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Design Multicast Protocols for Non-Cooperative
Networks

WeiZhao Wang∗ Xiang-Yang Li∗ Zheng Sun† Yu Wang‡

Abstract— Conventionally, most network protocols assume that
the network entities who participate in the network activities
will always behave as instructed. However, in practice, most
network entities are selfish: they will try to maximize their own
benefits instead of altruistically contributing to the network by
following the prescribed protocols. Thus, new protocols should
be designed for thenon-cooperative networkthat is composed of
selfish entities. In this paper, we specifically show how to design
truthful multicast protocols for non-cooperative networks such
that these selfish entities will follow the protocols out of their
own interests. By assuming that every entity has a fixed cost
for a specific multicast, we give a general framework to decide
whether it is possible and how, if possible, to transform an existing
multicast protocol to a truthful multicast protocol by designing
a proper payment protocol. We then show how the payments to
those relay entities are sharedfairly among all receivers so that it
encourages collaboration among receivers. As running examples,
we show how to design truthful multicast protocols for several
multicast structures that are currently used in practice. We also
conduct extensive simulations to study the relation between the
payment and the cost of the multicast structure. Our simulations
show that multicast not only saves the total resources, but also
benefits the individual receiver even inselfish networks.

Index Terms— Combinatorics, economics, non-cooperative,
multicast, payment, sharing.

I. I NTRODUCTION

Since first introduced by Deering in [1] and the audiocast
experiment by IETF, multicast has received more and more
attentions over the past few years due to its resource sharing
capability. In multicast, there is a topology, either a tree or a
mesh, that connects the source to a set of receivers, and the
packet is only duplicated at the branching nodes. Numerous
multicast protocols have been proposed, and most of them as-
sumed that the network entities will relay the multicast packets
as prescribed by the multicast protocol without any deviation.
While this may be true for the case of LAN multicast in
which all network entities belong to the same organization,
it can not be taken for granted when the multicast datagrams
are routed through different IP networks (calledautonomous
systems(ASs) in some places). Although multicast benefits the
whole system by saving bandwidth and resource, it is dubious
that multicast will also bring benefit to every individual AS
who relays packets. Thus, it is more reasonable to assume that
these ASs, probably owned by different organizations or users,
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are selfish: they aim to maximize their own benefits instead
of faithfully conforming to the prescribed multicast protocols.
A network composed of selfish ASs is generally known as a
non-cooperative network. In this paper, we would like to use
the terminology “agent” instead of AS because it reflects the
selfish nature of the AS.

Nisan and Ronen [2] studied the unicast routing problem
in non-cooperative networks and introduced the idea ofalgo-
rithmic mechanism design. They proposed to give the agents
someproper payments to ensure that every agent conforms to
the prescribed protocol regardless of other agents’ behavior,
which is known astruthful or strategyproof. They designed
the payment for unicast by using the VCG mechanism [3],
[4], [5], which is considered as one of the most positive
results in mechanism design. Unfortunately, VCG mechanism
has its own drawback. For multicast, if we want to apply the
VCG mechanism, we have to find the minimum cost multicast
tree, which is known to be NP-Hard for both link weighted
networks [6], [7] and node weighted networks [8], [9]. If we
insist on applying the VCG mechanism to a multicast topology
that does not have the minimum cost, VCG mechanism is no
longer truthful [10]. Thus, some payment schemes other than
VCG mechanism should be designed for multicast. Recently,
several non-VCG truthful payment schemes were proposed in
[10] for several commonly used multicast trees. In this paper,
instead of focusing on a specific multicast structure, we study
whether it is possible to transform a multicast protocol using
any given multicast structure to a truthful multicast protocol,
and if possible, how to design such truthful multicast protocol.

Designing a truthful payment scheme is not the whole
story for many practical applications. A natural question to be
answered is who will be charged for the payments to the relay
agents. A simple solution is that the organization to which
the receivers belong pays [10]. However, this solution is not
panacea. In many applications such as video streaming, each
individual receiver often has to pay for receiving the data.
How to charge the receivers for multicast transmission has
been studied extensively in literatures [11], [12], [13], [14],
[15], [16]. In most of their models, they assumed that 1)
every receiver has a valuation for receiving the data and the
receiver is selfish, 2) all relay agents are cooperative and will
reveal their true costs, and 3) the multicast tree is fixed as
the union of the shortest paths from the source to receivers.
In a sharp contrast, we take the selfish behavior of the relay
agents into account in this paper. Thus, we model the network
differently by assuming that 1) the relay agents are selfish
and rational, 2) the receivers always receive the data and pay
what they “should” pay in a fair way, and 3) the multicast



topology could be any structure, including trees and meshes.
To the best of our knowledge, this is thefirst paper to consider
multicast pricing when the relay agents are non-cooperative.
We also show the hardness when both the receivers and the
relay agents are selfish and rational, and each receiver has a
privately known valuation.

The main contributions of this paper are two-folded. First,
we present a general framework to decide whether it is pos-
sible, and how, if possible, to transform an existing multicast
protocol to a truthful one. We then show how the payments
to the relay agents are sharedfairly among the receivers. As
running examples, we show how to design truthful multicast
protocols for some commonly used Inter-AS multicast pro-
tocols. We also conduct extensive simulations to study the
relation between the payment and the cost of the multicast
structure. Our simulations show that by only overpaying a
small amount to the relay agents, each relay agent will declare
its true cost out of its own interest to maximize its profit.

The rest of the paper is organized as follows. We introduce
some preliminaries, related works, our communication model,
and the problems to be solved in Section II. In Section III,
we discuss the existence of the truthful payment and how to
compute it based on a given multicast structure. We show how
to design truthful multicast protocols for the Inter-AS multicast
protocol based on source-based tree in Section IV and shared-
based tree in Section V. Alternative models and some other
issues for truthful multicast are discussed in Section VI. We
also study how to charge selfish receivers with privately known
valuations. The performance study of our proposed truthful
source-based multicast protocol is presented in Section VII.
We conclude our paper in Section VIII.

II. T ECHNICAL PRELIMINARIES

A. Algorithmic Mechanism Design

In a standard model of algorithmic mechanism design, there
are n agents{1, 2, · · · , n}. Each agenti ∈ {1, · · · , n} has
someprivate information ti, called its type, e.g., its cost to
forward a packet in a network environment. All agents’ types
define aprofile t = (t1, t2, · · · , tn). Each agenti declares a
valid type τi, which may be different from its actual type
ti, and all agents’ strategies define a declared type vector
τ = (τ1, · · · , τn). A mechanismM = (O,P) is composed
of two parts: an allocation methodO that maps a declared
type vectorτ to an outputo, and apaymentschemeP that
decides the monetary paymentpi = Pi(τ) for every agenti.
Each agenti has a valuation functionwi(ti, o) that expresses
its preference over different outcomes. Agenti’s utility (also
called profit) is ui(ti, o) = wi(ti, o) + pi. An agent i is
said to berational if it always chooses its strategyτi to
maximize its utility ui. Most often, algorithmic mechanism
design only focuses on thedirect revelation mechanismin
which the agents’ only strategies are to declare their types.

