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Abstract—We study throughput-optimum localized link
scheduling in wireless networks. The majority of results on
link scheduling assume binary interference models that simplify
interference constraints in actual wireless communication. While
the physical interference model reflects the physical reality
more precisely, the problem becomes notoriously harder under
the physical interference model. There have been just a few
existing results on link scheduling under the physical interference
model, and even fewer on more practical distributed or localized
scheduling. In this paper, we tackle the challenges of localized
link scheduling posed by the complex physical interference
constraints. By integrating the partition and shifting strategies
into the pick-and-compare scheme, we present a class of local-
ized scheduling algorithms with provable throughput guarantee
subject to physical interference constraints. The algorithm in
the oblivious power setting is the first localized algorithm that
achieves at least a constant fraction of the optimal capacity region
subject to physical interference constraints. The algorithm in
the uniform power setting is the first localized algorithm with
a logarithmic approximation ratio to the optimal solution. Our
extensive simulation results demonstrate performance efficiency
of our algorithms.

Index Terms—localized link scheduling, physical interference
model, maximum weighted independent set of links (MWISL),
capacity region.

I. INTRODUCTION

AS a fundamental problem in wireless networks, link
scheduling is crucial to improve network performances

through maximizing throughput and fairness. It has recently
regained much interest from networking research community
because of wide deployment of multihop wireless networks,
e.g., wireless sensor networks for monitoring physical or
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environment [2] [3] through collection of sensing data [4].
Generally, link scheduling involves determination of which
links should transmit at what times, what modulation and
coding schemes to use, and at what transmission power
levels should communication take place [5]. In addition to
its great significance in wireless networks, developing an
efficient scheduling algorithm is extremely difficult due to
the intrinsically complex interference among simultaneously
transmitting links in the network.

The link scheduling problem has been studied with different
optimization objectives, e.g., throughput-optimum scheduling,
minimum length scheduling. Our study mainly focuses on
maximizing throughput in multihop wireless networks. Taking
queue length of every link as its weight, it is well known that
a throughput-optimum scheduling policy that tries to find a
maximum weighted independent set of links is generally NP-
hard in wireless networks [5].

Despite of numerous results gained for the problem [6],
[5], [7], [8], [9], [10], most assume simple binary interference
models, e.g., hop-based, range-based, and protocol interference
models [11]. Under this category of interference model, a
set of links are conflict-free if they are pairwise conflict-
free. Conflict of transmissions on two distinct links is pre-
determined independently of the concurrent transmissions of
other links. Thus, interference relationships based on these
models can be represented by conflict graphs, and we can
leverage classic graph-theoretical tools for solutions. However,
in actual wireless communication, interference constraints
among concurrent transmissions are not local and pairwise,
but global and additive. Conflict of distinct transmissions is
determined by the cumulative interference from all concurrent
transmissions, which is often depicted by the physical interfer-
ence model, e.g., the Signal-to-Interference-plus-Noise Ratio
(SINR) interference model. The global and additive nature
of the physical interference model drives previous traditional
techniques based on conflict graphs inapplicable or trivial.
Consequently, designing and analyzing scheduling algorithms
under the physical interference model becomes especially
challenging.

Some recent research results [12], [11], [13], [14], [15],
[16], [17], [18], [19] have addressed some related challenges.
To the best of our knowledge, however, all of these, with
throughput maximization or other optimization objectives such
as a minimum length schedule [11], just focus on centralized
implementation. Distributed or even localized scheduling un-
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der the physical interference model is more demanding out of
practical relevance.

Though [20], [21], [22] consider distributed implementation
of centralized algorithms, they require global propagation of
messages and [20] [21] fail to provide an effective localized
scheduling algorithm with satisfactory theoretical guarantee
and. A scheduling algorithm without theoretical guarantee
may cause arbitrarily bad throughput performance, and global
propagation of messages throughout network is inefficient in
terms of time complexity [23], especially for large-scale net-
works. This motivates us to develop localized link scheduling
algorithms with provable throughput performance. Here by
a localized scheduling algorithm we mean that each node
only needs information (i.e., queue length and link status)
within constant distance to make scheduling decisions, while
a distributed algorithm may inexplicitly need information far
away. Since just local information is available for each node to
collaborate on schedulings with globally coupled interference
constraint, it poses significant challenges to designing efficient
localized scheduling algorithms with theoretical throughput
guarantee.

In this paper we tackle these challenges of practical local-
ized scheduling for throughput maximization under physical
interference with the commonly-used oblivious and uniform
power assignment. We prove that our algorithms can respec-
tively achieve a constant and O(log |V |) fraction of capacity
region for the oblivious and uniform power setting, where |V |
is the number of nodes. Our extensive simulation shows that
our proposed algorithms outperform simple heuristics.

The remainder of the paper is organized as follows. We
define the network model and problems in Section II, propose
our localized algorithms for the oblivious and uniform power
assignment respectively in Section III and IV, and evaluate
their performance in Section V. We review related works in
Section VI, and conclude our work in Section VII.

II. MODELS AND ASSUMPTIONS

A. Network Communication Model

We model a wireless network by a two-tuple (V,E), where
V denotes the set of nodes and E denotes the set of links.
Each directed link l = (u, v) ∈ E represents a communication
request from a sender u to a receiver v. Let ∥l∥ or ∥uv∥ denote
the length of link l. We assume each node knows its own
location and the topology of the network.

