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Abstract—We study delay efficient data aggregation scheduling in wireless sensor networks subject to Signal to Interference-
Plus-Noise Ratio (SINR) constraints. We construct a routing tree and propose two scheduling algorithms that can generate
collision-free link schedules for data aggregation. We prove that the delay of each algorithm is O(R + ∆) time-slots, where
R and ∆ are respectively the graph radius and the maximum node degree in a reduced communication graph of the original
network; the proposed algorithms are asymptotically optimum on delay in random wireless sensor networks. We evaluate the
performances of the proposed algorithms and the simulation results corroborate our theoretical analysis.
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1 INTRODUCTION

A wireless sensor network (WSN) consists of small-sized
and low-powered wireless nodes spreading over a ge-
ographical area which can collaborate with each other
for control applications. In each application, there is
usually a control center from which end users can
query on sensory data within the network. The control
center, having more computational ability than other
wireless nodes, needs to gather sensory data from the
network. In the process of data gathering, data may
be compressed within the network to save energy.
Data aggregation [5], [12] is a process in which infor-
mation can be gathered and expressed in a summary
form according to some aggregation function such as
maximum, and/or sum. Data aggregation introduces
a possibility of a new energy or time efficient method
to gather data, in contrast to raw data gathering.
In most control applications, the time of utilizing

the data are critical and a data aggregation task often
comes with a stringent delay constraint imposed by
applications. Here, the delay of data aggregation is
the duration from the time when the first wireless
node transmit for the task, to the time when the
control center receives all (possibly aggregated) data.
One promising way of minimizing the delay is to
maximize the throughput while data transmissions in
WSNs face a fundamental challenge, i.e., the wireless
interference. Previous work often focused on graph-
based interference models in their protocol design
for data aggregation [5], [12], [22], [27], [29]. Graph-
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based models serve as a useful abstraction of WSNs;
they facilitate the process of designing protocols and
proving their efficiency, while they cannot reflect
the superimposed effect of wireless interference. Al-
though the interference from one transmitter may
be relatively small, the accumulated interference of
several nodes can be sufficiently high to corrupt a
transmission. Additionally, graph-based models are
localized interference models and they simply neglect
interference of nodes beyond a certain range. On the
other hand, the physical model [8], [28] represents
wireless interference more realistically and practically.
Under this model, a signal is received successfully if
the Signal to Interference-plus-Noise Ratio (SINR) is
above a hardware-defined threshold. This definition
of a successful transmission, accounts for interference
generated by distant transmitters, thus can capture the
interference between links more accurately.
For data aggregation with SINR constraints, we

have to take care of superimposed interference. The
effect of potential interference from far-away nodes
makes it difficult to ensure that all active links satisfy
the SINR constraints. Moreover, the notion of an
interference edge is not a binary relation anymore.
The SINR at each receiver node depends on which
transmissions are being scheduled concurrently in
each time slot. Thus, a simple conflict graph cannot be
constructed without knowing the solution beforehand
(actually the interference graph is a hyper-graph). This
makes the analysis of algorithms more challenging
than in graph-based models. In this work, we will
study delay efficient data aggregation scheduling with
SINR constraints. Given is a set of wireless nodes
distributed in a plane, each node contains some data
to report, the objective is to design routing and a node
transmission schedule for data aggregation with SINR
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constraints.
Our Contributions: We propose two algorithms

which will rely on a concept of reduced graph of the
original communication graph. In a reduced graph,
we only consider short links and perform localized
and interference-aware scheduling. Specifically, let r
denote the maximum transmission range. We will
only consider links −→uv with length at most δr, where
0 < δ < 1 is a constant. We analytically prove that the
proposed algorithms can achieve a constant approxi-
mation ratio on the delay of data aggregation where
the optimum is also computed using the reduced
graph G(V, δr).
We present a lower-bound on the delay of any

algorithm in the reduced graph G(V, δr). Notice that
using links longer than δr, we may be able to reduce
the delay of data aggregation (it is an open question
at the current stage whether we can reduce the delay
by more than a constant factor). In this work, we are
able to prove that our method is asymptotically opti-
mum for random WSNs where nodes are distributed
uniformly at random.
In a random network, we prove that, by using

only the reduced network G(V, δr), our method can
achieve a delay that is within a constant factor of the
optimum delay achievable using all links from the
original G(V, r). On the negative side, we show that,
given any constant δ < 1, there is a deployment (or
distribution) of n nodes V such that any algorithm
for data aggregation scheduling using only links in
G(V, δr) has a delay of at least n, while the optimum
delay using all links in G(V, r) is only O(

√
n).

Finally, we perform extensive evaluations to show
that our methods perform well in practice. To fur-
ther maximize the throughput, we present a greedy
method called compressive scheduling, where we sched-
ule as many links as possible in each time-slot. We
find that the method will almost halve the delay
achieved by our first algorithm for sparse networks
(with maximum node degree ∆ ≤ 25).
The rest of the paper is organized as follows. Section

2 describes the system model and outlines the related
work. Section 3.2 presents our two scheduling algo-
rithms. Section 4 analyzes the performances. Section 5
discusses the overall lower-bound under our model.
Furthermore, Section 6 provides the analytical results
in randomly WSNs. Section 7 presents the simulation
results. Section 8 concludes the paper.