Let τ−i = (τ1, · · · , τi−1, τi+1, · · · , τn), i.e., the
strategies of all other agents excepti and τ |ia =
(τ1, τ2, · · · , τi−1, a, τi+1, · · · , τn). In this paper, we are
only interested in a mechanismM = (O,P) that satisfies the
following three conditions:

1) Incentive Compatibility (IC) : For every agenti and any
τ , wi(ti,O(τ |iti)) + pi(τ |iti) ≥ wi(ti,O(τ)) + pi(τ).

2) Individual Rationality (IR) : It is also called Voluntary
Participation. Every participating agenti must have a non-
negative utility,i.e., wi(ti,O(τ |iti)) + pi(τ |iti) ≥ 0.

3) Polynomial Time Computability (PC): O(·) andP(·)
are computable in polynomial time.

A mechanism istruthful if it satisfies both IR and IC. Thus,
for every agenti, revealing its true typeti maximizes its utility
regardless of what other agents do.

VCG MECHANISM: A direct revelation mechanismM =
(O,P) belongs to the generalized Vickrey-Clarke-Groves
(VCG) mechanism family [3], [4], [5] if (1) there are fixed
positive numbersβi, i ≤ i ≤ n, such that the outputO(t)
maximizes the objective functiong(o, t) =

∑
i βi · wi(ti, o),

and (2) the payment to the agenti is Pi(t) = 1
βi

∑
j 6=i βj ·

wj(tj ,O(t)) + hi(t−i). Herehi() is an arbitrary function of
t−i and typicallyhi(t−i) = − 1

βi

∑
j 6=i βj ·wj(tj ,O(t−i)). It is

proved in [5] that a VCG mechanism is truthful. Under mild
assumptions, VCG mechanisms are the only truthful imple-
mentations [17] for problems withg(o, t) =

∑
i βi ·wi(ti, o).

B. Network Model and Problem Statement

In this paper, we focus on the Inter-AS multicasting in-
stead of the Intra-AS routing because Intra-ASs are usually
cooperative instead of non-cooperative. Figure 1 (a) shows
an example of a multicast network topology with end hosts.
Figure 1 (b) shows the corresponding Inter-AS multicasting
topology. Here, we model the Inter-AS network topology

(a) Multicast network (b) Inter-AS multicast
topology with end-hosts network topology

Fig. 1. The solid circle is the source host and the solid squares are the
receiving hosts of the multicast group, while the solid rectangle is the AS
attached with the source host and the solid ellipses are the ASs attached with
the receiving hosts.

as a graphG = (V,E, c), where V = {v1, · · · , vn} is
the set of ASs,E = {e1, e2, · · · , em} is the set of links
between ASs. Usually, in Inter-AS routing, each AS actually is
an independent economic decision maker who could choose
its strategy for financial advantage in routing decisions. We
assume that each ASvi is an individual agent and it has afixed
private costci to transmit a unit size of data in multicast. Thus,
every AS is called upon to declare its cost to the protocol.
When the nodes are the selfish agents, we call this network
a node weighted network. On the other hand, sometimes we
need to treat the selfish agents as links in the network,e.g.,
the multicast datagram is sent from one AS to another AS by
using application layer tunneling through other ASs. If links



are agents, the network is modeled as alink weighted network.
Most of our general techniques in Sections III, IV are not
specific to one model, and thus can be applied to both models.

Given a set of multicast group members, in this paper, the
receivers are the ASs with some attached group members
instead of the actual end hosts who are the multicast group
members. For the convenience of our analysis, we assume that
s is the source AS in one specific multicast and the size of
the data is normalized to1. We also assume that agents in the
network will not collude to improve their profits together. In
order to prevent monopoly, we assume that the network is bi-
connected. Given a source nodes = q0 and a set of multicast
receiversR = {q1, q2, · · · , qr} ⊂ V , we need to design a
multicast protocol that

1) constructs a topology (a tree, a mesh, a ring, etc.) that
spans the source and all receivers;

2) calculates a payment for each relay AS according to a
payment schemethat is truthful;

3) charges each receiver according to apayment sharing
schemethat is fair. We will formally define what is fair
in subsection III-C.

One thing we should highlight here is that, instead of rein-
venting the wheel by designing some new multicast structures,
we focus on how we can design a truthful payment scheme
for a certain existing multicast protocols to ensure that they
work correctly even in non-cooperative networks. Based on
the truthful payment scheme we designed, we further study
how we charge the receivers in a fair way.

Given a structureH ⊆ G, we usec(H) to denote the total
cost of all agents inH. If we change the cost of any ASi to c′i,
we denote the new network asG′ = (V, E, c|ic′i), or simply
c|ic′i. If we remove one ASvi from the network, we denote
it as c|i∞. Hereafter, we useLCP(u, v, c) to denote the least
cost path from nodeu to nodev in a networkG = (V, E, c).
For simplicity of notations, we will use only the cost vectorc
to denote the networkG = (V,E, c) if no confusion is caused.
We let c−i denote the costs of all ASs other than ASvi.

C. Related Work

Routing has been part of algorithmic mechanism design
from the very beginning. Nisan and Ronen [18] provided a
polynomial-time truthful mechanism for unicast routing in a
centralized computational model. Each linkei of the network
is an agent and has a private costti of sending a message.
Their mechanism is essentially a VCG mechanism. The result
in [18] is extended in [19] to deal with unicast problem for all
pairs of agents. They assume that there is a traffic demandTi,j

from an agenti to an agentj. They also gave a distributed
method to compute the payment. Anderegg and Eidenbenz
[20] recently proposed a similar routing protocol based on
VCG mechanism for wireless ad hoc networks. By assuming
that each node is a selfish agent, Wang and Li [21] proposed
an asymptotically optimum centralized method to compute the
payment for unicast and showed thatno truthful mechanism
can prevent collusion among any pair of agents.

For multicast, Feigenbaumet al. [15] assumed that there is
a universal treeT spanning all receivers and for every subset

Q ⊆ R of receivers, the treeT (Q) spanningQ is merely the
subtree ofT that spansQ. They also assumed that the link
costs are publicly known and each receiverqi has a privately
known valuationwi on receiving the data. It will report a
numberw′i, which is the amount of money it is willing to pay
to receive the data, andw′i may be different fromwi. They
studied how to select a subsetQ ⊂ R of receivers according to
some criteria and proposed to useShapely valueandmarginal
cost to share the link cost of the multicast tree. Maximizing
profit in multicast was studied in [22], [23] ([23] is based
on cancelable auction [24]). Sharing thecost of the multicast
structure among receivers to achieve some fairness was studied
in [25], [26], [27], [14], [16], [28]. Wanget al. [10] studied
how to design truthful multicast protocols for various multicast
trees when the nodes or links are selfish.