B. Interference model
Under the physical interference model, a feasible schedule

is defined as an independent set of links (ISL), each satisfying

SINRuv
∆
=

Pu · η · ∥uv∥−κ∑
w∈Tu

Pw · η · ∥wv∥−κ + ξ
≥ σ,

where ξ denotes the ambient noise, σ denotes certain thresh-
old, and Tu denotes the set of simultaneous transmitters with
u. It assumes path gain η · ∥uv∥−κ ≤ 1, where the constant
κ > 2 is path-loss exponent, and η is the reference loss factor.

We consider the following two transmission power settings.

1) Oblivious power setting: a sender u transmits to a
receiver v always at the power Pu = c · ∥uv∥β where
c and β are both constant satisfying c > 0, 0 < β ≤ κ.

2) Uniform power setting: all links always transmit at
the same power Pu = P . Under the uniform power
case, we further assume that all links have a length
adequately less than the maximum transmission radius
κ

√
ηP
σξ as links with length almost the same as the

maximum transmission radius are vulnerable to fail.

We use Pl and Pu alternatively to denote the transmitting
power of link l = (u, v). The distance between u and v
satisfies r ≤ ∥uv∥ ≤ R, where r and R respectively denotes
the shortest link length and the longest link length. We suppose
that r and R are known by each node.

C. Traffic models and scheduling

The maximum throughput scheduling is often studied in the
following models. It assumes time-slotted wireless systems,
and single-hop flows with stationary stochastic packet arrival
process at an average arrival rate λl. The vector A(t) =
{Al(t)} denotes the number of packets arriving at each link in
time slot t. Every packet arrival process Al(t) is assumed to be
i.i.d over time. We also assume that all packet arrival processes
Al(t) have bounded second moments and they are bound by
Amax, i.e., Al(t) ≤ Amax, ∀l ∈ E. Let a vector {0, 1}|E|

denote a schedule S(t) at each time slot t, where Sl(t) = 1 if
link l is active in time slot t and Sl(t) = 0 otherwise. Packets
departure transmitters of activated links at the end of time
slots. Then, the queue length vector Q(t) = {Ql(t)} evolves
as Q(t+ 1) = max{0, Q(t)− S(t)}+A(t+ 1) where Ql(t)
is queue length (weight or backlog) of link l.

The throughput performance of link scheduling algorithms
is measured by a set of supportable arrival rate vectors, named
capacity region or throughput capacity. That is, a scheduling
policy is stable, if for any arrival rate vector in its capacity
region [10], it satifies limt→∞ E[Q(t)] <∞.

Though the policy of finding a MWISL to schedule re-
garding to the underlying interference models is throughput-
optimal [24], finding a MWISL itself is NP-hard generally
[25]. Thus we have to rely on approximation or heuristic meth-
ods to develop suboptimal scheduling algorithms running in
polynomial time. A suboptimal scheduling policy can achieve
a fraction of the optimal capacity region depicted by efficiency
ratio γ [5].

A suboptimal scheduling policy with efficiency ratio γ must
find a γ-approximation scheduling at every time slot t to
achieve γ times of the optimal capacity region [26]. It remains
difficult to achieve in a decentralized manner. The pick-and-
compare approach proposed in [6] enables that we just need
to find a γ-approximation scheduling with a constant positive
probability. The basic pick-and-compare [6] works as follows.
At every time slot, it generates a feasible schedule that has a
constant probability of achieving the optimal capacity region.
If the weight of this new solution is greater than the current
solution, it replaces the current one. Using this approach
achieves the optimal capacity region. The proposition below
further extends this approach to suboptimal cases.
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Proposition 1: ( [8]) Given any γ ∈ (0, 1], suppose that an
algorithm has a probability at least δ > 0 of generating an
independent set X (t) of links with weight at least γ times the
weight of the optimal. Then, capacity γ ·Λ can be achieved by
switching links to the new independent set when its weight is
larger than the previous one(otherwise, previous set of links
will be kept for scheduling). The algorithm should generate
the new scheduling S(t) from the old scheduling S(t − 1)
and current queue length Q(t).

III. THE ALGORITHM IN THE OBLIVIOUS POWER SETTING

In this section, we focus on the design of localized schedul-
ing algorithm for the oblivious power setting.

A. Basic idea

The basis of our idea is to create a set of disjoint local
link sets where scheduling can be done independently without
violating the global interference constraint. The decoupling
of the global interference constraint is based on the fact that
distance dominates the interference between two distinct links.
That is, if a transmitting link is placed a certain distance away
from all the other transmitting links, the total interference it
receives may get bounded. Based on this, then we employ the
partition strategies to divide the network graph into disjoint
local areas such that each local area is separated away by
a certain distance to enable independent local computation
of schedulings inside every local area. Links lying outside
local areas will keep silent to ensure separation of local areas.
As links lying outside local areas cannot remain unscheduled
all the time or it will induce network instability, we use the
shifting strategy to change partitions at every time slot to
make sure that every backlogged link will be scheduled. These
locally computed scheduling link sets compose a new global
schedule X (t) at every time slot t.

As the pick-and-compare scheme, we choose a more
weighted schedule, denoted as S(t), between a newly gener-
ated schedule X (t) and the last-time schedule S(t− 1) using
Q(t). Meanwhile, by Proposition 1, if we guarantee that

P(S(t) ·Q(t) ≥ γS∗(t) ·Q(t)) ≥ δ (1)

for some constant γ > 0, δ > 0, the queue length vector Q(t)
will eventually converge to a stable state.