2 PROBLEM DEFINITION, RELATED WORK

Consider a set V of n nodes distributed in a two-
dimensional plane where vs ∈ V is the sink node.
Each node can send (receive) data to (from) all direc-
tions. Under the physical interference model [2], we
assume all nodes have fixed transmission power P ,
and define Pv(u) = P · g(u, v) as the received power
at the node v of the signal transmitted by the node

u. Here g(u, v) ≤ 1 is called the path-loss from node
u to v. Set path-loss as g(u, v) = η · ‖uv‖−α

(this
setting is justified in [26]), where the constant α ≥ 2
is the path-loss exponent, and ‖uv‖ is the Euclidean
distance between node u and v. A receiver node v can
successfully receive a packet from a sender node u iff
the Signal to Interference-plus-Noise Ratio (SINR) at
node v is above a certain threshold β > 0:

Pv(u)

ξ +
∑

w∈Su
Pv(w)

≥ β (1)

Here ξ ≥ 0 denotes the ambient noise, and Su de-
notes the set of senders transmitting concurrently with
sender u. In a given network, η is fixed. We can adjust
the value of background noise (by setting ξ to be ξ/η)
and omit η in the expression of path-gain.
We can compute the maximum transmission range

under the physical interference model as r = ( P
ξβ )

1
α . r

is the maximum possible length of a communication
link that can transmit alone successfully. From now
on, for any l ≤ r, we use G(V, l) to denote the
induced subgraph of G(V, r) that has all edges (u, v) of
length at most l. Observe that a long link with length
comparatively close to r is not a good candidate
in practice for transmission since the SINR at the
receiver is very small. Even worse, it prevents many
possible concurrent transmissions. Thus, we will only
use some links that are smaller than r to some extent.
Specifically, considering a small constant δ ∈ (0, 1), we
can derive a subgraph (denote as G(V, δr)) with only
links with length at most δr. We call this subgraph as
a reduced graph (or network). Generally, the larger
the value of δ, the reduced graph is connected with
higher probability. r has an extremely large value.
This means that the node degree is very large in the
original graphG(V, r). As long as the δ value is not too
small, the reduced graph is still connected. In the case
that the reduced graph G(V, δr) is not connected, then
G(V, δr) consists of multiple connected components.
We will remove the number of connected components
by adding a shortest edge between a pair of con-
nected components. We will continue such operations
until there is exactly one connected component in
G(V, δr), consisting of the whole graph, this means
that G(V, δr) is connected.
In a reduced graph G(V, δr), we review the defi-

nition of data aggregation scheduling [27], [29]. We
assume a synchronous message passing model in
which time is divided into slots; in each time-slot, a
node v ∈ V can send a message (data unit) to one of its
neighboring nodes. Given a reduced graph G(V, δr),
each node has one data unit to send, assume A,B
are two disjoint subsets of nodes in V , then data can
be aggregated from A to B in one time-slot iff there
exists a set of communication links between A and B
from G(V, δr) that can transmit concurrently, and at
the same time, each node from A serves as a sender
of some link incident to a node in B. Then, a valid
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aggregation schedule in G(V, δr) with delay L can be
defined as a sequence of sender sets S1, S2, · · · , SL

satisfying the following conditions:

1) ∪Li=1Si = V \ {vs};
2) Si ∩ Sj = ∅, ∀i 6= j;
3) Data can be aggregated from Si to V \ ∪ij=1Sj in

G(V, δr) in one time-slot.

Notice that here ∪Li=1Si = V \ {vs} is to ensure that
all data will be gathered to sink vs; Si∩Sj = ∅ (∀i 6= j)
is to ensure that every node participate in aggregation
by using some aggregation function at most once. To
simplify our analysis, we will relax the requirement
that Si ∩ Sj = ∅, ∀i 6= j. When the sets Si, 1 ≤ i ≤ L
are not disjoint, in the actual data aggregation, a node
v, that appears multiple times in S1, S2, · · · , SL, will
participate in the data aggregation only once (say the
smallest i when it appears in Si), and then it will only
serve as a relay node in later appearances.

Given a network consisting of n nodes V , each
node has one unit of data to send to the sink node,
the problem Data Aggregation Scheduling seeks a
valid data aggregation schedule {S1, S2, · · · , SL} in
the graph G(V, δr) with minimum delay L. Here, we
assume the network G(V, δr) is connected, otherwise
the disconnected nodes cannot send their data to the
sink node via the reduced graph. For simplicity, we
define∆(G), D(G), R(G) as the maximum degree, net-
work diameter, network radius of the reduced graph
G(V, δr) respectively. Here the network diameter is
the greatest hop distance between any pair of nodes.
The network radius is the minimum eccentricity of
any node where the eccentricity of a node u ∈ V is
the greatest hop distance between u and any other
node.

Concept of Aggregation Function: Data aggrega-
tion functions can be classified into three categories:
distributive (e.g., maximum, minimum, sum, count), al-
gebraic (e.g., minus, average, variance) and holistic (e.g.,
median, kth smallest or largest). Here we only focus
on the distributive or algebraic aggregation functions.
The detailed definition of aggregation function is
available in [27].

Since Connected Dominating Set (CDS) will be
used in our algorithm design, we briefly review its
definition as follows. Please refer to a recent survey
[1] and references therein for more details on CDS.

Concept of Connected Dominating Set: In a graph
G = (V,E), a subset V ′ of V is a dominating set (DS)
if each node in V is either in V ′ or adjacent to some
node in V ′. Nodes in V ′ are called dominators, whereas
nodes not in V ′ are called dominatees. A subset C of
V is a CDS if C is a dominating set and C induces
a connected subgraph. Consequently, the nodes in
C can communicate with each other without using
nodes in V \ C.

2.1 Related Work

The minimum delay data aggregation problem has
been proved to be NP-hard [5]. Under the proto-
col interference model, the distributed aggregation
scheduling (DAS) algorithms were proposed in [29].
DAS can generate a collision-free schedule that has
a delay bound of 24D + 6∆ + 16, where D is the
network diameter when the conflict-graph is the orig-
inal UDG communication graph. This was recently
improved to 16R + ∆ model by Xu et al. [27] and
(

1 + (logR/ 3
√
R)

)

R + ∆ by Wan et al. [22] under

the same network model. Li et al. also proposed
a distributed implementation in [12] under proto-
col interference model. Wan et al. [23] considered
group communication scheduling including aggre-
gation scheduling under the physical interference
model. Li et al. [15] studied the complexity of data
aggregation in wireless networks.
We then review the related work of scheduling

for link activities. There has been extensive work
on developing efficient approximation algorithms for
link scheduling to maximize throughput under the
physical interference model [4], [8], [9], [21], [25].
The approximation algorithm in [21] can achieve a
constant approximation bound for link scheduling
with uniform power control under the physical in-
terference model, i.e., the number of scheduled links
is at least a constant factor of the optimum. Link
scheduling under other wireless interference models
has also been studied such as [24], which consid-
ered the problem of max-throughput (or max-fairness)
routing and an interference-aware link scheduling in
wireless networks.
Recently, there are a series of work on stable link

scheduling to maximize the throughput region such
as [10], [11]. This work differs from theirs in two
respects. First, we will focus on both the routing
path construction and a very careful design of node
activities in the routing structure. We can guarantee
that the delay is at most a constant factor of network
radius, and avoid the interference at the same time.
Second, their work assumes that the communication
requests along each link arrive continuously while
we assume that each node has only one data unit to
transmit.

