanche effect, even a small change in the
input will result in a mostly different hash. Although consistent
attribute header (category) can be provided by the social
networking service, the attribute values are created by users.
Some inconsistency may be caused by letter case, punctuation,
spacing, etc.. For example, ”basketball” and ”Basketball”
generate totally different cryptographic hashes. So a profile
normalization is necessary before the cryptographic hashing
to ensure two attributes which are considered equivalent to
yield the same hash value. Words normalization has been
well studied in research areas like search engines and corpus
management [24]. In our mechanism, we use some common
techniques to normalize the users profile, including removing
whitespace, punctuation, accent marks and diacritics, convert-
ing all letters to lower case, converting numbers into words,
text canonicalization, expanding abbreviations, converting the
plural words to singular form. After the profile normalization,
most inconsistences caused by spelling and typing are elimi-
nated. The semantic equivalence between two different words
are not in this paper’s consideration. For some extremely noisy
text or to achieve semantic equivalence, more sophisticated
methods can be applied, e.g., [24], [19] and [9].

Assume the cryptographic hash function is H which yields
n-bit length hash value. With a sorted normalized profile Ak =
[a1k, a

2
k, ..., a

m
k ]T , a profile vector is

Hk = H(Ak) = [h1
k, h

2
k, ..., h

m
k ]T . (3)

Here hi
k = H(aik). A profile key is created with Hk,

Kk = H(Hk). (4)

Figure 2 shows the profile vector and key generation of an
example profile in Table 1. With the key of the required profile,
the initiator encrypts the secret message using a symmetric en-
cryption technique like Advanced Encryption Standard (AES).
Any person who receives it tries to decrypt the secret message
with his/her own profile key. Only the exactly matching person
will decrypt the message correctly.

3.3 Remainder Vector and Hint Matrix

So far, with the profile key, we have realized a naive private
profile matching and secure channel establishment. However,
the naive mechanism has some flaws making it unpractical.

1) The search is not flexible. The initiator cannot query any
subset of other’s profile. For example, he/she need to find
a ”student” studying ”computer science” regardless of the
”college”.

2) A perfect matching is required and no fuzzy search is
supported. In most cases, the initiator need only find some
person with profile exceeding the required similarity
threshold to the requested profile.

3) All participants must decrypt the message, although most
of them hold wrong keys. It wastes the computation
resource and increases the search delay.

Improving the naive basic mechanism, our new mechanism
allows the initiator to search a user in a flexible way At =
(Nt, Ot), as described in Section 2.1. We use a Remainder
Vector for fast excluding most unmatched users. And a hint
matrix is designed to work with the remainder vector to
achieve efficient free-form fuzzy search.
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3.3.1 Remainder Vector
Assume that there are mt attributes in the request profile, p
is a prime larger than mt. A remainder vector Rk consists of
the remainders of all hashed attributes in the input Hk divided
by p, as illustrated in Fig. 2.

Rk = [h1
k mod p, h2

k mod p, ..., hm
k mod p]T . (5)

Then the following theorem is straightforward.
Theorem 1: Consider two attributes’ hashes hi = H(ai)

and hj = H(aj), remainder ri ≡ hi mod p and remainder
rj ≡ hj mod p. If ri ̸= rj , then hi ̸= hj .

Assume that the remainder vector of the required profile At

is Rt = [r1t , r
2
t , ..., r

mt
t ]T , and a relay user’s profile vector is

Hk. To use the remainder vector Rt to conduct a fast check,
a relay user should firstly calculates mt candidate attribute
subsets Hk(r

i
t) fitting each rit. Here ∀hx

k ∈ Hk(r
i
t) : hx

k

mod p = rit, i.e., attributes in Hk(r
i
t) yields the same

remainder rit when divided by p.
Secondly, a combination of one element from each candi-

date attribute subset forms a profile vector of the relay user. If
the candidate attribute subset Hk(r

i
t) is ∅, the corresponding

element in the combination will be set to unknown, which
means that the relay user fails to meet the required attribute
ait according to Theorem 1.

Thirdly, the relay user checks if he/she is a candidate
matching user of the request by determining that if there exist
at least one combination, denoted by Hc, which satisfies the
following:

1) The α necessary attributes are all known, i.e.

Hk(r
i
t) ̸= ∅,∀i ≤ α; (6)

2) The number of unknown elements don’t exceed γ, i.e.

|{Hk(r
i
t) | α < i ≤ mt, Hk(r

i
t) = ∅}| ≤ γ; (7)

3) Since Ht and Hk are both sorted, the elements of Hc

should still keep the order consistent with Hk, i.e.

∀hx
k ∈ Hc, h

y
k ∈ Hc.

hx
k ∈ Hk(r

i
t), h

y
k ∈ Hk(r

j
t ), i < j ⇒ x < y.

(8)

We call Hc a candidate profile vector. Without satisfying the
three conditions, a profile is not possible to match the request
and will be excluded immediately.

In a fuzzy search, during the fast checking procedure, if
there is no candidate profile vector that can be constructed
by the relay user’s profile vector, then he/she is unmatched
and he/she can forward the package. An ordinary relay user
commonly has only dozens of attributes, so there won’t be
many candidate profile vectors. Using the remainder vector,
quick exclusions of a portion of unmatched users can be made.

3.3.2 Hint Matrix
A hint matrix is constructed to support a flexible fuzzy search.
It describes the linear constrain relationship among the β + γ
optional attributes. With its help a matching user exceeding
the similarity threshold can recover γ unknown attributes, so
as to generate the correct profile key. Note that when a perfect
matching user is required, no hint matrix is needed.