B. Detailed description

We first describe the partition and shifting strategies [9], as
illustrated in Fig. 1. The plane is partitioned into cells with
side length d = R, by horizontal lines x = i and vertical lines
y = j for all integers i and j. A vertical strip with index i
is {(x, y)|i < x ≤ i+ 1}. Similarly, we define the horizontal
strip j. cell(i, j) is the intersection area of a vertical strip i
and a horizontal strip j. A super-subSquare(i, j) is the set
of cells: {cell(x, y)|x ∈ [i ∗ K + at, (i + 1) ∗ K + at), y ∈
[j ∗K + bt, (j + 1) ∗K + bt)}, and a sub-square(i, j) inside
it is the set of cells:{cell(x, y)|x ∈ [i ∗K + at +M, (i+ 1) ∗
K + at −M), y ∈ [j ∗K + bt +M, (j + 1) ∗K + bt −M)}.
The corresponding link set Yij (or Lij) consists of links with
both ends inside super-subSquare(i, j) (or sub-square(i, j)).
Let constant K = 2M +J , where M is a constant that would

1

(a) Partition(K,at, bt). Here the
gray area is the local area the
link set of which participate in
computing the new schedule; the
links in the white area keep
silent.

t

(t+1)

Shifting

(b) Partition(K,a(t+1), bt).
Change the partition through
shifting to the right by one cell,
ensuring that links in the white
area in previous partitions have
opportunity to be scheduled.

Fig. 1: The partition and shifting process

be defined in Lemma 2. Let integers at, bt, 0 ≤ at, bt < K be
the horizontal and vertical shifting respectively, then we call
the resulting plane Partition(K, at, bt). By separately adjusting
at, bt, we can get K2 different partitions for a plane totally.

At each time slot each nodes runs Algorithm 1 to collabora-
tively compute a globally feasible scheduling. As every node
knows the locality from which it will collect information, it
then participates the corresponding local computation, and at
last it sends (if it is a coordinator) or receives (if not) the
results.

Time slot t = 0: Every node first decides in which cell
it resides when (a0, b0) = (0, 0); then it participates in the
process of computing a local scheduling Sij(0) for the sub-
square(i, j) it belongs to. Let the solution S(0) be the union
of the local solutions Sij(0) for all sub-squares.

Time slot t ≥ 1: Every node decides in which cell it resides
by a partition starting from (at, bt). The shifting strategy for
at and bt works as follows. We let at = t mod K; and bt =
(bt + 1) mod K if at = 0, or it keeps unchanged. Each
node then participates in computing the new local scheduling,
denoted as Xij(t), for its sub-square(i, j) using the weight
Q(t). Let Sij(t−1) be the set of links from S(t−1)(the global
solution at time slot t−1) falling in the super-subSquare(i, j)
instead of sub-square(i, j). If Sij(t − 1) · Q(t) > Xij(t) ·
Q(t), let Sij(t) = Sij(t− 1), else Sij(t) = Xij(t), the global
solution is the union of Sij(t) from all super-subSquares.

In our algorithm, at increases from 0 to K−1 in K sequent
time slots when bt is fixed, and bt increases by 1 every K time
slots. The vertical and horizontal distance between any two
sequent sub-squares is 2M . Initially, both at and bt are 0. Thus
in the worst case it takes 2M ·K time slots for a uncovered link
to lie between two sequent sub-squares in horizontal line, i.e.,
increase bt by 2M ; and another 2M time slots to be finally
covered by a sub-square, i.e., increase at by 2M . Thus we say
it will take (K + 1)2M time slots to get every link covered
by a sub-square. The vertical and horizontal distance between
any two sequent super-subSquares is 0. A link crosses two
vertical and horizontal cells at most. In worst case, it requires
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TABLE I: Summary of notations

J side length of sub-square Lij link set of sub-square(i, j) Yij link set of super-subSquare(i, j)
K side length of super-subSquare Xij(t) new scheduling for Lij at t Sij(t) scheduling for Yij at t
Zi local link set OPTij(t) local optimal MWISL for Lij S∗(t) global optimal MWISL at t
R longest link length S∗

ij(t) intersection of Lij and S∗(t) S(t) global scheduling at time slot t
d side length of cell ∥uv∥ link length rS(l) relative interference l get from link set S

aS(l) affectness l get from link set S Q(t) queue length vector W (S) weight of link set S
IlS interference link l suffered from link set S Ilmax the maximum interference l can bear Imax the minimum of Ilmax

K time slots to increase bt by 1, and another 1 time slot to
increase at by 1, where a uncovered link finally gets covered
by a super-subSquare.

Algorithm 1 Distributed Scheduling by node v under the
oblivious power setting

1: state = White; active = No; Coordinator = No;
2: Calculate which cell node v resides in regarding to the

current partition(K, at, bt);
3: if v is the closest node to the center of super-subSquare

then
4: Coordinator = Yes;
5: end if
6: if Coordinator = Yes then
7: Collect Q(t) and Sij(t− 1).
8: Compute Xij(t) in sub-square(i, j) by enumeration;
9: if Sij(t− 1) ·Q(t) > Xij(t) ·Q(t) then

10: Sij(t) = Sij(t− 1);
11: else
12: Sij(t) = Xij(t);
13: end if
14: Broadcast RESULT(Sij(t)) in super-subSquare(i, j);
15: end if
16: if state = White then
17: if receive message RESULT(Sij(t)) then
18: if v ∈ Sij(t) then
19: state = Red; active = Yes;
20: else
21: state = Black; active = No;
22: end if
23: end if
24: end if

C. Theoretical analysis and proof
Given a network (V,E), supposing ∪Zi is a set of disjoint

local link sets inside for scheduling, where Zi ∈ E and Zi ∩
Zj = ϕ if i ̸= j, for any link l ∈ Zi, if l is activated, then

Il = Ilin + Ilout

where I l denotes cumulative interference from all other
activated links in the network, I lin denotes the total interference
from simultaneously transmitting links inside Zi and I lout
denotes the total interference from transmissions outside.