3 ALGORITHM DESIGN

In our algorithm design for data aggregation schedul-
ing, we first construct a routing tree, and then design
a schedule of link activities to minimize the delay.

3.1 Routing

The basic idea of constructing a routing tree relies on
a breadth-first-search (BFS) tree in the reduced graph
G(V, δr). The routing tree has the following proper-
ties. First, the depth of this tree is within a small
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constant factor of the network radius R(G). Second,
each internal node will be connected to a constant
number of other internal nodes. Similar to [27], we
use the topology center of G(V, δr) as the root of our
BFS tree. Here a node v0 is called the topology center
in a graph G if v0 = argminv{maxu dG(u, v)}, where
dG(u, v) is the hop distance between nodes u and v
in graph G. The usage of topology center can enable
us to reduce the delay to a function of the network
radius R(G), instead of the network diameter D(G).
After the topology center gathers the data from all
nodes, it relays the aggregated data to sink node via
the shortest path (the bold line path in Fig. 1). This
will incur an additional delay dG(v0, vs) of at most
R(G).
The routing tree construction begins with finding

the topology center v0 of G(V, δr). We calculate the
hop distances of shortest paths between every pair
of nodes, and then for each node, we find the hop
distance of shortest path to the farthest node. The
node for which this value is minimal is the topology
center of the graph G(V, δr). We then perform BFS
over G(V, δr) to build the BFS tree TG. The BFS
begins at the root node and inspect all its neighboring
nodes. Then each of the neighbor nodes, inspects their
neighboring nodes which were unvisited, and so on.
We next select a maximal independent set (MIS) of TG

by an existing approach described in [20].
We interconnect MIS by using some additional

nodes to form a CDS. Note that in each layer of
the BFS tree, there are some dominator(s) and some
dominatee(s); each dominatee has at least one neigh-
boring dominator in the same or upper level. Thus,
every dominator (except the root) has at least one
dominator in the upper level within two hops. Based
on our observations, if every dominator transmits its
data to some dominator in upper level within two-
hops, all the data in the dominators can reach the
root finally. From another point of view, considering
dominators in the decreasing order of their levels,
a dominator u in level i aggregates data from all
dominators in level i+1 or i+2 that are within two-
hops of u. This can ensure that all the data will be
aggregated to the root (topology center) as well. We
will interconnect MIS like follows, for each dominator,
we use minimum additional nodes to interconnect all
its two hop neighbors. Those additional nodes are
called connectors. All above operations result in a CDS
tree Gc.
After that, for each dominatee v not in Gc, we

connect it to Gc by adding a link from v to one of
its neighboring dominators. The resulted tree is the
final routing tree T .
In the example in Fig. 1, assume vs is the sink

node. We first find the topology center as v0. Then
we construct a BFS tree with v0 as the root node.
In the BFS tree, assume {v1, v2, v3} lie in level 1;
{v4, v5, v6, v7, v8, v9, v10, v11, vs} lie in level 2. We then

vs

v11

v4

v0

v9
v1

v2

v3

v5

v6

v7

v8

v10

Fig. 1: Illustration of constructing a routing tree.

select a MIS as {v0, v4, v5, v6, v7, v8, v9, v10, v11, vs}. Af-
ter that, we select additional nodes {v1, v2, v3} as
connectors. Finally, all other dominatees (omitted in
this figure) are connected to its nearest dominators.
The above operations result in a routing tree.

3.2 Distributed Aggregation Scheduling

In this section, we present a distributed aggregation
scheduling algorithm based on the routing tree T con-
structed in Section 3.1. Our algorithm consists of two
phases: (1) dominators gather data from dominatees,
(2) data gathering towards the sink node vs.
In the first phase, we need to schedule single-hop

data transmissions from dominatees to dominators;
we will split this phase into several rounds. In each
round, every dominator u selects a link −→vu from one
of its neighboring dominatees to itself; we need to
transmit the set of selected links (denoted as L). Since
each dominator has at most ∆ neighboring domina-
tees, there are at most ∆ rounds. Let

K = ⌈( 4βτP · ℓ−α

(
√
2)−αP · ℓ−α − βξ

)
1
α + 1 +

√
2⌉

Here τ = α(1+2−
α
2 )

α−1 + π2−
α
2

2(α−2) , ℓ = δr/
√
2. Next, we will

show that each round costs at most K2 time-slots, i.e.,
all links from L can transmit successfully within K2

time-slots.
Grid Partition and Coloring: To avoid the inter-

ference of data transmissions, a pair of links trans-
mitting concurrently need to be separated well apart.
Towards this end, we employ a grid partition of the
deployment plane. The vertical lines x = i · ℓ for i ∈ Z

and horizontal lines y = j · ℓ for j ∈ Z partition the
planes into half-open and half-closed grids of side ℓ
(here Z represents the integer set):

{[iℓ, (i+ 1) ℓ)× [jℓ, (j + 1) ℓ) : i, j ∈ Z)}.
Next, we color the grids such that one among every
K2 grids is assigned with the same color. We want to
ensure that when at most one node from every grid
with a monotone color transmits simultaneously, the
transmissions are interference-free. We then index the
colors used and denote σg as the color of grid g (σg ∈
{0, 1, · · · ,K2−1}). For each link −→up in L, let σg be the
color index of the grid g where p lies, we then assign
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Algorithm 1: Distributed Aggregation Scheduling

Input : sink vs, topology center v0, routing tree
T , parameter K .