The constrain matrix with γ rows and γ + β columns is:

Cγ×(γ+β) = [Iγ×γ , Rγ×β ]. (9)

Here matrix I is a γ dimensional identity matrix, R is a matrix
of size γ×β, each of its elements is a random nonzero integer.

Multiplying the constrain matrix to the optional attributes
of the required profile vector, the initiator gets a matrix B:

B = C × [hα+1
t , hα+2

t , ..., hmt
t ]T (10)

Then the hint matrix M is defined as matrix C, followed by
matrix B, i.e.,

M = [C,B]. (11)

When γ > 0, the initiator generates the hint matrix and
sends it with the encrypt message and the remainder vector.

In a fuzzy search, after the fast check, if the relay user is a
candidate matching user, he/she constructs a set of candidate
profile vector Hc with unknowns. By definition of the candi-
date profile vector, each Hc has no more than γ unknowns,
and any unknown hi

c, which is the i-th element of Hc, has
i > α. Now, the unknowns of a candidate profile vector can
be calculated by solving a system of linear equations:

C × [hα+1
c , hα+2

c , ..., hmt
c ]T = B (12)

Equivalently, we have

[I,R]× [hα+1
c , hα+2

c , ..., hmt
c ]T = B. (13)

This system of equations has equal to or less than γ unknowns.
It has a unique solution. With the solution, a complete candi-
date profile vector H ′

c is recovered. For each H ′
c, a candidate

key Kc = H(H ′
c) can be generated. If any of the relay

user’s candidate keys decrypts the message correctly, he/she
is a matching user and gets the encrypted secret. Else, he/she
forwards the request to the next user.

3.4 Location Attribute and Its Privacy Protection

In localization enabled MSN, a user usually searches matching
users in vicinity. Most systems require a user to reveal his/her
own location, which violates the user’s privacy [18]. There
are some work dedicated to privacy-preserving proximity
discovering, e.g., Sharp [17], [36]. Typically, a vicinity search
is defined as follows: given a user vi’s current location li(t)
at time t and his/her vicinity range D, if a user vk is in his
vicinity then distance(li(t), lk(t)) ≤ D should be satisfied. In
our mechanism, we consider location as a dynamic attribute
which will be updated while the user moves, and design a
location privacy preserving vicinity search method compatible
with our private profile matching mechanism by converting the
distance measuring to location attribute matching. To generate
the location attributes, we use lattice based hashing to hash
a user’s current location (e.g., GPS coordinates) and his/her
vicinity region. Then a private vicinity search can be easily
conducted via our fuzzy search scheme with the help of the
hint matrix. The dynamic attribute also improves the privacy
protection for static attributes.
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Fig. 3. Lattice-based location hash.

3.4.1 Lattice based Location Hashing
Our system maps the two-dimensional location to the hexago-
nal lattice. The lattice point set is a discrete set of the centers
of all regular hexagons, as the dots shown in Fig. 3. The lattice
is formally defined as

{x = u1a1 + u2a2 | (u1, u2) ∈ Z2} (14)

Here a1, a2 are linearly independent primitive vectors which
span the lattice. Given the primitive vectors a1, a2, a point
of the lattice is uniquely identified by the integer vector u =
(u1, u2). There are infinite choices for a1, a2. Let d denote
the shortest distance between lattice points, for simplicity, we
choose the primitive vectors as presented in Figure 3:

a1 = (d, 0); a2 = (
1

2
d,

√
3

2
d). (15)

Given a geography location as the origin point O and
the scale of the lattice cell d by the application, with the
lattice definition, a location can be hashed to its nearest lattice
point. Any two locations hashed to the same lattice point are
inside a single hexagonal lattice cell, and they are separated
by a bounded distance d. Then a user vk’s current vicinity
region can be hashed to a lattice point set, Vk(O, d, lk(t), D),
consisting of lattice points, i.e. the hash of lk(t), and other
lattices points whose distances to the center lattice point are
less than the range D.

3.4.2 Location Privacy Preserved Vicinity Search
Intuitively, given the distance bound to define vicinity, if
two users vi and vk are within each other’s vicinity, the
intersection of their vicinity regions Vi and Vk will have a
proportion no less than a threshold Θ. Here Θ is determined by
min area(Vi

∩
Vk)

area(Vi)
when distance(li(t), lk(t)) ≤ D. Typically,

if the vicinity region is a circle, Θ = 0.4. In our mecha-
nism, the initiator calculates his/her vicinity lattice point set
Vi(O, d, li(t), D). If a user vk is in his/her vicinity, then vk’s
vicinity lattice point set Vk(O, d, lk(t), D) should satisfy the
requirement:

θk =
|Vi(O, d, li(t), D)

∩
Vk(O, d, lk(t), D)|

|Vk(O, d, lk(t), D)|
≥ Θ (16)

In the example in Fig. 3, user vA’s vicinity range D = 3d.
The lattice points within the red slashed hexagons constitute
VA(O, d, lA(t), D) and the lattice points within the blue back

Protocol 1: Privacy Preserving Profile Matching

1) The initiator encrypts a random number x and a public
predefined confirmation information in the secret message
EKt(confirmation, x) by the required profile key Kt.
And he/she sends the request out.

2) A candidate relay user can verify whether he/she decrypts
the message correctly by the confirmation information. If
he/she does not match, he/she just forwards the request
to the next user. If he/she is matching, he/she can reply
the request by encrypting the predefined ack information
and a random number y along with any other message
(e.g. the intersection cardinality) by x, say Ex(ack, y),
and sends it back to the initiator.

slashed hexagons constitute VB(O, d, lB(t), D). The purple
grid region is the intersection of vicinity regions of vA and
vB . In this case, θB = 9

19 , which is larger than Θ (0.4), hence
vB is in the vicinity of vA. When vB moves out of the vicinity
of vA, θB will become smaller than Θ. In practice, the hash
function (i.e., the lattice) is defined by the application and
shared by all devices. The initiator can adjust the parameter
D to change the cardinality of the vicinity lattice point set to
a suitable size.