Therefore, we can do independent scheduling inside Zi

without consideration of I lout from concurrent transmissions
outside Zi, if I lout gets bounded by a constant, i.e.,

Ilin ≤ (1− ε) · Ilmax, Ilout ≤ ε · Imax, 0 < ε < 1, l ∈ Zi.

Let Imax denote the maximum interference that the longest
links in E can tolerant during a successful transmission, and

I l
max

represent the maximum interference that an activated link
l can tolerant during a successful transmission. Then we have
the two Lemmas bellow.

Lemma 1: In the oblivious power setting, the number of
independent links for a local link set Zi inside a square with
a size length JR is bounded by a constant. Let OPTi be a
local MWISL of Zi, |OPTi| ≤ (

√
2JR)κ

(1−ε)

[
1
σ
− ξ·rβ−κ

cη

]
+ 1.

Proof: This proof is available in Appendix A.
Lemma 2: Under the oblivious power setting, if the Eu-

clidean distance between any two disjoint local link sets is at
least M×R, then activated links in each local link set suffer a
bounded cumulative interference from all other activated link
sets, i.e., for each activated link l in local link set Zi,

Ilout ≤ ε · Imax, 0 < ε < 1,

where M is a constant, satisfying M ≥
[

2πcηRβ−κ·|OPTi|ub
(κ−2)εImax

] 1
κ

.
Herein |OPTi|ub denotes an upper bound of the size of the
local optimal MWISL for Zi.

Proof: This proof is available in Appendix B.
To analyze the theoretical performance of our method, we

first review the following definitions.
Definition 2: (affectness [16]) The relative interference of

link l∗ on l is the increase caused by l∗ in the inverse
of the SINR at l, namely rl∗(l) = I ll∗/(Plη∥uv∥−κ). For
convenience, define rl(l) = 0. Let cl = σ

1−σξ/(Plη∥uv∥−κ)
be a constant that indicates the extent to which the ambient
noise approaches the required signal at receiver tv. The
affectness of link l caused by a set S of links, is the sum
of relative interference of the links in S on l, scaled by cl, or
aS(l) = cl ·

∑
l∗∈S

rl∗(l).

Definition 3: (p-signal set [16]) We define a p-signal set to
be one where the affectness of any link is at most 1/p. Clearly,
any ISL is a 1-signal set.

Lemma 3: ( [16]) There is a polynomial-time protocol that
takes a p-signal set and refines into a p′-signal set, for p′ > p,
increasing the number of slots by a factor of at most 4(p

′

p )
2.

It indicates that a p-signal set can be refined into at most 4(p
′

p )
2

p′-signal set through a polynomial-time algorithm, e.g., a first-
fit algorithm. Using the result, we have the Lemma below.

Lemma 4: The weight of Xij(t) has a constant approxima-
tion ratio to the weight of the intersection set by the local link
set Lij and the global optimal MWISL S∗(t).

Proof: Normally any ISL is a 1-signal set. That is, for
the affectness of a normal ISL it holds that:

aS(l) = cl ·
∑
l∗∈S

rl∗(l) ≤
σ

1− σξ/Pl
· I

l
max

Pl
≤ 1, (2)

whereas the affectness of a locally computed ISL for sub-
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Partition

at time slot 

t*-1

Partition

at time slot t*

l1 l2

l3

l4

Fig. 2: Partitions at time slot t∗ − 1 and time slot t∗

square must satisfy that,

aSij(t)
(l) = cl ·

∑
l∗∈Sij(t)

rl∗(l) ≤
σ · (1− ε)

1− σξ/Pl
· I

l
max

Pl
≤ 1− ε. (3)

Therefore, by Lemma 3, a normal MWISL can be refined
into 4

(1−ε)2
1

(1−ε) -Signal link sets at most. Since the 1
(1−ε) -

Signal link set returned by enumeration is most weighted, so
the locally computed link scheduling sets Xij(t) has a weight

W (Xij(t)) ≥
(1− ε)2

4
W (OPTij(t)). (4)

Let S∗
ij(t) = S∗(t)∩Lij denote the intersection by Lij and

S∗(t), where S∗(t) is the global optimal MWISL at time slot
t. It is obvious that
W (S∗

ij(t)) ≤W (OPTij(t)) ≤ 4
(1−ε)2W (Xij(t)).

Theorem 1: S(t) = ∪Sij(t) computed by our algorithm
is an independent link set under the physical interference
model in the oblivious power setting. The weight of S(t),
i.e., W (S(t)), is a constant approximation of the weight of
the global optimal MWISL with probability of at least 1/K2.

Proof: The proof consists of two phases. We first prove
that S(t) = ∪Sij(t) is an independent set. We next derive the
approximation bound that S(t) achieves.

Phase I: We rely on induction to infer that at every time
slot S(t) is a union of disjoint activated local link sets that
are separated by at least M cells from each other. Then we
have that S(t) is an independent link set under the physical
interference model by Lemma 2. The following are the details.

For any link l ∈ S(t), assuming l ∈ Sij(t), the total inter-
ference l suffers from all the other simultaneously transmitting
links in S(t) is denoted by I lS(t).

At time slot 0, every local activated link set Sij(0) = Xij(0)
is kept 2M cells away from each other, so S(0) is an
independent set by Lemma 2.

At time slot 1, either Sij(0) or Xij(1) is chosen to be a
part of S(1). For those super-subSquares whose Sij(1) =
Si′j′(0) ∩ Yij(0), their distance is kept at least 2M cells
away. For those super-subSquares whose Sij(1) = Xij(1),
their distance is also kept at least 2M cells away. And the
distance between the two kinds of link set is at least 2M − 1
cells away. So S(1) is an independent set.