III. C HARACTERIZATION OF TRUTHFUL MULTICAST

ROUTING

Several multicast topologies have been proposed and used
in practice and more topologies are expected to appear in the
near future. It will be difficult, if not impossible, to design
a truthful multicast mechanism for each of these topologies
individually. Thus, instead of studying some specific multicast
topologies, we focus on designing a general framework to
solve the problem whether there is, and how to design if it
exits, a truthful mechanism for a given multicast topology.
We also consider how to charge the receivers to cover the
payments to the selfish relay agents.

Intuitively, we may still want to use the VCG payment
schemes for these multicast topologies. Notice that an alloca-
tion method of a VCG mechanism is required to maximize
the total valuations of agents. This makes the mechanism
computationally intractable in many cases,e.g., multicast.
Notice that replacing the optimal solution with non-optimal
approximation usually leads to untruthful mechanisms [10].
Thus a mechanism other than VCG is needed when we cannot
find the optimal solution or the objective is not to maximize
the total valuation of the agents. This paper presents thefirst
generalframework to design truthful mechanisms for multicast
in case we cannot find a structure with the minimum total cost.

A. Existence of Truthful Payment Mechanism

Before we design some truthful payment scheme for a
given multicast topology, we should decide whether such
payment scheme exists or not. The following definition and
theorem will present a sufficient and necessary condition for
the existence of the truthful payment scheme.

Definition 1: A methodO constructing a multicast topol-
ogy satisfies themonotone non-increasing property(MNP)
if for every agenti and fixedc−i, the following condition is
satisfied: if agenti is selected as a relay agent with costci2 ,
then it is also selected with a costci1 < ci2 .

Obviously, the above condition is equivalent to the following
condition: there exists a threshold valueκi(O, c−i) such that
if i is selected as a relay agent, then its cost is at most
κi(O, c−i). For convenience, we useOi(c) = 1 (respectively,



0) to denote that agenti is selected (respectively, not selected)
to the multicast topology when the cost vector isc.

Theorem 1:Given a methodO constructing a multicast
topology, there exists a paymentP such thatM = (O,P)
is truthful if and only ifO satisfies the MNP.

Proof: We first prove that if there exists a truthful
paymentP based onO thenO satisfies the MNP. For the
sake of contradiction, we assume that there is a truthful
payment schemeP andO that does not satisfy MNP. From the
definition of MNP, there exists an agenti and two cost vectors
c|ici1 and c|ici2 with ci1 < ci2 such thatOi(c|ici2) = 1 and
Oi(c|ici1) = 0. Let Pi(c|ici1) = p0

i andPi(c|ici2) = p1
i .

Consider a network with a cost vectorc|ici1 , the utility for
the agenti when it reveals its true cost isui(ci1) = p0

i . When
agenti lies its cost toci2 , its utility becomesp1

i − ci1 . Since
payment schemeP is truthful, we havep0

i ≥ p1
i − ci1 .

Similarly we consider another network with a cost vector
c|ici2 . Agent i’s utility is p1

i − ci2 when it reveals its true
cost. Similarly, if it lies its cost toci1 , its utility is p0

i . Since
payment schemeP is truthful, p0

i ≤ p1
i − ci2 .

Thus, we havep1
i − ci2 ≥ p0

i ≥ p1
i − ci1 , which implies that

ci1 ≥ ci2 . It is a contradiction toci1 < ci2 .
We then prove that ifO satisfies MNP, there exists a truthful

mechanismM = (O,P). We prove it by constructing the
following payment schemeP.

Algorithm 1 Payment SchemeP
1: For any agenti not selected to relay, its payment is0.
2: For any agenti selected to relay, its payment isκi(O, c−i).

From the definition of MNP, the payment schemeP satisfies
IR. Thus we only need to prove that the payment schemeP
satisfies IC. We prove it by cases.

Case1: Agent i lies its cost upward toci or downward to
ci, but it does not change the output whether agenti is selected
or not. Notice that, for a fixedc−i, when the output of agent
i does not change, its payment is the same. Thus, agenti’s
utility remains the same, implying that agenti does not have
incentive to lie in this case.

Case2: Agent i is selected when it reveals its actual cost
ci, and it lies its cost upward toci such that it is not selected.
From the property of MNP, we knowci ≤ κi(O, c−i). This
ensures that agenti gets non-negative utility when it reveals its
actual costci. Wheni lies its cost toci, it gets zero payment
and zero utility. Therefore, agenti won’t lie in this case.

Case3: Agenti is not selected when it reveals its actual cost
ci, and it lies its cost downward toci such that it is selected.
Similarly, we haveci ≥ κi(O, c−i), which implies that agent
i gets a non-positive utility. Comparing with the zero utility
when agenti reveals its true cost, agenti also has no incentive
to lie in this case.

Actually, if we require that relay agents who are not selected
should receive zero payment, our payment scheme illustrated
by Algorithm 1 is theonly truthful payment scheme.

B. Rules to Find Truthful Payment Scheme

Given a multicast structure satisfying MNP, it seems quite
simple to find a truthful payment scheme by applying Algo-

rithm 1. However, sometimes the process to find the thresh-
old value in Algorithm 1 is far more complicated. Instead
of trying to propose a unified approach that can find the
threshold value for all multicast topologies satisfying MNP,
we present some useful techniques to find the threshold value
under certain circumstances. Our general approach works as
follows. First, given an allocation methodO that constructs
a multicast structure, we decompose it into several simpler
allocation methods. We then find the threshold value for each
of the decomposed methods. Finally, we calculate the original
threshold value by combining the threshold values for those
decomposed methods. In the following, we present several
useful decomposition techniques.

1) Simple Combination:Given a multicast methodO, let
κ(O, c) denote then-tuple vector

(κ1(O, c−1), κ2(O, c−2), · · · , κn(O, c−n)).

Here,κi(O, c−i) is the threshold value for agenti when the
multicast topology is constructed byO and the costsc−i of
all other agents are fixed. We then present a simple but useful
technique to find the threshold value.

Theorem 2:Given g allocation methodsO1, · · · ,Og each
satisfying MNP, and the threshold valueκ(Oi, c) for eachOi,
the methodO(c) = O1(c)

∨O2(c)
∨ · · ·∨Og(c) satisfies

MNP. Moreover, the threshold value forO is

κ(O, c) = max
1≤i≤g

{κ(Oi, c)}.
The proof of Theorem 2 is straightforward and thus is

omitted here. We will show how to use this simple combination
technique in Section IV. Notice each individual methodOi

may not construct a multicast tree at all.
2) Round-based Method:Many multicast topologies are

constructed in around-basedmanner: in each round some
previously unselected agents are selected, and then the network
and the receiver set are updated if necessary. In the following
we give a general characterization of a round-based method
that constructs a multicast topology.