To conduct location privacy preserved vicinity search, the
initiator won’t send his/her vicinity lattice point set directly.
Using the sorted lattice points, he/she generates a dynamic
profile key, a dynamic remainder vector and a dynamic hint
matrix in the same way as processing other attributes. So
a vicinity search works as a fuzzy search with similarity
threshold Θ. Only participants in his/her vicinity who has a
certain amount of common lattice points with him/her can
generate the correct dynamic profile key with the help of the
dynamic remainder vector and hint matrix.

3.4.3 Location Based Profile Matching
Compared to static attributes like identity information, location
is usually a temporal privacy. With the dynamic key generated
from location information, we can improve the protection of
a user’s static attributes. When constructing profile vector of
a user, we can hash the concatenation of each static attribute
and his/her current dynamic key instead of directly hash static
attributes. So the hash values of the same static attribute are
completely changed when user update his/her location. It will
greatly increase the difficulty for the malicious adversary to
conduct dictionary profiling. However, it won’t bring much
more computation for ordinary user because of quite limited
lattice points in his/her vicinity range.

3.5 Privacy-Preserving Profile Matching Protocols
We are now ready to present our privacy preserving profile
matching protocols. Here we present three different protocols
that achieve different levels of privacy protection.

3.5.1 Protocol 1
Under Protocol 1, an unmatched user doesn’t know anything
about the request. The matching user knows the intersection
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Protocol 2: Privacy Preserving Profile Matching

1) The initiator encrypts a random number x in the secret
message EKt(x) by the request profile key Kt.

2) A candidate matching user cannot verify whether he/she
decrypts the message correctly. Let the candidate profile
key set be {K1

c ,K
2
c , . . . ,K

z
c }. He/she decrypts the mes-

sage in the request with each candidate profile key to get
a set of numbers, say U = {uj | uj = DKj

c
(EKt(x))}.

Then he/she encrypts the predefined ack information and
a random number y by each uj as the key, and sends
the acknowledge set {Euj (ack, y)} to the initiator, for a
public ack.

3) The initiator excludes the potential malicious repliers
whose response time exceeds the time window or the
cardinality of reply set exceed the threshold. He/she
decrypts the replies with x. If he/she gets a correct ack
information from a reply, the corresponding replier is a
matching user.

of the required profile and his/her own profile after Step 1
in the HBC model, and he/she can decide whether to reply.
The initiator doesn’t know anything about any participant until
he/she gets a reply. With replies, he/she knows the matching
users and even the most similar replier by the cardinality
information. Then he/she can start secure communication with
a matching user encrypted by x+y or with a group of matching
users encrypted by x. However, in malicious model, if the
matching user has a dictionary, he/she can learn the whole
request profile by the recovered profile vector.

3.5.2 Protocol 2

To prevent malicious participants, we design Protocol 2, which
is similar to Protocol 1, but it excludes the confirmation
information from the encrypted message.

Under Protocol 2, after the first round of communication,
the participants won’t know anything about the request in
both HBC model and malicious model. The initiator knows
who are the matching users and even the most similar one
according to the replies. Then the initiator can start secure
communication with a matching user protected by the key x+y
or with a group of matching users protected by x. In malicious
model, if a participant has a dictionary of the attributes, he/she
may construct a large candidate profile key set and send it to
the initiator. The main difference between an ordinary user
and a malicious user with a dictionary is the size of their
attribute space. However, an ordinary user with about dozens
of attributes can make a quick reaction and reply a small size
acknowledge set. While it takes much longer for a malicious
user due to a large number of candidate attribute combinations.
So the initiator can identify the malicious repliers by response
time and the cardinality of reply set. In practice, the response
time window should be less than 1 second based on the
experiments with our mobile social networking system WiFace
[31]. According to our real data based evaluation, the threshold
of cardinality could be set to 12, as shown in Fig. 8.

Protocol 3: User-defined Privacy Preserving Profile Matching

1) The initiator encrypts a random number x in the secret
message without any confirmation information by the
required profile key, say EKt(x).

2) A candidate matching user cannot verify whether he/she
decrypts the message correctly. He/she selects a set of
candidate profile {A1

c , A
2
c , . . . , A

z
c} which satisfies that

S(
∪z

i=1 A
i
c) ≤ φ. And he/she generates the correspond-

ing candidate profile keys {K1
c ,K

2
c , . . . ,K

z
c }. He/she

decrypts the message in the request with each candidate
profile key to get a set of numbers, say U = {uj | uj =
DKj

c
(EKt(x))}. Then he/she encrypts the predefined ack

information and a random number y by each uj , and
sends back the acknowledge set {Euj (ack, y)} back to
the initiator.

3) The initiator excludes the malicious replier whose re-
sponse time exceeds the time window or the cardinality
of reply set exceed the threshold and decrypts the replies
with x. If he/she gets a correct ack information from a
reply, the corresponding replier is matching.