1 Partition the deployment plane into cells, each

with side length δr/
√
2;

2 Color the grids such that one among every K2

grids has the same color;
3 Each node u initializes the value NoC[u], and
Type[u] and Level[u];

4 Each node u computes Color[u] from its location;
5 ∀u ∈ V : TST[u]← 0;
6 Each dominator u sends a different number from
{1, 2, · · · ,NoC[u]} to each leaf child in T ;

7 if a leaf node u received a number N then
8 TST[u]← (N − 1) ·K2 +Color[u];

9 Each dominator sends a different number from
{1, 2, · · · , 12} to each connector child in T ;

10 Each connector sends a different number from
{1, 2, 3, 4} to each dominator child in T ;

11 if a node u received a number N then
12 if u is a dominator then
13 TST [u]←

∆·K2+16K2·Level[u]+K2·(N−1)+Color[u];

14 if u is a connector then
15 TST [u]←

∆·K2+16K2·Level[u]+K2·(N+3)+Color[i];

16 Each node u transmits data at time-slot TST [u];
17 v0 relays aggregated data to the sink vs via the

shortest path.

a time-slot σg to transmit. Since each cell contains at
most one dominator, we can finish the transmissions
of L within K2 time-slots.

We will proceed the second phase in the bottom-up
manner, i.e., from lower level to upper level. Every
node will remain silent until the level where it locates
begins running; when its turn comes, the dominator
will try to gather all the data from other dominators
in lower levels that have not been aggregated. This
process consists of two steps: (1) every dominator
aggregates its data to its corresponding connectors; (2)
every connector transmits its data to the dominator in
the upper level. To avoid the interference, we will use
grid partition and coloring as well. We only let links
with the same color transmit in a time-slot.

We present the details of our distributed aggrega-
tion scheduling in Algorithm 1. Each node u main-
tains some local variables in its buffer:

• Type: Type[u] ∈ {L,D,C}, to indicate the type of
the node u. The character ‘L’ represents leaf node
in the routing tree T , ‘D’ represents dominator,
and ‘C’ represents connector.

• Level: Level[u] ∈ N, to indicate the level of the
node u in the BFS tree.

• Color: Color[u] ∈ {0, 1, · · · ,K2 − 1}, to indicate
the color of the grid where the node u lies.

• Number of Children: NoC[u], which is the num-
ber of children nodes of u in tree T .

• Time Slot to Transmit: TST[u], which is the as-
signed time-slot that node u indeed sends its data
to its parent.

The TST of all nodes are initialized to 0. By running
the algorithm, the TST of all nodes are set gradually.
If each node transmits at the time-slot equal to TST,
the sink node will receive the aggregated data of all
nodes correctly.

3.3 Improved Aggregation Scheduling

In this section, we will present a scheduling algorithm
(noted as “Improved Algorithm”) that will greatly
improve the delay of our distributed algorithm. Simi-
lar to our distributed algorithm, Improved Algorithm
consists of two phases based on the routing tree T
constructed in Section 3.1. In the first phase, every
dominator aggregates the data from all its dominatees,
we will use the same method as that of our distributed
algorithm. In the second phase, dominators aggregate
their data towards the sink node vs via the routing
tree; we will propose a new method for the second
phase.
The main idea of the second phase is to proceed

data transmissions level by level in the routing tree.
For each level, the dominators at this level will try to
gather all the data from other dominators in lower
levels that have not been aggregated. This process
consists of two steps: (1) every dominator aggregates
its data to its corresponding connectors. We apply grid
partition and coloring method which has already been
presented in detail in Section 3.2. For each dominator,
we will assign its time-slot to transmit based on its
own color (the color of the grid containing this dom-
inator). Observe that each grid contains at most one
dominator, thus two dominators of the same color can
transmit concurrently, irrespective of their receives.
We will prove that this step costs at most (K + 3)

2

time-slots; (2) every connector transmits its data to
the dominator in the upper level. In this step, for each
connector, we will assign its transmission time based
on the color of one of its children instead of itself. We
will prove that this step costs at most (K + 3)

2
time-

slots as well. Thus, each level costs at most 2 (K + 3)2

time-slots.
Following our main idea, the assignment of trans-

mission time can be described as follows. For each
dominator u, let i be the level of the node u, and let σg

be the color index of the grid g where u lies, we assign
the time-slot (K + 3)

2 (
2(R− i)

)

+ σg to transmit; For
each connector u, let i be the level of u, we assign the
time-slot of (K + 3)

2 (
2(R − i) + 1

)

+ σg to transmit.
Here σg is the color of the connector u’s one child.
If the connector u has more than one children, we
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Algorithm 2: Improved Aggregation Scheduling

Input : sink vs, topology center v0, routing tree
T , parameter K .

1 Partition the deployment plane into cells, each

with side length δr/
√
2;

2 Color the grids such that one among every

(K + 3)2 grids has the same color;
3 Unmark all dominatees;
4 while unmarked dominatee(s) exist do
5 for each dominator u do
6 select one link from u’s unmarked

neighboring dominatee to u;

7 All the selected links form a set L;
8 for j = 1, · · · , (K + 3)

2
do

9 all links in L of the j-th color transmit;

10 Mark all dominatees incident to links in L;
11 for each node u in CDS do
12 i ← the level of u in tree T ;
13 if u is a dominator then
14 σg ← the color of grid g containing u;
15 u transmits at time-slot

16 (K + 3)
2 (

2(R− i)
)

+ σg ;

17 if u is a connector then
18 v ← one child of u in tree T ;
19 σg← the color of grid g containing v;
20 u transmits at time-slot

(K + 3)
2 (

2(R− i) + 1
)

+ σg ;

21 v0 relays the aggregated data to the sink vs via
the shortest path.

select only one as u’s representative child and find its
color index as σg . This finishes the second phase. The
details are shown in Algorithm 2. We will prove in
Section 4.2 that this assignment of transmission time-
slots achieves better bounded delay compared with
our distributed algorithm (Algorithm 1).