Algorithm 2 A round-based multicast method

1: Setr = 1 andc(1) = c andQ(1) = R initially.
2: repeat
3: Let Or be a deterministic method that decides in round

r which agents will be selected.
4: Update the network cost vector and receiver set,i.e., we

obtain a new network cost vectorc(r+1) and receiver set
Q(r+1) according to anupdating ruleUr:

Ur : Or × [cr, Q(r)] → [c(r+1), Q(r+1)].

5: until thedesired propertyof the multicast topology is met
6: Return the union of the selected relay agents in all rounds.

To illustrate the general round-based method, in Algorithm
3 we review a round-based multicast tree construction method
[7] that finds a tree whose cost is no more than2 times that
of a minimum cost Steiner tree (MCST) in a link weighted
network. We denote the constructed multicast tree as LST,
which stands for Link-weighted Steiner Tree.



Algorithm 3 Link weighted multicast structure [7]
1: repeat
2: Let d be the vector of costs declared by all agents.
3: Find one receiver in the receiver setR, sayqi, that is

closest to the sources, i.e., LCP(s, qi, d) has the lowest
cost among the shortest paths froms to all receivers.
Connectqi to the sources usingLCP(s, qi, d), i.e., all
agents on this path are selected.

4: Set the cost of every link on this path to0. Removeqi

from the receiver setR.
5: until no receiver remains inR

Here,no receiver remains inR corresponds to thedesired
property of the general round-based method;LCP(s, qi, d)
in round r corresponds toOr; setting costs of links on
LCP(s, qi, d) to 0 and removingqi from R is theupdating rule
Ur. To study whether a general round-based method implies a
truthful payment scheme we propose the following definition.

Definition 2: An updating ruleUr is said to becrossing-
independentif for any agenti not selected in roundr:

• c
(r+1)
−i andQ(r+1) do not depend onc(r)

i .
• For a fixedc

(r)
−i , if d

(r)
i < c

(r)
i thend

(r+1)
i < c

(r+1)
i .

Theorem 3:A round-based multicast methodO satisfies
MNP if, for every roundr, methodOr satisfies MNP and
the updating ruleUr is crossing-independent.

Proof: For an agenti, fix the costc−i of all other agents.
We prove that ifi is selected when the cost vector isa =
{c−i, ci}, then it is also selected when the cost vector isb =
{c−i, c

′
i} such thatc′i < ci. Without loss of generality, we

assume thati is selected in roundr when the cost vector isa.
Then when the cost vector isb, if agent i is selected before
round r, our claim holds. Otherwise, in roundr, a

(r)
−i = b

(r)
−i

and a
(r)
i > b

(r)
i since agenti is not selected in the previous

rounds. Notice that agenti is selected in roundr when the
cost vector isa(r)

i . Thus, agenti is also selected in roundr
when the cost vector isb(r)

i sinceOr satisfies MNP.
In Algorithm 4, we show how to find the threshold value

for any selected agentk when the truthful payment scheme
exists for a round-based multicast method.
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Fig. 2. Payment calculation based on LST found by Algorithm 3.

We use the network in Figure 2 to illustrate how to find
the threshold value for linkv3v4 based on LST. In the first
round,v3v4 cannot be selected, thus`1 = 0. In second round,
it is easy to observe that whenv3v4’s cost is smaller than0.9,
the pathv3v4v5q1 is selected and whenv3v4’s cost is greater

Algorithm 4 Computing payment for a selected agentk based
on round-based multicast methodO

1: Initially set the costck of k to ∞ andr = 1.
2: repeat
3: Find the threshold value for agentk based onOr

under cost vectorc(r)
−k and receiver setQ(r). Let `r =

κk(Or, cr
−k) be the threshold value found. Here we set

`r = 0 if agentk cannot be selected in this round under
any cost.

4: Update the cost vector and receiver set to obtain the
new cost vectorc(r+1) andQ(r+1). Setr = r + 1.

5: until thedesired propertyof the multicast topology is met
6: Fix c−k and assumex is the payment for agentk. Let

fi(x) be the cost for agentk in round i if the original
cost is c|kx. Then x the largest value that satisfies the
following inequations:fi(x) ≤ `i for 1 ≤ i ≤ r. In other
words, the payment to an agentk is the largest possible
value it could declare such that it is still selected in some
round.

than 0.9, path sq1 is selected. Thus, the threshold value for
v3v4 in this round is̀ 2 = 0.9. Notice that the updating rule of
Algorithm 3 does not change the cost of an unselected agent,
i.e., it is crossing-independent andfi(x) = x. Thus, the final
threshold value is simplymax{`1, `2} = 0.9, which is the
payment to linkv3v4. Similarly, we can find all selected links’
threshold values as shown by the numbers in the parenthesis
in Figure 2(b). See the conference version [29] for more
examples.

C. Fair Payment Sharing Scheme

For a given set of receivers, after we calculate the payment
pk(d) for every relay agentk based on declared costsd, we
are ready to study how to share the payments fairly among
receivers. Notice that the payment sharing is different from
the traditional cost sharing. How to share the multicast cost
among the receivers has been studied previously in [26], [12],
[15], [11], with the assumption that the costs of relay agents
are public and the multicast topology is a fixed tree. Most of
the literatures used theEqual Link Split Downstream(ELSD)
pricing scheme to charge receivers: the cost of a link is shared
equallyamong all its downstream receivers. As we will show
later, if we simply use the ELSD to share the total payment
among receivers, it usually is not fair according to some
common senses.

Given a set of receiversR, let P(R, d) =
∑

k pk(R, d)
denote the total payment to all relay agents. For a sharing
schemeξ, let ξi(R, d) denote the sharing (or called charge)
of a receiverqi. Let ξ(R, d) =

∑
qi∈R ξi(R, d) be the total

payment collected from all receivers. We call a sharing scheme
ξ reasonableor fair if it satisfies the following criteria.

1) Budget Balance(BB): The total payment to all agents
should be shared by all receivers,i.e., P(R, d) = ξ(R, d).

2) Nonnegative Sharing(NNS): Any receiverqi’s sharing
should not be negative,i.e., ξi(R, d) > 0.

3) Cross-Monotone(CM): For any two receiver setsR1 ⊆
R2 containingqi: ξi(R1, d) ≤ ξi(R2, d). In other words,



for a given network, receiveri’s sharing does not increase
when more receivers require service.

4) No-Free-Rider (NFR): The sharingξi(R, d) of a receiver
qi ∈ R is at least 1

|R| of its unicast sharingξi(qi, d). Thus,
the sharing of any receiver will not be too small.

By assuming a universal multicast tree and publicly known
link costs, Feigenbaumet al. [15] proved that ELSD cost
sharing scheme is fair. Unfortunately, the ELSD scheme is
not fair if it is used to share the payment.

Lemma 4:ELSD is not a fair payment sharing scheme for
paymentP defined based on tree LST.