Using our profile matching mechanism, an adversary cannot
build an attribute dictionary in our social networking system.
If an attribute dictionary is constructed using other sources,
e.g., other similar social networking systems, the space of
attributes are mostly very large, which makes the dictionary
profiling infeasible. Especially in the localizable social mobile
social networks, the vast dynamic location attribute will greatly
increase the difficulty of dictionary profiling. However, there
still may exist a special case that the attribute space is not large
enough in some social networks. Consider an unlikely case
that, an adversary constructs the attribute dictionary from other
similar social networking system and the the attribute space
is not large enough. In this case, in Protocol 1, the request
profile may be exposed via dictionary profiling by malicious
participants. Although Protocol 2 protects the request profile
from any participants, a malicious initiator may learn the
profile of unmatching repliers.

3.5.3 Protocol 3
To prevent the dictionary profiling by malicious initiator, we
improve Protocol 2 to Protocol 3 which provides a user person-
al defined privacy protection. Here, we use attribute entropy
to represent the amount of privacy information contained in
an attribute, also the severity of the attribute value leakage.

Definition 4 (Attribute Entropy): For an attribute ai with ti

values {xj : j = 1, . . . , ti}. P (ai = xj) is the probability
that the attribute ai of a user equals xj . The entropy of the
attribute ai is

S(ai) = −
ti∑

j=1

P (ai = xj) logP (ai = xj). (17)

Definition 5 (Profile Entropy): The entropy of profile Ak is

S(Ak) =

mk∑
i=1

S(ai). (18)
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Especially, when the ti values of ai have equal probability,
the entropy of the attribute ai is S(ai) = log ti. In this case
the entropy of the profile Ak is S(Ak) = log

∏mk

i=1 t
i.

Intuitively, the larger the entropy of a profile, the more
severe the leakage of the profile value. Taking attributes
”gender” and ”birthday” as example, ”gender” has smaller
entropy and less privacy-sensitive, while ”birth day” has larger
entropy and is usually more privacy-sensitive. So, the leakage
of ”birthday” value is more severe than the leakage of ”gender”
value. A participant can determine his/her personal privacy
protection level by giving an acceptable upper limit φ of
profile leakage, which is measure by the entropy of the leaked
profile. Based on the user defined protection level, Protocol 3
is φ-entropy private for each user.

Definition 6 (φ-Entropy Private): A protocol is φ-entropy
private when the entropy of leaked profile is not greater than
the upper limit φ:

S(Leak(Ak)) ≤ φ. (19)

Here the Leak(Ak) indicates the set of leaked attributes of
profile Ak.

A user can use k-anonymity (thus φ = log n
k ) or use the

most sensitive attribute (thus φ = min(S(ai))) to decide φ.
The parameter φ is decided by each user. Here we suggest
two options to determine φ.
(1) K-anonymity based. To prevent from being identified by

disclosed attributes, the user will only send out messages
protected by the profile key generated from the subset of
attributes which at least k users own the same subset. Let
a subset of Ak be As

k = a1, . . . , al. Suppose that the ti

values of ai have equal probability, then there are n∏l
i=1 ti

users who are expected to own the same subset. If the
user require that n∏l

i=1 ti
≥ k, then log

∏l
i=1 t

i ≤ log n
k ,

ie S(As
k) ≤ log n

k . So the parameter φ could be log n
k . In

this way, we can approximate k-anonymity privacy.
(2) Sensitive attributes based. The user can determine the

sensitive attributes which must not be disclosed according
to the current context. Let the set of sensitive attributes
defined by user vk is As

k, then φ = min(S(ai)), where
ai ∈ As

k.
Protocol 3 is privacy-preserving when the initiator is not

malicious. and it is φ-private for each participant even when
the initiator can conduct a dictionary profiling.

Note that, for all three protocols, each request has a valid
time. An expired request will be dropped. And each user
(identified by his/her network ID) has a request frequency
limit, all participants won’t reply the request from the same
user within a short time interval. Other saboteur attacks, for
example DoS attack with fake identities and inputting fake
attributes, could be prevented using some existing methods,
and they are out of scope of this work.

3.6 Establishing Secure Communication Channel
As presented in the profile matching protocols, the random
number x generated by the initiator and y generated by a
matching user have been exchanged secretly between them,
which is resistant to the Man-in-the-Middle attack from any

TABLE 2
The privacy protection level (PPL) of our protocols. vi is

the initiator, vm is a matching user and vu is an
unmatching user. Ai, Am and Au are their corresponding
profiles. v′i is a malicious initiator with a profile dictionary.

v′p is a malicious participant with a profile dictionary
eavesdropping the communication. NC stands for

non-candidate, and CD stands for candidate. PPL is
defined in Definition 3.

(a) In HBC model.
PPL (AI , vM ) (AI , vU ) (AM , vI) (AU , vI)

Protocol 1 1 3 2 3
Protocol 2 3 3 2 3
Protocol 3 3 3 2 3

PSI 3 3 1 1
PCSI 3 3 |AI ∩ vU | |AI ∩ vU |

(b) In Malicious model.
PPL Protocol 1 Protocol 2 Protocol 3

(AI , v
′
P ) 0 3 3

(AM , v′I) 2 2 φ-entropy
(AM , v′P ) 2 3 3

(AU , v
′
I) 3 3 for NC

2 for CD
3 for NC

φ-entropy for CD
(AU , v

′
P ) 3 3 3

unmatched users. A pair of matching users can use Hash(x⊕
y) as their communication key. Furthermore, our mechanism
also discovers the community consisting of users with similar
profile as the initiator and establish the group key x for secure
intra-community communication.

4 SECURITY AND EFFICIENCY ANALYSIS

In this section, we analyze the security and performance
of our profile matching and secure communication channel
establishing mechanism.