4 UPPER BOUND ON LATENCY

First, we prove that both of our algorithms can avoid
interference. Theorem 1 formally gives a feasible value
of K to guarantee the correctness of simultaneous
transmissions of at most one node in each cell with
the same color.
Theorem 1: After the plane is divided into cells, we

can set K = ⌈( 4βτP ·ℓ−α

(
√
2)−αP ·ℓ−α−βξ

)
1
α + 1 +

√
2⌉ to ensure

that if at most one node in each cell with the same
color transmit, the transmissions are interference-free.

Here τ = α(1+2−
α
2 )

α−1 + π2−
α
2

2(α−2) , ℓ = δr/
√
2 (The proof is

available in the conference version [16] of this paper).

4.1 Analysis of Distributed Algorithm

Lemma 1: Algorithm 1 can avoid interference.

Proof: In the first phase, in each time-slot, since
at most one node in each cell with the same color
transmit, the transmissions are interference-free by
Theorem 1.
In the second phase, if u is a dominator, its trans-

mission time is ∆ ·K2+16K2 ·Level[u]+K2 · (N−1)+
Color[u]; if u is a connector, its transmission time is
∆ ·K2+16K2 ·Level[u]+K2 · (N +3)+Color[i]. If two
nodes transmit at the same time-slot, they must lie in
the same level. If u is a dominator, K2 ·(N−1) < 4K2;
if u is a connector, K2 · (N + 3) ≥ 4K2, thus the
transmissions of dominators will not interleave with
the transmissions of connectors. If two dominators
transmit at the same time, they must receive the same
number N and have the same color Color[u], then they
can transmit successfully according to Theorem 1. If
two connectors transmit at the same time, they must
receive the same number N and have the same color,
then they also can transmit successfully according to
Theorem 1.
Next, we prove that the delay achieved by Algo-

rithm 1 is O(R + ∆) where R is the network radius
and ∆ is the maximum node degree of G(V, δr).
Lemma 2: The first phase of Algorithm 1 (and Al-

gorithm 2) costs at most K2 ·∆ time-slots.
Proof: Since the maximum degree of each domi-

nator is ∆, there are at most ∆ rounds for aggregating
data to dominators. We only need to prove that each
round cost at most K2 time-slots. Since the diameter
of each cell is δr, at most one dominator falls in each
cell. In each round, according to Theorem 1, every cell
can be scheduled at least once in every K2 time-slots.

We then bound the number of connectors that a
dominator u will use to connect to all dominators
within two-hops. Our proof is based on a technique
lemma implied from lemmas proved in [19].
Lemma 3: [19] Suppose that dominator v and w

are within 2-hops of dominator u, v′ and w′ are the
corresponding connectors for v and w respectively.
Then either |wv′| ≤ 1 or |vw′| ≤ 1 if ∠vuw ≤ 2 arcsin 1

4 .
Lemma 4: In the routing tree T , the following geo-

metric facts are true:
1) each dominator has at most 12 neighboring con-

nectors.
2) each connector has at most 4 children.

Proof: Let us verify the first fact first.
We first delete all the redundant connectors. We

then claim that for each connector, there exists at least
one dominator which has only this connector as its
adjacent connector. This claim can be proven by con-
tradiction as follows: assume there exists a connector
u such that each of its adjacent dominators is also a
neighbor of some other connector, then we can always
delete this redundant connector u. This implies that
if there are 13 connectors for one dominator, we must
have at least 13 non-sharing dominators. By Lemma
3, we know that there are at least two dominators will
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share a same connector which contradicts to fact that
all of those 13 dominators should be non-sharing with
each other.
We then verify the second fact. This lemma can

be proven by contradiction. Assuming there exists a
connector u which has at least six neighboring domi-
nators, then there exist two dominators v and w such
that ∠vuw ≤ 60◦, this contradicts to the fact that no
two dominators are adjacent to each other. Then each
connector u has at most five neighboring dominators;
as one neighboring dominator is the connector u’s
parent in the routing tree T , u has at most 4 children
in the routing tree T . This finishes the proof.
Lemma 5: In the second phase of Algorithm 1, the

sink can receive all the aggregated data in at most
16K2 · R+R time-slots.

Proof: For each node u, its time to transmit is
either ∆·K2+16·Level[u]+K2 ·(N−1)+Color[u] (u is a
dominator) or∆·K2+16·Level[u]+K2·(N+3)+Color[i]
(u is a connector). Thus delay is upper-bounded by
16 ·R+16K2 Since the root v0 will relay the result to
the sink via the shortest path, this costs an additional
time of at most R time-slots.
Lemma 5 implies the following theorem.
Theorem 2: The delay of Algorithm 1 is at most K2 ·

∆+ 16K2 ·R+R.

4.2 Analysis of Improved Algorithm

Next, we upper-bound the delay achieved by Algo-
rithm 2.
Lemma 6: Algorithm 2 can avoid interference.
Proof: In the first phase, in each time-slot, since

at most one node in each cell with the same color
transmit, the transmissions are interference-free.
In the second phase, the transmissions of domi-

nators will not interleave with that of connectors.
Thus, the transmission of any dominator will not in-
terfere with the transmission of any connector. If two
dominators transmit at the same time-slot, we have
(K + 3)

2 (
2(R − i)

)

+ σg = (K + 3)
2 (

2(R − i′)
)

+ σ′
g .

Here i and i′ are the levels of these two dominators
respectively, σg and σ′

g are the colors of these two
dominators respectively. Then these two dominators
lie either in two different cells with the same color, or
in the same cell. In the former case, they can transmit
concurrently. In the latter case, these two dominators
lie in the same cell with diameter one, which causes
contradiction.
If two connectors transmit at the same time-slot, we

have (K + 3)
2 (

2(R − i) + 1
)

+ σg = (K + 3)
2 (

2(R −
i′) + 1

)

+ σ′
g . Here i and i′ are the levels of these two

connectors respectively, σg and σ′
g are the colors of

these two connectors’ representative children respec-
tively. Then these two connectors’ children lie either in
the same cell or in different cells with the same color.
The former case causes contradiction immediately as
these two connectors’ children are both dominators.