Proof: We prove it by presenting a counter example using
the network shown in Figure 2 (a). When consider only one
receiver in LST, we haveP(q1, c) = 2.6 andP(q2, c) = 1.4+
1.5 = 2.9. See Figure 3 for illustration. For two receivers
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Fig. 3. LST (q1) andLST (q2) and their corresponding payment.

q1, q2, if we use ELSD to share payment, the sharing byq1 is
ξ1({q1, q2}, c) = 1.4

2 + 0.9 + 1.1 + 1.5 = 4.2 which is larger
than its sharingξ1(q1, c) = 2.6 when q1 is the only receiver.
Thus, ELSD violates the CM property. It implies that ELSD
is not a fair sharing scheme for multicast topology LST.

Furthermore, using the same example, we prove that:
Lemma 5:No payment sharing scheme satisfies both CM

and BB for the truthful payment scheme based on LST.
Proof: For the sake of contradiction, we assume that

a sharing schemeξ′ satisfies both CM and BB. From the
property of BB, we haveξ′1(q1, c) = 2.6, ξ′1(q2, c) = 2.9
and ξ′1({q1, q2}, c) + ξ′2({q1, q2}, c) = 6.4. From CM, we
haveξ′1({q1, q2}, c) ≤ ξ′1(q1, c) = 2.6 andξ′2({q1, q2}, c) ≤
ξ′2(q2, c) = 2.9. Combining these two inequalities, we obtain
6.4 = ξ′1({q1, q2}, c) + ξ′2({q1, q2}, c) ≤ 2.9 + 2.6 = 5.5,
which is a contradiction.

Thus, given a certain multicast topology and its corre-
sponding truthful payment scheme, a fair payment sharing
scheme may not exist. It is attractive and important to find
the necessary and sufficient condition for the existence of a
fair payment sharing scheme for a given payment scheme.

IV. T RUTHFUL MULTICAST USING SOURCE-BASED TREE

In this section, we illustrate how to design a truthful mul-
ticast protocol with the support of Multiprotocol Extensions
for BGP-4 [30]. We treat every ASi in the network as a node
in the graph, and assume that it has a fix costci to relay
a unit size of datagram for a specific multicast regardless of
its downstream links. This could be because that the multicast
ASs adopt the Reverse Path Broadcasting (RPB) scheme or the

cost of sending extra copies to other interfaces is negligible.
Thus, the network is modeled as a node weighted graph. All
our results presented hereafter also apply to the case when the
network is modeled as a link weighted graph. We focus on the
source-based treein this section and discuss theshared-based
tree in the next section.

A. Construct Multicast Tree

Before designing a truthful multicast protocol, we review
some technical details of MBGP including the multicast
tree construction method. Multiprotocol extension for BGP
(MBGP) [30] is an extension to the existing Border Gate
Way (BGP) protocol [31]. In BGP, every nodevi stores, for
each other nodevj , the least cost path (the sequence of ASs
traversed) fromvi to vj . Let D be the diameter of the network,
i.e., the maximum number of ASs in an LCP. An AS stores
O(n ·D) AS numbers. In BGP, to perform Inter-AS multicast
routing, we use the BGP infrastructure that was in place for
unicast routing. A multicast routing protocol, such as Protocol
Independent Multicast (MIP) dense mode, uses the multicast
BGP database to perform Reverse Path Forwarding (RPF)
lookups for multicast-capable sources.

Thus, given a set of receiversR, the least cost path between
the sources and each receiverqi ∈ R under the reported cost
profile d is already in receiverqi’s unicast database. The union
of all least cost paths between the source and the receivers is
called theleast cost path tree, denoted byLCPT(R, d). Every
node that is the part of the multicast treeLCPT has a copy of
the tree topology and all datagrams are routed along the tree.

B. Payment Scheme

It was shown in [10] that the direct application of VCG
payment scheme onLCPT is not truthful. In other words, a
node may have incentives to lie about its cost when VCG
payment scheme is used. On the other hand, sinceLCPT
is formed by the union of the least cost paths, by applying
Theorem 2, we can show thatLCPT satisfies MNP. Thus, there
exists a truthful payment scheme and the truthful payment can
be found according to Theorem 1. It works as follows.

For each receiverqi ∈ R, we find the least cost path
LCP(s, qi, d) from the sources (say q0) to qi, and com-
pute an intermediate paymentpi,0

k (d) to every nodevk on
LCP(q0, qi, d) using the VCG payment scheme for unicast

pi,0
k (d) = dk + c(LCP(q0, qi, d|k∞))− c(LCP(q0, qi, d)).

The final payment to a nodevk ∈ LCPT is

pk(d) = max
qi∈R

pi,0
k (d) (1)

The payment to a node is zero if it is not onLCPT.

C. Distributed Payment Algorithm

Remember that MBGP is only an extension to the BGP
which is used for unicast. Usually the unicast is a dominant
activity in the Inter-AS routing instead of multicast. Thus, we
assume that each AS already implements a truthful payment
scheme based on VCG for unicast. In [19], Feigenbaumet al.



proposed a distributed algorithm to compute the paymentpi,j
k

for every pair of nodesvi, vj and every nodevk on the least
cost pathLCP(vi, vj , d). Their approach is an extension to
the existing BGP routing and converges to a stable state after
D−k rounds, whereD−k is the maximum possible diameter
of graphG after removing any nodek from the network. In
their approach, at every nodevi, they only store the length of
the pathLCP(vi, vj , d) for every nodevj , which requires an
extraO(n) space. However, in our approach, we require that
every nodevi stores all the paymentspi,j

k for every possible
source nodevj and every nodevk on pathLCP(vi, vj , d). Our
approach requires an extra space size ofO(α·D) for every AS,
whereα is the number of possible source node andD is the
diameter of the network. Clearly, it avoids the recalculation of
everypi,j

k when some nodes’ costs are updated. The following
algorithm summarize the distributed payment computing for
multicast whens = q0 is the source node.

Algorithm 5 Distributed payment computing
1: for every receiverqi do
2: Prepare a control datagram composed of the payment

pi,0
k for every nodevk on pathLCP(q0, qi, d).

3: Sends datagram containing the payment information to
its parent in the treeLCPT.

4: Upon receiving a packet containing the payment from its
child which is originated from receiverqi, nodevk extracts
the paymentpi,0

k and sends the datagram containing all
remaining payment information to its parent if it exists.

5: When a nodevk receivespi,0
k from every downstream

receiverqi, it computes the maximum of them as its final
payment.

Now we discuss the overhead of our distributed multicast
payment computation in terms of both communication mes-
sages and memory space used in the AS. It is not difficult
to observe that every node receives at mostr packets of size
O(D) where r is the number of the receivers andD is the
diameter of the network. For every nodevi, it only needs to
store for each multicast sessionS the final paymentpS , which
is negligible. However, sometime in order to achieve a high
efficiency, nodevk may cache every intermediate payment
pi,0

k . Even in this case, it only needs an extraO(r) space
which is much smaller than the space needed for one session
of multicast in a cooperative network. Overall, the overhead
needed to calculate the payment is small both in terms of space
and network message.