4.1 Security and Privacy Analysis
4.1.1 Profile Privacy
During the generation of the profile key, we use the hash value
(with SHA-256) of the combination of the static attribute and
the dynamic attribute (i.e. location). The SHA-256 is colli-
sions and preimage resistance without any successful existing
attack. Moreover, the dynamic attribure greatly increases the
protection of the static attribute. We use 256-bit-key AES as
the encryption method, which is infeasible to break directly.
The 256-bit profile key is used as the secret key to encrypt
the message by AES. Only the encrypted message will be
transmitted, and no attribute information will be transmitted
in any data packets. Therefore no user can obtain other user’s
attribute hash to build a dictionary. To acquire the profile
information of the initiator or other participants the attacker
needs to decrypt the request/reply message correctly and
confirm the correctness. This is extremely difficult due to the
choice of SHA-256, 256-bit-key AES and the random salt x.

In the HBC model only users owning matching attributes
can decrypt each other’s messages correctly. Unmatched user
cannot obtain any information from the encrypted message.
Table 2(a) presents the protection level of our protocols, which



9

Fig. 4. Probability that vk ’s profile matrix contains a candidate profile matrix.
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is defined in Definition 3, in the HBC model. Compared to
the existing PSI and PCSI approaches, our protocols provide
Level 2 privacy protection for matching users and don’t leak
any information to unmatched users.

In the malicious model, the adversary cannot build an
attribute dictionary with our system. But we still consider
the situation that an adversary constructs the dictionary from
other sources, e.g., other similar social networking systems. In
practice the attribute could be the user’s profession, interest,
race, favorite song, etc. So in most cases, the cardinality m
of the dictionary is very large, which makes the dictionary
profiling difficult. With a remainder vector, it takes an ad-
versary (mp )

mt guesses to compromise a user’s profile with
mt attributes. Here p is a small prime number like 11, while
for most social networking systems m is very large. For
example, in Tencent Weibo, we found that m ≃ 220 and
the average attribute number of each user is 6. When the
adversary tries to guess a user’s profile by brute force, it
will take about 2100 guesses. If considering keywords of a
user, m is even much larger. Especially in localizable MSN,
the vast dynamic location attribute will greatly increase the
attribute set and make the dictionary profiling more infeasible.
There is an unlikely case that the dictionary size is not large.
Table 2(b) shows the protection level of our protocols in this
case. Protocol 1 cannot protect the initiator’s privacy from
the dictionary profiling. But it provides Level 2 privacy for
replying matching users and Level 3 privacy for other users.
Protocol 2 provides Level 3 privacy for the initiator. It also
provides Level 3 privacy for all participants against any other
persons except the initiator. Only if the initiator is an adversary
with the dictionary, he/she may compromise the candidate
user’s privacy. Protocol 3 still provides Level 3 privacy for
the initiator and incardinate users, and Level 3 privacy for the
candidate users against any other person except the initiator.
Moreover, it provides personal defined φ-entropy privacy for
all candidate users against a malicious initiator.

4.1.2 Communication Security
Our protocols realize secure key exchange between matching
users based on their common attributes. The shared secret key
is protected by the profile key, only the user who owns the
matching attributes can generate the same profile keys. As

the security analysis of our protocols, Protocol 2 and 3 can
construct a secure communication between a matching user
and the initiator against any other unmatched adversary in
both HBC and malicious model. So our secure communication
channel establishment between matching users thwarts the
MITM attack from any unmatched users.

4.1.3 Verifiability
In majority of existing profile matching approaches, only one
party learns the true result, and he/she tells the other party the
result. There lacks an efficient way for the other party to verify
the result. Our protocols are verifiable and resists cheating. In
our protocols, matching users are required to reply Ex(ack, y).
In the HBC model, only the matching user can get the correct
x. An unmatched user cannot cheat the initiator to pretend
to be matched. Consequently, the initiator can only obtain
the correct y of the matching user. So both the initiator and
participants cannot cheat each other. In the malicious model, it
takes an adversary with a dictionary much longer time to guess
the correct key. Hence a nonmalicious user can distinguish
the adversary by his/her reply delay. So no cheating can be
conducted successfully with our protocols.

4.1.4 Other Attacks
There are other saboteur attacks. The case that the initiator
sends requests frequently to profile the network or conduct the
deny of service (DoS) attack can be prevented by restricting
the frequency of relaying and replying requests from the same
user. Note that, some saboteur behaviors are not in the concern
of this work, such as alter or drop the requests or replies.

4.2 Performance Analysis
Theorem 2: The expected number of candidate profile vec-

tor of Hk is(
mk

α+ β

)
×
(
1

p

)α+β

=
(α+ β)!

(α+ β)!(mk − α− β)!
×
(
1

p

)mt

.

(20)
Proof: Omitted due to space limitation.

Theorem 3: The cardinality of the request profile vector Ht

is mt. The cardinality of the profile vector Hk is mk. The
probability that Hk contains a candidate profile vector which
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satisfies the order constraint and yields the same remainder
vector as Ht is

ρmtmk
= ωmt(

mk−mt∑
i=1

(
i+mt − 1

i

)
(1− ω)i), (21)

mt ≥ 1,mk ≥ mt.

Proof: Omitted due to space limitation.

4.2.1 Computational Cost
For an initiator, it takes O(mt logmt) operations for sorting
attributes, mt+1 hashing operations for profile key generation
and mt modulo operations for remainder vector generation.
γ(γ + β) operations are needed to calculate the hint matrix if
the required similarity θ < 100%. One symmetric encryption
is needed with the profile key.