In the latter case, these two connectors’ children must
be separated by at least (K + 3) grids, then these two
connectors must be separated by at least K grids, they
can transmit according to Theorem 1.
We then upper-bound the number of time-slots

needed for the second phase.
Lemma 7: In the second phase of Algorithm 2, the

sink can receive all the aggregated data in at most
2 (K + 3)

2 · R time-slots.
Proof: The maximum value of 2((K + 3)

2
(R−i)+

σg) + 1 is (K + 3)
2 ·R. Since the root v0 will relay the

result to the sink via the shortest path, this costs at
most R time-slots. The second phase costs at most
2 (K + 3)

2 · R+R time-slots.
Theorem 3: The delay of Algorithm 2 is at most

(K + 3)
2 ·∆+ 2 (K + 3)

2 · R+R.

5 OVERALL LOWER-BOUND ON DELAY

In this section, we discuss the overall lower-bound
on the delay for data aggregation under the physical
interference model, for a reduced graph G(V, δr).
An overall lower-bound is the minimum time-slots
(which may not be achievable) needed to finish this
data aggregation communication task by any possible
algorithm.
Lemma 8: Under the physical interference model,

in a reduced graph G(V, δr), it requires at least R
time-slots for any algorithm to finish the aggregation
transmission. Here R is the maximum hop distance
for any node to the sink node in G(V, δr).

Proof: We can see that the scheduled links can
only be selected from the edges in G(V, δr). It requires
at least R time-slots for the farthest node v to transmit
its data to the sink node vs. This finishes the proof.
Lemma 9: Under the physical interference model,

in a reduced graph G(V, δr), there are at most ω =
(3δr)α

β − 1 = 3αδα ξ
P − 1 senders transmitting concur-

rently which are all neighbors of a single node.
Proof: Assume by contradiction that there exist

ω′ senders transmitting simultaneously which are all
neighbors of a single node u. Here ω′ > ω, thus

ω′ ≥ (3δr)α

β . Consider the sender si whose incident
link li is the shortest among all links of the senders,
we assume its corresponding receiver is ri, we have

‖sjri‖ ≤ ‖sjsi‖+ ‖siri‖ ≤ ‖sju‖+ ‖usi‖+ (δr)

≤ (δr) + (δr) + (δr) = 3(δr).

Then, the interference experienced by node ri

is at least SINRSω′
(li) =

P

‖li‖α

∑
sj∈S

ω′

P

‖sjri‖α +ξ

≤ P∑
sj∈S

ω′

P

‖sjri‖α +ξ
< P∑

sj∈S
ω′

P

‖sjri‖α

≤ 1∑
sj∈S

ω′

1

‖sjri‖α
≤ 1

ω′· 1
(3δr)α

≤ β. This contradicts the

fact that li can transmit subject to SINR constraints.

Corollary 1: Under the physical interference model,
in a reduced graph G(V, δr), it requires ∆

ω time-slots
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for any algorithm to finish the aggregation transmis-
sion.

Proof: We consider the node v whose degree
reaches maximum value ∆ (if there are multiple
such nodes, choose one randomly). Since for every
neighboring node of v, it needs to report its data
to the sink. This means every neighboring node of
v needs to transmit at least once. By Lemma 9, at
each time-slot, at most ω neighboring node can send
concurrently, thus it requires at least ∆

ω time-slots to
finish aggregation scheduling.
Lemma 8 and Corollary 1 together imply an overall

lower-bound for data aggregation scheduling as fol-
lows.
Theorem 4: Under the physical interference model,

for any δ < 1, in a reduced graph G(V, δr), it requires
max{R,∆/ω} time-slots for any algorithm to finish
the aggregation transmission. Here R is the maximum
hop distance from any node to the sink node in the
graph G(V, δr) and ∆ is the maximum node degree
of G(V, δr).
Theorem 4 means that our algorithm can achieve

the asymptotically optimum delay for data aggrega-
tion when we can only use links with length at most
δr.

6 APPROXIMABILITY OF REDUCED GRAPH

In this section, we compare the performance of our
algorithm with the optimum solution when all links
in the network could be used for data aggregation.
We first study the case when all wireless nodes V are
randomly placed (random network), which happens
in most scenarios for real wireless sensor networks.
We then study the case when V are arbitrarily placed
(arbitrary network).

6.1 Random Network

For a random network [13], [14], we assume that all
n nodes are randomly deployed in a square region of
side-length A. It is well-known that to ensure that the
random network is connected with high probability,
the degree of each node should be in the order of
Ω(logn). Then the side-length A is assumed to be in
the order A = O( n

logn ) here.
We first review the following lemma.
Lemma 10: [13] Assume there is a graph with n

nodes randomly deployed in a square region with
side-length O( n

logn ). We partition the deployment
square into cells, each of side-length a constant a.
Then there is a sequence of δ(n)→ 0 such that

Pr
(

every cell contains a node
)

≥ 1− δ(n)

In a topology graph G, the hop distance hG(u, v)
between a pair of nodes u and v is defined as the
smallest number of hops between them. In a random
network, if we connect any pair of wireless nodes with

distance smaller than δr and r respectively, we get two
topology graphs G(V, δr) and G(V, r).
Lemma 11: For any pair of nodes u and v, w.h.p,

we have hG(V,δr)(u, v) ≤ ρ · hG(V,r)(u, v), where ρ is
a constant.

Proof: In a graph G(V, δr), any pair of nodes u and
v from two adjacent cells (sharing a common side)
can communicate with each other directly. Then by
choosing one node from each cell which is crossed by
segment uv, we can connect u and v using Θ(‖uv‖ /r)
hops.
Similarly, if we partition the network into squares

with side-length δr/
√
5. Then together with the as-

sumption that the random network is connected with
high probability, it follows that by only using the links
with length δr, we can connect any two vertices u and
v within Θ(‖uv‖ /δr) hops. Notice that Θ(‖uv‖ /δr) =
Θ(‖uv‖ /r). It implies that in a random network,
the minimum number of hops used to connect any
two vertices in G(V, r) is in the same order of the
minimum number of hops used in G(V, δr).
Theorem 5: If there exists an algorithm for aggrega-

tion scheduling in G(V, δr) with approximation ratio
a, then we can achieve a solution for the original
topology G(V, r) with approximation ratio ρ · a w.h.p.