D. Payment Sharing Among Receivers

In literature, the Shapely value [32] is one of the most
commonly used sharing schemes to achieve BB and CM.
If the total paymentP(R, d) satisfies non-decreasing and
submodular property, then the Shapely value minimizes the
worst-case network welfare loss among all sharing schemes
that achieve BB and CM. Here, a paymentP is submodular
if ∀R1 ⊆ Q and R2 ⊆ Q, P(R1, d) + P(R2, d) ≥ P(R1 ∪
R2, d) + P(R1 ∩ R2, d). The network welfareis defined as
the total valuation of all selected receivers minus the cost of
the network providing service. If we apply Shapely value to

multicast payment sharing, we obtain the following formula

ξi(R, d) =
X

T⊆R−qi

|T |!(|R| − |T | − 1)!

|R|! (P(T ∪{qi}, d)−P(T, d))

By assuming a fixed multicast tree and publicly known
link costs, Feigenbaumet al. [15] proved that ELSD sharing
scheme is the Shapely Value. Intuitively, one may want to use
ELSD as the payment sharing scheme. Unfortunately, we will
show by example that ELSD is not fair when coupled with
LCPT. Consider a network shown by Figure 4(a). There are
two receiversq1, q2. TreeLCPT(q1, d) is shown in Figure 4(b).
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Fig. 4. ELSD sharing scheme is not fair for payment based onLCPT.

The total payment to nodes onLCPT(q1, d) is 3. Consider
LCPT({q1, q2}, d) illustrated by Figure 4(c). The payment to
only relay nodev5 is 7. If we apply ELSD to share this
payment, the shared payment of receiverq1 is 7

2 = 3.5 when
the receiver set is{q1, q2}. Notice that the payment sharing by
q1 is only 3 when it is the only receiver. Thus, ELSD violates
the CM property here. Therefore some fair sharing scheme
other than ELSD should be designed. We can use Shapely
value due to the following lemma.

Lemma 6:The total paymentP(R, d) for tree LCPT, is
nondecreasing and submodular with respect to receiver setR.

Please see the appendix (Section IX) for the proof of the
lemma. Consequently, we obtain a sharing scheme satisfying
CM and BB by applying Shapely value. However, for any
receiverqi ∈ R, there are2|R|−1 subsets inR − qi. Thus,
simply applying Shapely value directly is computational in-
tractable when the number of receivers is large. Therefore,
we present another interpretation of the sharing scheme that
can be computed efficiently. The basic idea is that a receiver
should only pay a proportion of the payment that is due to
its existence. Roughly speaking, our payment sharing scheme
works as follows. Notice that a final payment to a node
k is the maximum of paymentspi

k by all receivers. Since
different receivers may have different values of payment to
agentk, the final paymentPk should be sharedproportionally
to their values, notequally among them (as what we do
for cost sharing). Figure 5 illustrates the payment sharing
scheme that follows. For any nodevk, let R(vk) be the set
of downstream receivers ofvk. Without loss of generality,
we assume thatR(vk) = {qσ1 , qσ2 , · · · , qσ|R(vk)|} such that

0 ≤ pσ1
k ≤ pσ2

k ≤ · · · ≤ p
σ|R(vk)|
k , i.e., pk = p

σ|R(vk)|
k . We then

divide the paymentpk into |R(vk)| portions:pσ1
k , pσ2

k − pσ1
k ,

· · · , pσi

k − p
σi−1
k , · · · , p

σ|R(vk)|
k − p

σ|R(vk)|−1

k . Each portion
pσi

k −p
σi−1
k is then equally shared among the last|R(vk)|−i+1

receivers, which have the largest|R(vk)| − i + 1 payments to
vk.

We first illustrate how to calculate the payment sharing by
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Algorithm 6 Fair payment sharing scheme forLCPT.

1: for each nodevk ∈ LCPT(R, d) do
2: Let R(vk) be the set of downstream receivers ofvk,

i.e., pk(d) = maxqi∈R(vk) pi
k(d) = maxqi∈R pi

k(d).
3: Sort the receivers inR(vk) according topi

k(d) in an
ascending order. If two or more receivers have the same
value, the receiver with smaller ID ranks first. Letσ =
{σ0, σ1, · · · , σ|R(vk)|} be the ranking. Here, we add a
dummy paymentpσ0

k (d) = 0 to rankingσ.
4: For a receiver not inR(vk), its sharing of the payment

pk(d) of nodevk is 0.
5: For a receiverqσa ∈ R(vk), its sharing of the payment

pk(d) to nodevk is:

fk
σa

(R, d) =

aX
x=1

pσx
k (d)− p

σx−1
k (d)

|R(vk)| − x + 1
(2)

In other word, for two receiversqσx , qσx+1 who are
consecutive in rankingσ, the differencep

σx+1
k (d) −

pσx

k (d) is shared by all receivers who rank afterqσx−1 .
6: The total charge for receiverqi in LCPT is

ξi(R, d) =
∑

vk∈LCPT(R,d)

fk
i (R, d) (3)

receiverq1 using Algorithm 6 for a network represented by
Figure 4. For nodev5, the two intermediate payments are
p1

v5
= 3 andp2

v5
= 7. First, we obtain a rank of these receivers

based on the intermediate payments of{q1, q2}. Thenp1
v5

= 3
is equally split betweenq1 and q2 and p2

v5
− p1

v5
= 4 is

charged toq2 alone. Thus, receiverq1 is charged3/2 = 1.5
and receiverq2 is charged1.5+4 = 5.5 in LCPT({q1, q2}, d).
Here,q1’s sharing is smaller than the sharing3 whenq1 is the
only receiver. This shows that the payment sharing scheme
described by Algorithm 6 is fair for this specific network. The
following theorem shows that our sharing scheme is indeed
the Shapely value.

Theorem 7:Our sharing scheme defined by Algorithm 6 is
the Shapely value.

Refer to appendix (Section IX) for the proof of the theorem.
Recall that when applying Shapely value to a payment satis-
fying submodular and non-increasing property, the resulting
sharing scheme satisfies BB, CM, NNS and NFR. Thus, we
have the following theorem directly.

Theorem 8:The sharing scheme defined in Algorithm 6 for
LCPT satisfies NNS, CM, NFR and BB.

E. Distributed Computing of Payment-Sharing

In practice, we may need to implement a distributed pay-
ment sharing scheme. In the following, we present a distributed
algorithm that implements our payment sharing scheme. It
requires at mostO(r) space for each agent and withO(r · h)
total messages, whereh is the height ofLCPT.