For a participant vk, it takes O(mk logmk) operations for
sorting its attributes, mk hashing for profile vector generation
and mk modulo operations for remainder calculation. After
fast checking by remainder vector, if a participant vk is not
a candidate user, no more computation is need. If vk is a
candidate user, let the number of his candidate profile vector
be κk. It takes this user κk hashing to generate candidate
profile keys. If there is a hint matrix, user vk needs to solve κk

γ(γ+β)-dimension linear equation systems. The computation
cost is O(κkm

3
t ). In the end, κk symmetric decryptions with

the profile key. According to Theorem 2, the expected number

of the candidate profile key is ε(κk) =
(
mk

α+β

)
×

(
1
p

)α+β

.
Although the whole attribute set of a social networking system
is large, the attribute number of each user usually is very small.
For example, in Tencent Weibo the average attribute number
is 6 and the maximum number is 20. Then if α+β = 6, even
a large mk = 20 and small prime number p = 11 result in a
very small ε(κk) = 0.02. So it takes very small computation
cost even for a candidate user. Based on Theorem 3, Figure 4
presents the number of candidate users. It shows that the
expected candidate users is only a small portion of all users
and the portion decreases greatly with the increase of mt and
p. In fact, there is a tradeoff behind the choice of p. Increasing
p could reduce the cost of non-malicious users but it may
be considered that larger p will weaken the security due to
the decreased difficulty of dictionary profiling. Our testing
and analysis show that even a small p, e.g., p = 11, can
significantly reduce the number of candidate users to a very
small one, as shown in Figure 4, with little hurt to the security.
So an initiator can easily choose a small p to efficiently control
the amount of candidate users as well as achieve the secure
protection of profile privacy.

In implementation, we use SHA-256 as the hashing method
and AES as the symmetric encryption method. The data
processing performance of SHA-256 is 111MB/s for a single-
threaded implementation on an Intel 1.83GHz processor in
32-bit operation system. Furthermore, for all users the sorting
and hashing results are calculated once and used repetitively
until the attributes are updated, e.g., the location changes. AES
performs well on a wide variety of hardware, from 8-bit smart
cards to high-performance computers. The throughput of AES

is about 60MB/s on a 1.7GHz processor and about 400MB/s
on Intel i5/i7 CPUs. Compared to the existing approaches, we
don’t use an asymmetric-key cryptosystem and the remainder
vector can significantly reduce the computation of unmatching
users. In all, our protocol are computationally efficient.

4.2.2 Communication Cost
In our protocols there isn’t any pre-operation for key exchange
or secure channel construction. To conduct profile matching
with all users, the initiator only need one broadcast to send
the request to all participants. The request consists of a 32mt

bit remainder vector and a 256 bit encrypted message. If the
required similarity θ < 100%, there is also a 32γ(γ+β)+256γ
bit hint matrix. The size of the request message is at most
(1 − θ)32m2

t + (288 − 256θ)mt + 256 bits. For example,
if a user has 6 attributes in average and 20 attributes at
most. To search a 60% similar user, the request is about
190B in average and 1KB at most. In Protocol 1, only the
matching user will reply the request. So the transmission cost
of Protocol 1 is one broadcast and O(1) unicasts. In Protocol
2, only the candidate matching user will reply the request.
So the transmission cost of Protocol 2 is one broadcast and
O(n ∗ ( 1p )

mtθ) unicasts. For example, when p = 11, mt = 6,
θ = 0.6, there are only about 1

5610 fraction of users will reply.
And as analyzed in Section 4.2.1, for an ordinary candidate the
expected number of candidate profile keys is very small, hence
the communication overhead is small too (the mean cost is less
than 256 bit). In Protocol 3, the communication cost of reply
is even smaller than Protocol 2 because of the personal privacy
setting. Note that a reply in all three protocols is only 32Byte.
So the communication cost of our protocols is quite small.
This makes our protocols suitable for wireless communication
environment, for example the mobile social networks.

4.2.3 Further Comparison With Related Work
We then compare the computation cost and communication
cost between our protocol and PSI and PCSI based approaches.
The computation time comparison with dot product based
approach presented in [6].

First we define the basic operations of other asymmetric
cryptosystem based approaches:

• M24: 24-bit modular multiplication;
• M1024: 1024-bit modular multiplication;
• M2048: 2048-bit modular multiplication;
• E1024: 1024-bit exponentiation;
• E2048: 2048-bit exponentiation.

Then we define the basic operation in our protocol:
• H: one SHA-256 hashing operation of an attribute;
• M: is the operation that the 256-bit hash of an attribute

modulo the small prime p;
• E : AES-256 encryption;
• D: AES-256 decryption.
Table 3 presents the computation and communication cost

of related work and our protocol. In this table, we omit the
performance of Protocol 2 and Protocol 3 due to the space
limitation, and they have very similar performance as Protocol
1. Because the SHA-256, modulo, and AES-256 operations in
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our protocol are much cheaper than the 1024-bit and 2048-bit
modular multiplication and exponentiation, our protocol costs
much less computation than asymmetric-key based schemes.
The transmitted data size are significantly reduced because
basically only one encrypted 256-bit message and one 32∗mt

bit remainder vector need to be transmitted. Furthermore, the
remainder vector eliminates the reply from most unmatching
users. So the total transmission time is also reduced.