Proof: Let OPT (G(V, r)), OPT (G(V, δr)) be the
optimum schedules for G(V, r) and G(V, δr). We over-
load the terms as the delay achieved using the sched-
ules correspondingly.
By Lemma 11, the hop distance in the graph

G(V, δr) is at most ρ times of the hop distance in the
original graph G(V, r). So Rδr = maxu∈V minh(u, vs)
of the graph G(V, δr) is at most ρ times of Rr =
maxu∈V minh(u, vs) of the original graph G(V, r).
Here h(u, vs) is the number of hops between the node
u and the sink node vs. By Lemma 8, R is a lower
bound of the data aggregation under the physical
interference model. At the same time, the maximum
degree ∆δr of graph G(V, δr) is at most the maximum
degree ∆r of graph G(V, r). In Corollary 1, we have
proved that ∆ is another lower bound of the data
aggregation under physical interference model. Then
OPT (δr) ≤ ρ · OPT (r), which implies ALG(δr) ≤
a · OPT (δr) ≤ ρ · a ·OPT (r).

6.2 Arbitrary Network

Theorem 5 shows that for random wireless sen-
sor networks, the optimum solutions for the re-
duced graphs G(V, δr) and the original communica-
tion graphG(V, r) are in the same order. One may con-
jecture that this nice property holds for an arbitrary
network. Unfortunately, Fig 2 gives a counter-example
where the delay of data aggregation by using these
two graphs will be very different when 0 < δ < 1 is
a given constant.
In Fig 2, there are n nodes deployed in a rectangle

region. There are
√
n vertical evenly spaced lines with
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t

u vws

t

u vws

Graph G(V, δr) Graph G(V, (δ + ǫ)r)

Fig. 2: A network example: the optimum solutions for
G(V, r) and G(V, δr) are not in the same order. The
distance dh between consecutive vertical lines is (δ +
ǫ)r. The distance between two consecutive nodes on
a vertical line is dv = δr.

Euclidean distance dh = (δ + ǫ)r between consecutive
lines. Here δ < 1 is a given constant and 0 < ǫ < 1−δ.
For example, we can set ǫ = min(δ, 1−δ

2 ). For each
such line, we evenly place

√
n nodes with Euclidean

distance dv = δr between consecutive nodes. Addi-
tionally,

√
n − 1 nodes, like w between u and v in

the example, act as the bridges to guarantee the net-
work connectivity when doing aggregation in graph
G(V, δr). Distance between w and u (or v) is smaller or
equal to δr, and distances between w and other nodes
are larger than δr. Thus, in graph G(V, δr), if we want
to aggregate the data from s to t, we should strictly
follow the dashed path as shown in Fig 2. The delay
of data aggregation in G(V, δr) thus is at least n. On
the other hand, in graph G(V, r), the red solid path
may be a possibility for getting data from a source
node s to the sink node t. It is easy to show that for
graph G(V, r), the network radius is in the order of
Θ(
√
n). On the other hand, the graph G(V, r) contains

the graph G(V, (δ+ǫ)r) as a subgraph. Notice that, for
the graph G(V, (δ + ǫ)r), the maximum node degree
is ∆ ≤ 10 and the radius of the network is at most
R ≤ 2

√
n. Then using our scheduling algorithm, for

graph G(V, (δ + ǫ)r), the delay of data aggregation is
at most O(∆ + R) = O(

√
n). Consequently, the delay

of data aggregation in the original network G(V, r) is
at most O(

√
n). Thus, we have the following lemma.

Lemma 12: For any constant 0 < δ < 1, there
are examples of networks with n nodes V in two-
dimensional such that the delay using only links in
G(V, δr) is at least n while the delay using all links
in G(V, r) is only O(

√
n) using Algorithm 1. In other

words, there is no universal constant δ that ensures
a constant approximation ratio for the delay of data
aggregation by any algorithm that only considers links
in G(V, δr).
We then show that the ratio of the delay for data

aggregation in G(V, δr) over the delay for data ag-
gregation in G(V, r) is at most O(n2/3) for any net-
work of n nodes V in a two-dimensional space. Let
us consider any n nodes V distributed in a two-

dimensional region. Let ∆ and R be the maximum
node degree and radius for network G(V, r) respec-
tively. Obviously, we have πR2 ·∆ ≥ n. This implies
that max(R,∆) ≥ π1/3n1/3. Thus, the delay of data
aggregation in G(V, r) is at least π1/3n1/3. On the other
hand, the delay of data aggregation in G(V, δr) is at
most n. Then we have the following theorem.
Theorem 6: The ratio of the delay for data aggrega-

tion in G(V, δr) over the delay for data aggregation
in G(V, r) is at most n2/3/π1/3 for any network of n
nodes V in a two-dimensional space.
This implies that our algorithm achieves a delay

that is at most O(n2/3) factor of the delay by the
optimum algorithm for G(V, r). Lemma 12 implies
that there are network examples such that the delay
achieved by our algorithm is at least Ω(n1/2) factor of
the delay by the optimum algorithm for G(V, r). Note
that there is a gap between the performance bound of
our algorithm for network G(V, r). We conjecture that
Conjecture 1: The delay achieved by our algorithm

is Θ(n1/2) factor of the delay by the optimum algo-
rithm for G(V, r).

7 PERFORMANCE EVALUATIONS

In this section, we evaluate the performances of our
proposed algorithms, i.e., to measure the delay for the
sink node to compute the aggregation result (max, sum
or average) of all required data by using our proposed
data aggregation scheduling algorithms. Note that
here delay is defined as the number of time-slots
needed to aggregate all required data from within
the network to the sink node. We will compare the
performances of Algorithm 1 and 2 with another
method Compressive Scheduling which is described as
follows.

Compressive Scheduling: This is in fact a greedy
algorithm and it tries to schedule as many links as
possible in every single time-slot. It consists of 5 steps:
1) find all leaf nodes, say N , in the same routing

tree constructed in Section 3.1.
2) partition the deployment region into cells using

the same method in Section 3.2.
3) find a subset N1 ⊆ N such that each cell contains

at most one node from N1. If a cell contains
multiple nodes from N , we choose the one with
the largest level in the BFS tree.