At some time slot t∗, t∗ > 1, for some super-subSquares,
Sij(t

∗) consists of disjoint subsets from several different
Si′j′(t

∗ − 1) which fall into Yij(t∗), i.e.,

Sij(t
∗) = S(t∗−1)∩Yij(t

∗) =
∪
i′j′

{Si′j′(t
∗ − 1) ∩ Yij(t

∗)}. (5)

For instance, as illustrated in Fig. 2, link sets {l1, l2}
and {l3, l4} respectively get scheduled in two differ-
ent super-subSquares (i.e., super-subSquare(1, 2) and super-
subSquare(2, 2)) at time slot t∗ − 1, the links {l1, l2, l3, l4}
are then get scheduled in the same super-subSquare(1, 2) at
time slot t∗. Let Φij

i′j′(t
∗) = Si′j′(t

∗−1)∩Yij(t∗) for brevity.
Each Si′j′(t

∗ − 1) is kept at least M cells away from each
other, so is each Φij

i′j′ .
Clearly, S(t∗) can be divided into two separated subsets,

one formed by some subsets of S(t∗ − 1), the other formed
by newly computed Xij(t

∗), i.e.,

S(t∗)=
∪
ij

Sij(t
∗) =

∪
pq

∪
i′j′

Φpq
i′j′(t

∗)

∪
∪
mn,

mn̸=pq

Xmn(t
∗)


.

(6)

Since
∪
pq

∪
i′j′

Φpq
i′j′(t

∗) is a subset of S(t∗ − 1), it is composed

by disjoint subsets with a mutual distance of M cells at least.
The distance between any distinct Xmn(t

∗) is no less than 2M
cells. Then we consider the distance between a disjoint subset
of

∪
pq

∪
i′j′

Φpq
i′j′(t

∗) and a Xmn(t
∗). Since Xmn(t

∗) locates in

sub-square(m,n), which is M cells away from the border of
super-subSquare(m,n), the distance between a disjoint subset
of

∪
pq

∪
i′j′

Φpq
i′j′(t

∗) and a Xmn(t
∗) is still no less than M cells.

Comprehensively, S(t∗) consists of disjoint subsets which are
separated by at least M cells.

Note that a disjoint subset of S(t∗) does not equalize to a
Sij(t

∗) since a Si′j′(t
∗ − 1) may be reserved completely in

different super-subSquares at time slot t∗. Here we denote the
disjoint subset by ψi(t

∗), and S(t∗) =
∪
ψi(t

∗).
By Lemma 2, for each link l ∈ ψi(t

∗), where ψi(t
∗) comes

from the former part of equation (6), we have IlS(t∗) ≤ Ilmax.

Meanwhile, for each l ∈ ψi(t
∗), where l ∈ ψi(t

∗) comes from
the later part of (6), it holds that IlS(t∗) ≤ Ilmax. Then we have

I lS(t∗) ≤ I lmax, ∀l ∈ S(t∗), (7)

indicating that S(t∗) is an independent set.
Next we consider situations at time slot t∗ + 1. Similarly,

S(t∗ + 1) composes of disjoint subsets separated by no less
than M cells. Using the same technique as at time slot t∗, we
can get that S(t∗ + 1) is still an independent set.

By induction we can conclude that S(t) is a union of disjoint
activated subsets separated by M cells at least, thus it is an
independent set. Herein we finish the first phrase of the proof.

Phase II: We derive the approximation ratio by the pigeon-
hole principle, Lemma 4, and Proposition 1.

Let D(t) denote the link set of the removed strips at
Partition(K, at, bt). D∗(t) represents a subset of S∗(t), links
of which fall inside D(t), i.e., D∗(t) = D(t)∩S∗(t). Recalling
that there are K2 different partitions for a plane totally. If
we tried all these partitions in a single slot, each cell(i, j)
would appear in the “removed” strips at most 2KM times.
Then we let Di(t) denote the link set of the removed strips
when the ith one of the K2 partitions happens, and let
D∗

i (t) = Di(t) ∩ S∗(t). Thus the weight of all D∗
i (t) in the

K2 partitions should be 2KMW (S∗(t)), i.e.,
K2−1∑
i=0

W (D∗
i (t)) ≤ 2KMW (S∗(t)). (8)
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Since actually we only experience one partition at time
slot t, by the pigeonhole principle the corresponding
Partition(K, at, bt) has a probability at least 1/K2 to be an
optimal partition, the weight of whose removed links in D∗(t)
is no greater than that of other partitions. Instantly we have
the following with probability of 1/K2 at least,

W (D∗
i (t)) ≤

1

K2
·
K2−1∑
i=0

W (D∗
i (t)) ≤

2M

K
W (S∗(t)), (9)

W (∪S∗
ij(t)) = W (S∗(t)\D∗(t)) ≥ (1− 2M

K
)W (S∗(t)). (10)

Following Lemma 4, with a probability of 1/K2 it holds,

(1− 2M

K
)W (S∗(t)) ≤ 4

(1− ε)2
W (∪Xij(t)). (11)

So by Proposition 1 we get that the approximation ratio for
the optimal is 4

(1−2·M
K

)(1−ε)2
.

D. Time and communication complexity

We define the time complexity as the time units required by
the running of Algorithm 1 inside each local area in the worst
case [23]. It includes time units for local information collection
and local computation time at the center node. At every time
slot, the coordinators shall collect queue information and last
scheduling status of all links inside the super-subSquares.
After computation, the coordinators broadcast the scheduling
results throughout the super-subSquares.