5 REAL DATA AND SYSTEM EVALUATION

5.1 Real Social Networking System Analysis

To evaluate the practicality of mechanism, we use the profile
data of a real-life social networking system, Tencent Weibo
[2]. Tencent Weibo is one of the largest social networking
platforms for building friendship and sharing interests on-
line. This dataset has 2.32 million users’ personal profiles.
And the attributes include their ID, year of birth, the gen-
der, the tags and keywords. Tags are selected by users to
represent their interests. If a user likes mountain climbing
and swimming, he/she may select ”mountain climbing” or
”swimming” to be his/her tag. Keywords are extracted from
the tweet/retweet/comment of a user and can be used as
attributes to better represent the user. There are total 560419
tags and 713747 keywords. As presented in Figure 5, each
user has 6 tags in average and 20 tags at most. On average, 7
keywords extracted for a user. So when the adversary tries to
guess a user’s profile with 6 tags by brute force, it will take
him/her about 2100 guesses. Moreover, the large attribute space
makes the vector-based matching approaches impractical. Each
profile is a combination of several attributes. When more than
one user has the same profile, we say there are collisions for
this profile. Figure 6 shows that more than 90% users have
unique profiles.

5.2 Computation and Communication Performance

We then exam the computation performance of our protocols
on mobile devices and PC. The mobile phone is HTC G17
with 1228Hz CPU, 1GB RAM. The laptop is Think Pad X1

TABLE 4
Mean computation time for our basic operation.(ms)

H M E
Laptop 1.2× 10−3 3.1× 10−4 8.7× 10−4

Phone 4.8× 10−2 5.7× 10−2 2.1× 10−2

Multiply-256 Compare-256 D
Laptop 1.4× 10−4 1.0× 10−5 9.6× 10−4

Phone 3.2× 10−2 1.0× 10−3 2.5× 10−2

TABLE 5
Mean computation time for basic operations for
asymmetric cryptosystem based scheme.(ms)

E1024 E2048 M1024 M2048

Laptop 17 120 2.3× 10−2 1× 10−1

Phone 34 197 1.5× 10−1 2.4× 10−1

with i7 2.7GHz CPU and 4GB RAM. Table 4 shows the mean
execution time of our basic computation and Table 5 shows
the mean execution time for basic operations for asymmetric
cryptosystem based scheme. The basic operations of our
mechanism are much cheaper than the 1024-bit or 2048-
bit modular multiplication and exponentiation used by the
asymmetric cryptosystem based schemes, e.g. the evaluation
result of [6]. We evaluate our protocol on the dataset. Table
6 presents the breakdown of time cost for our protocol. As
an example, for a user with 6 attributes, the time need to
generate a request is only about 3.9× 10−2 ms on laptop and
1.3 ms on mobile phone. On average it takes a non-candidate
user about 3.9 × 10−2 ms on laptop and 0.63 ms on phone
to process the request. For a candidate user the computation
cost is about 4 × 10−2 ms on laptop and 7 ms on phone
for each candidate key. Even when the attribute number of
user increases to 1000, our protocols requires only about 1
s for him/her to process a request. Table 7 shows a typical
scenario in a mobile social network with 100 users. With the
comparison of numerical result based on implementation on
the mobile phone, it is clearly that our protocol is much more
efficient in both computation and communication.

We also investigate the communication delay on our Wi-
Fi based multihop social networking system named WiFace
[31]. 50 heterogeneous mobile nodes participated in WiFace to
conduct friend matching and the average path length is about
3 hops. The average communication delay for a query is about
220 ms, and the largest delay is less than 800 ms.

5.3 Protocol Performance Evaluations
We evaluate the efficiency of our protocols with two typical
situations. In the first case, all users have equal size of
attributes which is similar to the vector based scheme. We use
the attribute data of all 52248 users with 6 attributes. In the
second case, we randomly sample 1000 users from all users
to conduct profile matching.

In both cases, we exam the similarity between all pairs of
users as the ground truth. Then we run our profile matching
protocols at different similarity levels. Figure 7 shows the
number of candidate users of our protocol change with similar-
ity requirement and the prime number p. The result shows that
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TABLE 3
Comparison of efficiency with existing scheme.NC stands for non-candidate, and CD stands for candidate. q = 256

Party FNP [7] FC10 [5] Advanced [16] Protocol 1

Computation P1

Pk

(2mt +mkn)E2048

mk log(logmt)E2048

(2.5mtn)M1024

(mt +mk)E1024

(3mtn)E2048

2mtE2048

(mt + 1)H+mtM+ E
mkH+mkM (NC)

κkγ
2(γ + β) + (mk + κk)H
+mkM+ κkD (CD)

Communication
bits All 8q(mt +mkn) 4qn(3mt +mk)

24[mtmkn
+tn(8mt + 2mk + 12mtt)]

+16qmtn

(1− θ)32m2
t + (288− qθ)mt

+q + qn ∗ ( 1
p
)mtθ

Communication
Transimission All 1 broadcast

n unicasts 2n unicasts 5n unicasts
1 broadcast

n ∗ ( 1
p
)mtθ unicasts

TABLE 7
Comparison of efficiency with existing scheme in typical scenario. NC stands for non-candidate, and CD stands for

candidate. mt = mk = 6, γ = β = 3, p = 11, n = 100, t = 4.

Party FNP [7] FC10 [5] Advanced [16] Protocol 1

Computation P1

Pk

612E2048

5E2048

1500M1024

12E1024

1800E2048

12E2048

7H+ 6M+ E (P1)
6H+ 6M (NC)

54κk + (6 + κk)H+ 6M+ κkD (CD)

Computation(ms)
On phone

P1

Pk

120564
985

225
408

354600
2364

0.7 (P1)
0.63 (NC)

1.8κk + 0.63 (CD)
Communication(KB) All 151 300 704 0.22

Communication
Transimission All 1 broadcast

100 unicasts 200 unicasts 500 unicasts 1 broadcast
< 100 (#candidates unicasts)

TABLE 6
Decomposed computation time of our protocols.(ms)