4) for each node u ∈ N1, we find the corresponding
link from u to u’s parent in the routing tree. All
the links found form a link set L.
• color the links in L by using the same method
in Section 3.2, find a subset L1 of links of
monotone color with the largest size. We then
try to insert links into L1 greedily subject to
SINR constraints ( Equation (1) );

• apply Algorithm 1 in [25] to find a feasible
solution L2 which is a subset of L;
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parameter value parameter value
β 1 α 2.5
ξ 0.1 P 15

TABLE 1: Parameters of physical interference model.

• select one set from L1 and L2 with a larger
size and let all links in this set transmit con-
currently. Delete all transmitters which are leaf
nodes in the routing tree. Update the routing
tree accordingly.

5) repeat step 1) – 4) until there is no leaf node in
the routing tree.

Simulation Setup: We deploy a set of nodes
{v1, · · · , vn} uniformly (n varies from 200 to 2000with
step 100) in a square region with size 500meter ×
500meter (note that we always keep connectivity of
the networks). We assume that every node in the
network knows its own geometric information.
We will focus on physical interference model with

the parameter setting listed in Table 1. Based on the
parameters, we can derive the value of the maximum
transmission radius r. For any pair of nodes u and
v, we draw a feasible link (u, v) if |uv| ≤ δr, where
|uv| is the distance between u and v. Note that we
use a crucial parameter δ here. Generally, the smaller
the value of δ, the less links is contained in the cor-
responding reduced network G(V, δr), which implies
that:
1) each node has less incident links (edges), thus the

maximum node degree ∆ becomes smaller.
2) the maximum length of links in G becomes

smaller, thus the network radius R becomes
larger.

Since the time spent (denoted as l1) for collecting
data to dominators increases monotonically with ∆.
Thus l1 becomes smaller as δ becomes smaller. The
time spent (denoted as l2) for collecting data from
dominators to dominators level by level increases
monotonically with R. Thus l2 becomes larger as δ
becomes smaller. To sum l1 and l2 as the total delay,
when δ become smaller, it is not clear whether the
total delay will decrease or increase. Thus, it is not
straightforward for the effect of δ. However, δ cannot
be too small or too large (close to 1). If δ is too
small, the reduced graph may not be connected, thus
some un-connected node cannot send its datum to
the sink node. On the contrary, if δ is close to 1,
then the network is strongly connected by a lot of
long links. These long links prevent the simultaneous
transmissions, which potentially increases the delay.
From this perspective, a link with smaller length is
preferred for scheduling.
The link scheduling mechanism is based on the

TDMA manner. Basically, each node will locally
broadcast TDMA scheduling information for each link
it has to all its local neighboring nodes through beacon
messages.

Performance Comparisons: We will call Algorithm 1
and 2 as Distributed Algorithm and Improved Algo-
rithm respectively. To evaluate the effect of maximum
node degree ∆, we fix the network deployment area
as (500m × 500m) and vary the network size (# of
nodes) from 200 to 2000 with step 100. By connecting
every pair of nodes with distance no larger than δr,
we obtain a reduced graph G(V, δr). Here we set δ =
0.6 and ensure that the corresponding reduced graph
is connected. Later we will consider different values of
δ. By fixing the size of network deployment area, we
find that the network radius R is nearly fixed (around
25). At the same time, the maximum node degree
(∆) increases monotonously with network size. We
measure the worst case performances of our proposed
algorithms under this condition, the average result is
shown in Figure 3(a). Observe that the delay increases
monotonously with ∆.
To evaluate the effect of network radius R, we

consider a network instance similar to the first one
with two modifications: we set δ = 0.1 and vary the
network size from 200 to 2000 while fix the maximum
node degree in the network deployment area. We
find that ∆ is nearly fixed (around 25) as well in the
corresponding reduced graph. At the same time, R
increases monotonously with the network size. We
measure the worst case performances of Improved
and Distributed algorithms under this condition, the
average result is shown in Figure 3(b). Observe that
the delay of Distributed Algorithm increases faster.
For average performance comparisons of different

methods, we run simulations and compare their de-
lays. Note all comparisons are fairly conducted in the
same reduced network, and in each reduced graph,
data are aggregated from the same set of nodes to the
same sink node. Figure 4 illustrates the average delays
of different methods. From Figure 4(a) to Figure 4(b),
we can see that compressive scheduling has remark-
able effect on the delays of data aggregation in sparse
networks. It significantly reduces the delays.
Theoretically, the delay of compressive scheduling

algorithm for data aggregation should be at least that
of our improved and distributed algorithms. In prac-
tice, we show that our algorithm can be further im-
proved, although the theoretical performances remain
the same here. The proposed compressive scheduling
method can further reduce the delay by merging the
links scheduled in different slots to a single time-slot
without violating the SINR constraints.
In previous subsections, we all set δ to be some

default values, which may not be an optimum choice
to minimize the delays. Here we conduct simulations
to see the effect of δ in different scenarios. Let the
network size (# of nodes) be 1000 and the deployment
area be (500m×500m). Fig 5(a) compares the delays of
Distributed Algorithm and Improved Algorithm with
varied values of δ. Fig 5(b) shows the best choices of δ
with varied network size in a fixed deployment area.
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Fig. 3: Worst case.
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Fig. 4: Average case.
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Fig. 5: The effect of δ.

Here a best choice means that the delay of Distributed
Algorithm reaches minimum when δ is set as this
value. We conjecture that the smallest δ which can
ensure the connectivity of G(V, δr) is an optimum
choice.

8 CONCLUSION

We proposed two delay efficient aggregation schedul-
ing algorithms under the physical interference model
in wireless sensor networks. Some interesting ques-
tions are left for future research. The first one is
to improve the approximation ratio of the proposed
algorithms. The second one is to design efficient
data aggregation method that has the asymptotically
optimum performance guarantee compared with the
optimum delay using G(V, r). The third one is to
extend the proposed algorithms to deal with a more
general path loss model.
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