It may require multihop propagation to collect and broadcast
the needed information inside super-subSquares. To avoid col-
lision, the coordinator can first compute a tree that determines
the sequence of transmissions at each node in the super-
subSquare based on topology information already known. In
the worst case each node has to transmit one by one at different
mini slot, then it causes time complexity O(n2ij) where nij is
the number of nodes inside super-subSquare(i, j) in the worst
case. Herein we just give a basic scheme, the time complexity
may be further reduced with better broadcast scheduling.

After all required information gathered, the local compu-
tation complexity at the center node is O(2|Lij |). Since the
time units for computation process is much smaller than the
time unit for message propagation, the local computation
complexity can be ignored comparing to the time for infor-
mation collection. Thus the total time complexity is O(nij).
The communication complexity is the total number of basic
messages transmitted during each scheduling in the worst
case [23]. The communication complexity is O(|V |), and the
number of messages transmitted in each local area is O(nij).

IV. THE ALGORITHM IN THE UNIFORM POWER SETTING

We now extend the framework to the uniform power set-
ting. Instead of enumeration, we compute a MWISL of the
candidate links for each sub-square by adopting the method
proposed in [19], as the cardinality of the optimal MWISL
in each sub-square is no longer bounded by a constant in the
uniform power setting. Except for the difference, the general
structure of the algorithm is the same with that of the oblivious
power setting.

We first describe the main idea of Algorithm 1 in [19] for
computation of MWISL inside each sub-square. Given a set
of links and weights associated with the links, the algorithm
works as follows:

Phase I: Remove every link whose associated weight is at
most wmax

n where wmax denotes the maximum weight among
all links and n is the number of all given links. Let wmin

denote the minimum weight from the remaining links.
Phase II: Partition the remaining links into log wmax

wmin
groups

such that the links of the i−th group Gi have weights within
[2iwmin, 2

i+1wmin]. For each group Gi of links, it finds an
independent set of links among it by adopting the method in
[27]. Totally it will get log wmax

wmin
ISLs, one for each group.

Then it chooses the one with the maximum weight among the
log wmax

wmin
ISLs as the final solution.

As the resulted link scheduling set is an ISL by the method
in [27], we can prove that its size has a constant upper bound
through the following lemma.

Lemma 5: ( [27]) Consider a link l = (u, v) and a set N of
nodes other than u whose distance from u is at most ρ∥uv∥.
If link l succeeds in the presence of the interference from N ,

then |N | ≤ (ρ+1)κ

σ

[
1− (∥uv∥R )κ

]
.

The corollary below asserts an upper bound of the number
of successfully transmitting links in a local link set with size
JR× JR when utilizing Algorithm 1 in [19].

Corollary 1: The cardinality of the resulted link scheduling
set by Algorithm 1 in [19] is upper bounded, i.e., |Xij(t)| ≤
(
√
2J R

r +1)κ

σ

[
1− ( r

R )κ
]

within an area of JR× JR.

Proof: In the method presented in [27], it adds firstly the
shortest link among all the candidates to the scheduling set.
And the distance between any pair of nodes will be no greater
than

√
2JR. Therefore, let r be the shortest link length and

then ρ =
√
2JR
r , we derive the upper bound.

We let |Xij(t)|ub denote an upperbound of the size of the
local computed ISL for Zi by Algorithm 1 in [19]. Then we
present the lemma below .

Lemma 6: In the uniform power setting, if the Euclidean
distance between any two disjoint local link sets is at least
M×R , then activated links in each local set suffer negligible
cumulative interference from all other activated link sets, i.e.,
for each activated link l in local link set Zi,

I lout ≤ ε · Imax, 0 < ε < 1,

where M is a constant, satisfying M ≥
[

2πηP ·|Xij(t)|ub

(κ−2)εImaxRκ

] 1
κ

.
Proof: The proof is available in Appendix C.

In light of Lemma 6, the partition strategy to enable
distributed implementation will remain effective in the uniform
power setting. Similarly, we have

Lemma 7: The weight of the newly computed link schedul-
ing set inside each sub-square(i, j), i.e., W (Xij(t)), has an
approximation ratio of 4µ

(1−ε)2 to the weight of the intersection
set by the corresponding local link set Lij and the global
optimal MWISL S∗(t).

Proof: The newly computed local scheduling set for each
sub-square should be a (1 − ε)-signal set, so its weight is
at least (1−ε)2

4 times the corresponding 1-signal set. Since the
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solution for MWISL with uniform power assignment proposed
in [19] finds an ISL with affectness no greater than 1, it is
obvious that

W (S∗
ij(t)) ≤ W (OPTij(t)) ≤

4µ

(1− ε)2
W (Xij(t)), (12)

where µ = log |V | is the approximation bound of the
algorithm in [19].

Then, we will state an exact bound on the throughput
performance of our algorithm in Theorem 2.

Theorem 2: The union of the local computed scheduling
link sets, i.e., S(t) =

∪
Sij(t), is feasible under the uniform

power setting. The weight of S(t) achieves a fraction of
O(log |V |) times the optimal solution.

Proof: We first show that the resulted scheduling link
set by our algorithm is an independent link set with uniform
power at every time slot. Using the same technique in the proof
of Theorem 1, we can inductively conclude that each global
scheduling set S(t) is composed by disjoint link sets which
are kept at least M cells away from each other. Therefore, by
Lemma 6, we can get that for each link l ∈ S(t), the total
interference it receives satisfies that,

I lS(t) ≤ (1− ε) · I lmax + ε · Imax ≤ I lmax, (13)

indicating S(t) is an independent link set. Using Lemma 6
and the same techniques in proof of Theorem 1, we get

P
(
W (S(t)) ≥ (1− ε)2(K − 2M)

4Kµ
S∗(t)

)
≥ 1

K2
, (14)

where µ = log |V |.
The time complexity and communication complexity is the

same as that of the oblivious power assignment.