Laptop
Mean Min Max

MatrixGen 7.2× 10−3 1.0× 10−3 2.4× 10−2

KeyGen 8.1× 10−3 2.3× 10−3 2.5× 10−2

RemainderGen 1.9× 10−3 3.1× 10−4 6.2× 10−3

HintGen 4.7× 10−3 2.8× 10−4 5.6× 10−2

HintSolve 3× 10−2 1.1× 10−3 1.1
Phone

Mean Min Max
MatrixGen 2.6× 10−1 4.4× 10−2 8.9× 10−1

KeyGen 6.3× 10−2 4.8× 10−2 1.4× 10−1

RemainderGen 3.4× 10−1 5.7× 10−2 1.14
HintGen 1.2 1.4× 10−1 12

HintSolve 6.9 2.6× 10−1 250

in both cases, the number of candidate users approaches the
number of true matching users with increasing p. And a small
p can achieve small size of candidate users and significantly
reduce unwanted computation and communication cost for
unmatching users.

There is a worry that, the candidate profile key set may be
very large for candidate users. Figure 8 presents the number
of candidate profile keys during the matching with different
similarity level and prime p. The result shows that in a
real social networking system, the candidate key set is small
enough to achieve efficient computation and communication
for candidate users.

6 RELATED WORK

6.1 Privacy Preserving Friending

Most previous private matching work are based on the se-
cure multi-party computation (SMC) [11]. There are two

mainstreams of approaches to solve the private profile-based
friending problem. The first category is based on private set
intersection (PSI) and private cardinality of set intersection
(PCSI) [16], [27]. Early work in this category mainly address
the private set operation problem in database research, e.g.
[5], [7], [15]. Later on some work treat a user’s profile as
multiple attributes chosen from a public set of attributes [16],
[27] provide well-designed protocols to privately match users’
profiles based on PSI and PCSI. The second category is based
on private vector dot product [10]. [6], [34] considers a user’s
profile as vector and use it to measure social proximity. A
trusted central server is required to precompute users social
coordinates and generate certifications and keys. [35] improves
these work with a fine-grained private matching by associating
numerical values with attributes to indicate the interest levels.
[13] enables the collusion-tolerable private computing without
any secure channel. However, in the PSI based schemes, any
user can learn the profile intersection with any other user.
The PCSI and dot product based approaches cannot support
a precise profile matchings. For example, they cannot help a
user to find a match with attributes ”doctor” and ”female”.

These protocols often rely on public-key cryptosystem
and/or homomorphic encryption which results in expensive
computation cost and usually requires a trusted third party.
Even unmatched users involve in the expensive computation.
Multiple rounds of interactions are required to perform the
private profile matching between each pair of parties. They
all need preset procedure, e.g. exchanging public keys be-
fore matching, precomputing vector [6], establishing secure
communication channel and share secret [16]. Furthermore,
these protocols are unverifiable. These imitations hinder the
SMC-related protocols to get practical in decentralized social
networks.
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Fig. 7. Candidate user proportion with different similarity and prime number.
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Fig. 8. Size of candidate profile key set with different similarities.

6.2 Establishing Secure Channel
Secure communication channel construction is very important
in practical private friending system but is often ignored.
Secure communication channels are usually set up by au-
thenticated key agreement protocols. This can be performed
by relying on a public-key infrastructure, e.g., based on RSA
or the Diffie-Hellman protocol.The public-key based methods
allow parties to share authenticated information about each
other, however they need a trusted third party. Although Diffie-
Hellman key exchange method allows two parties to jointly
establish a shared secret key, it is known to be vulnerable to
the Man-in-the-Middle attack.

Device pairing is a another technique to generate a common
secret between two devices that shared no prior secrets with
minimum or without additional hardware, e.g., [25] and [21].
However, they employ some out-of-band secure channels to
exchange authenticated information and the interaction cost is
not well suited to MSN where secure connections are needed
immediately between any users. With these existing schemes,
it is more complicated to establish a group key.

6.3 Attribute Based Encryption
Attribute based encryption is designed for access control of
shared encrypted data stored in a server, which was introduced
by Sahai and Waters [22]. Only the user possessing a certain
set of credentials or attributes is able to access data. Then
ABE was improved [3], [4], [8]. [8] develops the Key-
Policy Attribute-Based Encryption (KP-ABE) for fine-grained
sharing of encrypted data. [3] presents a Ciphertext-Policy
Attribute-Based Encryption (CP-ABE) which keeps encrypted
data confidential even if the storage server is untrusted. [12]
proposes a method providing anonymity for ABE. [4] gives
a construction for a multi-authority attribute-based encryption

system, and [14] supports privacy-preserving multi-authority
data access. All the ABE schemes rely on asymmetric-key
cryptosystem, which cost expensive computation. And they
require a complicate setup and a server. In this work, we de-
sign a symmetric-encryption based privacy-preserving profile
matching mechanism, which is significantly more efficient and
requires no setup or server.

7 CONCLUSIONS

In this paper, we design a novel symmetric key encryption
based privacy-preserving profile matching and secure com-
munication channel establishment mechanism in decentralized
MSN without any presetting or trusted third party. Several
protocols were proposed for achieving verifiability and differ-
ent levels of privacy. We analyzed the performance of our
protocols and compared them with existing protocols. We
conducted extensive evaluations on the performances using a
large scale dataset from real social networking. The results
show that our mechanisms outperform existing methods sig-
nificantly and provide efficient and secure solution for mobile
social networks. Our efficient techniques, including private
fuzzy attribute matching and secure communication channel
establishing, can also be applied to many other scenarios where
parties don’t necessarily trust each other, e.g., advertising
auction, information sharing and location based services. In
our future work, we will integrate these techniques into more
networking systems.
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