In our distributed algorithm, for any nodevk ∈
LCPT(R, d), we not only need its final paymentpk(d), but
also need the intermediate paymentpj

k(d) for every down-
stream receiverqj . We assume that this is already available
through our distributed payment computing scheme (see Al-
gorithm 5). In our distributed charge scheme, at every nodevk,
we useϑk[i] to store the sum of the charge ofvk ’s upstream
nodes to the receiverqi. Our distributed payment sharing
scheme is implemented in a top-down fashion from the source
to all receivers. It is easy to show that Algorithm 7 indeed
computes the payment sharing of each receiver correctly.

Algorithm 7 Distributed payment sharing scheme
1: Initially, the source nodes sends all its children inLCPT

a r-dimensional vectorϑ = 0 for all receivers.
2: Every nodevk in LCPT(R, d), upon receiving a sharing

vector ϑ̃ from its parent, updates the charge for each of
its downstream receiversqi asϑk[i] = ϑ̃[i] + f i

k(R(vk)).
Here,f i

k(R(vk)) is calculated according to Algorithm 6.
3: if nodevk has at least one downstream receiverthen
4: for every children nodevj , it constructs a charge vector

ϑj = (ϑ[i1], ϑ[i2], · · · , ϑ[i|R(vj)|])

Here, the chargeϑ[it], 1 ≤ t ≤ |R(vj)|, is for receiver
qit who is a downstream receiver of nodevj . It then
sends vectorϑj to nodevj .

5: Every receiverqi will finally receive a chargeϑ[i] which
is equal toξi(R, d) defined in Equation (3).

V. TRUTHFUL MULTICAST USING SHARED-BASED TREE

In section IV, we discussed how to design a truthful
multicast protocol using MBGP based on a source-based tree
LCPT. However, in practice, Inter-AS multicast usually uses a
shared-based tree (SBT) instead due to the following reasons:

1) Multicast routing protocols (such as MOSPF, DVMRP
and PIM-SM) using a source-based tree are suitable for
LAN networks while multicast routing protocols (such as
PIM-DM and CBT) using a shared-based tree are more
suitable for networks composed of different ASs;

2) The shared-based tree is more scalable than the source-
based tree for applications in which every group member
could act as a source.



Furthermore, we can show that the size of extra space needed
to support the multicast payment calculation could be reduced
significantly. Here, we use the PIM-DM as the routing protocol
and the AS should also support MBGP in order to conduct
multicast.

We first review the multicast tree construction method by the
PIM-DM multicast protocol. For a specific multicast group, the
PIM-DM protocol specifies a Rendezvous Point (RP) and the
RP maintains a RP-tree, which is usually a least cost path tree
that spans all the group members. When any group member
wants to send data to the group, it first encapsulates each data
packet in aRegistermessage and sends it by unicast to the
RP for that group. The RP decapsulates the register messages
and forwards the enclosed data packet to downstream group
members on the shared RP-tree. Upon receiving data packet
from its upstream AS, each intermediate AS further forwards
data packets to its downstream ASs. Thus, we can treat
the multicast based on a shared-based tree as two separate
activities: a unicast from the source to RP, and a multicast
with RP as the virtual source node.

We then discuss how to compute the payment to each
relay agent and share these payments among receivers. Let
pR

k (d) denote the payment to a relay nodevk ∈ LCPT(R, d)
according to our truthful payment scheme (see formula (1)).
Algorithm 8 presents our truthful payment scheme for multi-
cast based on a shared-based tree.

Algorithm 8 Truthful payment scheme for SBT
1: Assume thats = q0 is the RP for a multicast group; and

qi is the source node for a specific multicast session.
2: Let d be the cost vector declared by all relay nodes.
3: Set the receiver setQ asR\qi.
4: Compute the paymentpQ

k (d) for every nodevk on the tree
LCPT(Q, d) rooted at RPs and spanning all receiversQ.
SetpQ

k (d) = 0 for other nodesvk.
5: Calculate the paymentpi,0

k (d) for every nodevk on path
LCP(qi, q0, d). Setpi,0

k (d) = 0 otherwise.
6: for each nodevk do
7: pk(d) = pQ

k (d) + pi,0
k (d).

Theorem 9:The payment scheme defined by Algorithm 8
is truthful.

The proof of Theorem 9 is straightforward and thus is
omitted. A distributed payment computing protocol similar to
Algorithm 5 can be easily designed and thus is omitted here.
We then discuss how to share the payments among receivers
in Algorithm 9.

Theorem 10:The payment sharing scheme defined in Al-
gorithm 9 is fair,i.e., it satisfies NNS, CM, NFR and BB.

Both the proof of the correctness of the above method
and distributing payment-sharing computing are similar to the
source-based tree case, thus are omitted here. Here, we do
not consider the sourceqi as a receiver, which implies that
qi does not share any payment. Ifqi should also be treated
as a receiver and share the payment in certain circumstances,
we just need to modify the receiver setQ = R instead of
Q = R\qi in Line 1 of Algorithm 9.

Algorithm 9 Fair payment sharing scheme for SBT

1: Set the receiver setQ = R\qi.
2: Share the payment incurred by unicast betweenqi and RP

equally among all receiversQ. The payment shared by
receiverqk is denoted asξuni

k (Q, d).
3: Share the payment of multicast with sources = q0 and

receiver setQ among all receivers according to Algorithm
6. The payment shared by receiverqk is denoted as
ξmul
k (Q, d).

4: The final payment shared by the receiveqk is ξk(Q, d) =
ξuni
k (Q, d) + ξmul

k (Q, d) whenqi is the source.

VI. OTHER MODELS AND OTHER ISSUES

A. Sharing Payment Among Selfish Receivers

So far, each receiverqi is assumed to pay its fair sharing
ξi(R, d) computed by our payment sharing Algorithm 6.
In practice, each individual receiver may have a maximum
valuation indicating how much it is willing to pay to receive
the information from the source. A receiver will choose to
receive the information if and only if the charge is at most
its valuation. Furthermore, a receiver could also beselfishand
rational: it will always maximize its profit by manipulating
its reported valuation, should it be possible. This makes the
multicast design even harder when both the relay agents and
the receivers could be selfish. It is well-known that a cross-
monotonecost sharing schemeimplies a truthful mechanism
for selfish receivers [26]. Thus, when each receiverqi is
willing to pay at mostζi for the data, we may design a
payment-sharing mechanism as follows.

Algorithm 10 Payment sharing for selfish receiversR

1: Q ← R.
2: repeat
3: Construct the treeLCPT spanningQ only, i.e., we

prune out the branches of the originalLCPT that do
not have receivers inQ.

4: For each receiverqi ∈ Q, compute the payment sharing
ξi(Q, d) based on the declared costs of all relay agents.

5: For each receiverqi ∈ Q, the receiverqi is removed
from Q if ξi(Q, d) > ζi, i.e., Q ← Q − {qi} if
ξi(Q, d) > ζi.

6: until no receiver is removed in this round
7: All remaining receiversQ ⊆ R will receive the multicast

data and pay a sharingξi(Q, d) ≤ ζi.