V. PERFORMANCE EVALUATION

We do simulation experiments to evaluate the throughput
performance of our proposed algorithms. The general setting
of our experiments is as follows. We consider a network
with 500 nodes, half of which as senders randomly located
on a plane with size 200 × 200 units, the other half as
receivers positioned uniformly at random inside disks of radius
R around each of the senders. Packets arrive at each link
independently in a Poisson process 1 with the same average
arrival rate λ. Initially, we assign each link k packets where
k is randomly chosen from [100, 300]. The path loss exponent
is set to be 3.

We conduct two series of experiments to focus on the
evaluation of average throughput performance in terms of total
backlog (the total number of unscheduled packets). In the
first series, we study how some related variables affect the
performance of the algorithms. In the second series, we further
study the performance efficiency of the proposed algorithms
by comparisons with two distributed algorithms:

1) Distributed Greedy Maximal Schedule (DGMS) [21], it
needs to pre-computation network wide to determine a
neighborhood of each link. If a link has maximum length
in its neighborhood, it will get scheduled.

1The results hold under any arrival process satisfying the strong law of
large numbers, using the fluid model approach [28] [10].

2) Distributed Randomized Algorithms (DRA), where each
link determines to be active with a probability. To ensure
that the global scheduling set is feasible or almost
feasible, the probability has to be set quite small.

A. Under oblivious power Setting

We set the first series of experiments to study the perfor-
mance of Algorithm 1 alone under different values of variables
that may impact the average throughput performance actually.
The variables K

M and ε dominate the theoretical bound of
Algorithm 1. When ε is fixed, a larger K

M implies a bigger
fraction of the optimal capacity region, but with a smaller
probability of 1

K2 to achieve it. ε denotes a weighting factor
between the interference a activated link suffers inside and
outside the sub-square. A bigger value of ε indicates a smaller
value of M theoretically. Therefore, though under the fixed
value of K

M a smaller ε leads to a bigger fractional capacity
region, the probability to achieve this region gets smaller
because of the resulted bigger M . Since the running time of
the simulation is much shorter than the time for the algorithm
to achieve the theoretical value, the probability will impact
the actual average throughput in our experiments. Typically,
a small probability of 1

K2 may cause poorer throughput
performance. An experiment study of the two variables are
illustrated in Fig. 3 and Fig. 4. In Fig. 3 we compare the
total backlog by increasing the feasible values of K

M where ε
serves as a constant. Fig. 3(a), 3(b), 3(c) respectively shows the
comparisons of total backlog at time slot 1000 with increasing
arrival rate when ε = 0.2, ε = 0.4, ε = 0.8. Note that the value
of K

M must be greater than 2, or the size of the sub-squares
will be 0. It shall also be noticed that the feasible values of K

M
are different when ε varies, since ε affects the value of M . It
then explains why we set different values for K

M for varying
ε. All the three figures show that the throughput performance
generally improves as K

M increases, which coincides with the
theoretical results we derive. Though the relevant probability
shall become smaller as K

M increases, there is no obvious sign
shown in Fig. 3. (a), 3. (b). We can see an obvious impact
in Fig. 3(c) where K

M can be set bigger values. It shows the
average throughput becomes a little worse at K

M = 7 than
K
M = 6. 1
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Fig. 4: Total backlog vs. average arrival rate vs. different values of
ε at time slot 1000 in the oblivious power setting

We briefly illustrate the impact of ε at fixed K
M in Fig. 4.

Though the theoretically achievable capacity region shall have
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Fig. 3: Total backlog vs. average arrival rate vs. different values of K
M

at time slot 1000 in the oblivious power setting

been greater with a smaller ε, it seems to show contradicted
results in Fig. 4(a). The apparent contradiction lies behind the
probability of 1

K2 which becomes quite small because of a
much bigger M caused by a smaller ε. Fig. 4(b) shows a
similar consequence caused by the crucial impact of ε both
on the achievable capacity region and the relevant probability.

We then focus on comparisons with DGMS and DRA in
Fig. 5, 6. We set ε = 0.8, K

M = 6 to conduct the follow-
ing simulations. These simulation results indicate that our
distributed scheduling algorithm (denoted by DS in figures)
achieves much better performance than DGMS and DRA.
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Fig. 5: Total backlog vs. average arrival rate vs. different algorithms
at time slot 1000 in the oblivious power setting

In Fig. 5 we compare the total backlog changes of the three
algorithms as average arrival rate increases. It shows that our
algorithm may approximately support a maximum average rate
no greater than 0.2, and the other two support no greater than
0.1. We zoom in a subgraph of the Fig. 5(a) in the Fig. 5(b),
where the average arrival rate is in [0.16, 0.18]. It shows that
our algorithm has a total queue length much smaller than the
two. Fig. 6 then illustrates detailed comparisons of achievable
capacity region for the three algorithms. It shows that our
algorithm can support a larger traffic arrival rate vector. From
the three subfigures we can see that our proposed algorithm
can keep the total backlog stable at an arrival rate no greater
than 0.18, while the counterpart of the distributed greedy
algorithm and random algorithm is 0.07 and 0.05.

B. Under Uniform Power Setting

In the first series of experiment, we show the effect of K
M

at different values of ε where ε = 0.2, 0.4, 0.8 respectively in
Fig. 7. Fig. 7(a), 7(b) and 7(c) plot the total backlog changes
as increasing average arrival rate under different values of K

M .
The trends are a little different from those in the oblivious
power setting. From the three figures we can see that the

average throughput performance gets better as increasing K
M

under a fixed ε. The decreasing probability of 1
K2 shows no

obvious influence on the results. It may be partly caused by the
algorithm for computing new schedulings inside sub-squares
since it selects candidate links based on their distance with
previous selected links. Thus a larger area implies more links
get scheduled. This improvement remits the influence of the
decreasing probability of 1

K2 .

The similar trend occurs when ε increases at different values
of K

M .
We give a brief illustration in Fig. 8. Both the figures

show that a larger ε generates better performance at fixed K
M .

Since the affectness of local ISLs computed by the algorithm
of [19] inside each sub-square may be much smaller than 1−ε,
it explains why ε has little influence on the theoretical bound
actually. But ε has much more influence on the value of M
and the corresponding probability. Therefore, in the uniform
power setting, the algorithm achieves better performance with
a larger ε. 1
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Fig. 8: Total backlog vs. average arrival rate vs. different values of
ε at time slot 1000 in the uniform power setting

We conduct the second set of experiments to compare with
DGMS and DRA on average throughput where we set ε = 0.9,
K
M = 9. The results in Fig. 9, 10 convey the same kind of
information as those in Fig. 5, 6. These graphs jointly show
that Algorithm 1 still outperforms the DGMS and DRA in
terms of total backlog. For example, the maximum supportable
average arrival rate of our algorithm is around 0.12, comparing
with 0.07 by DGMS and 0.04 by DRA.

VI. RELATED WORK

Numerous literatures consider different optimization mea-
sures and assume different interference models. Here we focus
on related works on physical interference model. A complete
review is available in our technique report [29].
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Fig. 6: Achievable capacity region of different algorithms in the oblivious power setting
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Fig. 7: Total backlog vs. average arrival rate vs. different values of K
M

at time slot 1000 in the uniform power setting
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Fig. 10: Achievable capacity region of different algorithms in the uniform power setting
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Fig. 9: Total backlog vs. average arrival rate vs. different algorithms
at time slot 1000 in the uniform power setting

Goussevskaia et al. [12] firstly present the NP-completeness
proofs for the scheduling problem under the physical interfer-
ence model. It firstly proposes algorithms with logarithmic
approximation ratio O(g(|E|)) under the uniform power set-
ting without noise, where O(g(|E|)) presents the link diversity
among all links. Goussevskaia et al. further [13] attempt
to develop a constant approximation-ratio algorithm for the
problem of maximum independent set of links (MISL), a
special case of MWISL with uniform weight. However, it
is valid only without noise as pointed in [30]. Wan et al.
finally succeed in developing a constant approximation-ratio
algorithm for MISL with the existence of noise in [27].

Under the oblivious power setting, by utilizing partition
and shifting strategies, Xu et al. get a constant approxima-
tion algorithm for MWISL subject to physical interferences
[15]. Very recently Xu et al. [19] propose another constant
approximation algorithm for the same problem based on the
solution for the maximum weighted independent set of disks
problem in [31]. They also develop a logarithmic approxi-
mation algorithm for the uniform power setting. Chafekar et
al. [17] provide algorithms for maximizing throughput with
logarithmic approximation ratio in the two power settings as
well. However, the attained bound is not relative to the original
optimal throughput capacity, but to the optimal value by using
slightly smaller power levels.

Despite the main concern of this paper is on link scheduling
for throughput maximization, we also make a review on the
closely related problem of minimum length scheduling, which
seeks a link schedule of minimum length that satisfies all link
demands. A very recent work in [11] gives an overall analysis
on link scheduling problems under the physical interference
model from an algorithm view. It reveals that the algorithmic
reduction from the minimum length scheduling to the through-
put maximization scheduling is approximation-preserving.

The NP-completeness proofs of the minimum length
scheduling problem, and a logarithmic approximation algo-
rithm without noise in the uniform power setting, is available
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in [12]. With noise taken into consideration, Moscibroda et
al. present a scheduling algorithm for the problem with power
control, but without provable guarantee in [32]. They subse-
quently get a linear approximation bound in [33]. An attempt
on a constant approximation bound with uniform power setting
fails in [16], pointed out by Wan. et al. [18]. They [18]
then propose a logarithmic approximation algorithm for the
minimum length scheduling problem with power control.

Blough et al. [20] claim that the so-called black links,
with length exactly at the maximum transmission range of the
sender, hinder a tighter approximation bounds for the mini-
mum length scheduling problem. They try to get a constant
approximation ratio by limiting scheduling of such kind of
links. Thus they revise the algorithm GOW proposed in [12]
by partitioning links according to the SNR diversity, instead of
the length diversity. However, their revised algorithm GOW*
can only guarantee a constant approximation ratio when the
number of black links is bounded by a constant. They have
also recognized the necessity of distributed implementation for
the scheduling algorithm. Some discussions on the suitability
of the algorithm for distributed execution are then presented.

VII. CONCLUSION

We tackle the problem of throughput-optimum localized
link scheduling subject to physical interference constraints.
Our work provides theoretical guarantee for this practical link
scheduling problem for multihop wireless networks, keeping
them away from arbitrarily bad throughput performance. We
believe that our work can find applications in some time-
slotted wireless networks, e.g., time-slotted wireless sensor
networks or wireless mesh networks. Understanding these
factors that determine the throughput of a network also helps
to better deploy a multihop wireless network and enhance the
overall throughput performance.
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