However, we found out that a selected relay agent may have
incentives to lie about its relay cost under payment scheme
defined in Algorithm 6. In the following, we show that a relay
agent could change the payment sharing of its downstream
receivers by either reporting a higher cost or a lower cost.

Figure 6 illustrates such an example of reporting a lower
cost. Here the private valuations of receiversq1 andq2 are12
and 17 respectively. The true costs of links arec(sv3) = 5,
c(sv4) = 3, c(v3q1) = 5, c(v4q2) = 5, andc(q1q2) = 3. For
the sake of simplicity, we assume that all links (except link
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Fig. 6. A relay agent could lie down its cost to improve its utility using Algorithm 6.

v4q2) report their costs truthfully in the remaining discussion.
Notice when linkv4q2 truthfully reports its cost, the multicast
tree consists of linkssv3, v3q1, sv4 and v4q2, as shown by
Figure 6 (b). In addition, the payments to selected links are
psv4 = c(sv3) + c(v3q1) + c(q1q2)− c(v4q2) = 8, pv4q2 = 10,
psv3 = 6, pv3q1 = 6, and the payments to all other links are
0. Consider two receiversq1 and q2: the payment sharing by
receiverq1 is psv3 + pv3q1 = 12, which is not larger than its
valuation12; the payment sharing byq2 is psv4 + pv4q2 = 18,
which is larger than its valuation17. Consequently, the receiver
q2 will not join the multicast (illustrated by Figure 6 (c)). In
other words, linkv4q2 gets payment0.

Let’s see what happens if linkv4q2 lies its cost down to3 <
c(v4q2) (illustrated by Figure 6 (d)). Figure 6 (e) shows the
multicast tree constructed in this scenario. Notice that when
link v4q2 reported its cost as3, the payments to selected links
arepsv4 = 10, pv4q2 = 10, pq1q2 = 4, and the payments to all
other links are0. It is easy to show that the payment sharings
by receiversq1 and q2 are 7 and 16 respectively. Then both
q1 andq2 will join the multicast now. Thus, the linkv4q2 gets
a payment10 when it lies its cost down to3.

The above example shows that a relay agent could lie down
its cost to improve its utility. It is not difficult to devise an
example such that a relay agent could lie up its cost to improve
its utility. Due to the space limit, the example is omitted and
please refer to our technique report for more details.

B. Other Issues

There are many interesting and important issues that have
not been discussed and thus are left for further study. We just
list a few here.

Collusion: Throughout this paper, we assume that all agents
will not collude together to manipulate the protocol. It is
interesting to study what happens when agents can collude and
how to find truthful mechanisms that are resistent to collusion.
We already knew that there is no truthful multicast protocol
that can prevent the collusion between any pair of relay agents,
following a previous result [21] for unicast.

Truthful Distributed Implementation : One thing we
should notice is that these agents running the distributed
algorithms are indeed non-cooperative. How to ensure that
they implement thecorrect distributed algorithm we designed
also is an important question we have to consider. See [21]
for our previous approach on unicast.

Repeated Games: So far we assumed that the session is
performed once. A natural question is how we should pay

the relay agents and charge the receivers when the multicast
game is to be repeated for several sessions. When we know
the private cost of each relay agent, should we just pay each
relay agent its declared cost starting from the second session?
If we do so, clearly the selfish relay agent will increase its
declared cost to improve its later benefit, although this may
reduce its benefit in the first session.

Nash Design: One thing we should point out is that
algorithmic mechanism design is not the only way to deal
with selfishness. A lot of literatures use Nash equilibrium, a
state at which no agent can improve its utility by unilaterally
deviating from its current strategy when other agents keep their
strategies. Since Nash equilibrium has a weak requirement,
it often can achieve a wider variety of outcomes. We leave
it as future work to design multicast protocols using Nash
equilibrium instead of truthful algorithmic mechanism design.

VII. PERFORMANCESTUDY

We conduct extensive simulations to study the performance
of truthful multicast routing based onLCPT. For a treeT , let
c(T ) be its cost andP(T ) be the total payment to all relay
agents. We define theoverpayment ratio(OR) of T as

%(T ) =
P(T )
c(T )

.

Recall that the payment ofT is at least its actual cost. Thus,
%(T ) ≥ 1 for any treeT . In the worst case, the ratio%(T )
could be as large asO(n) for a network ofn nodes [33], even
for the special case of unicast. Notice there are some other
definitions about overpayment ratio in the literature. In [33],
the authors proposed to compare the total paymentP(T ) with
the cost of the newLCPT obtained from the graphG\T , i.e.,
removingT from the original graphG.

In addition to the overpayment ratio, we propose another
metric to measure the performance of the truthful multicast
based onLCPT. Remember that the payments to relay agents
are shared among receivers. Thus, each receiver is more
interested in how much extra it is charged to guarantee the
truthfulness of agents. Given a treeT for a set of receivers
R, let mi(R, T ) be the amount that receiverqi is charged
if agents’s costs are publicly known. Notice thatξi(R, d) is
the amount that receiverqi is charged if agents are non-
cooperative. We define theprice-cost-ratio(PCR) as

η(qi, T ) =
ξi(R, d)
mi(R, T )

.



In our experiment, we generate random networks withn
nodes, wheren is a parameter. In order to ensure that the
network is bi-connected, the average node degree should be
greater thanlog n with high probability. First, for every node
u, we randomly draw a number from[α log n, 5α log n] as
its degreedu, where α ≥ 1 is a parameter. A random
graph satisfying this degree requirement is then generated. The
cost of each node is then uniformly drawn from distribution
[20, 100]. By choosing different parameters, we study what
aspects of the network affect the OR and PCR. To compute
the probability distribution, we generate104 different networks
and compute the number of instances that fall in some specific
intervals. For other simulations, given all fixed parameters,
we generate103 different network instances and compute the
performances accordingly.

A. Effect of Network Size

In this simulation, we fix the parameterα to 10
3 log n , which

means that node’ degrees are drawn from a uniform distribu-
tion [ 103 , 50

3 ] with average20. We also fix the size of receiver
set R to 15. We measure the performances of our truthful
multicast protocol based on the following four metrics:av-
erage overpayment ratio(AOR), maximum overpayment ratio
(MOR), average price-cost-ratio(APCR) andmaximum price-
cost-ratio (MPCR). Figure 7 (a) and (b) plot the distribution
of AOR and APCR when the number of nodes is100 and250,
respectively. Observe that the probability distributions of AOR
(also APCR) for different network size are similar. Figure 7
(c) shows that the AOR, MOR and APCR do not change much
when the number of network nodes grows from100 to 500.
On the other hand, MPCR fluctuates and is much larger than
the other three metrics. Thus, we conclude that the number
of nodes does not affect the overpayment ratio and price-cost-
ratio in random networks.

B. Effect of Network Density

Since the difference in the network size does not affect the
performances of our truthful protocol, we then study other
effects by fixing the network size (100 in the results reported
here). We specifically study the effect of the network density
by changing the node degree parameterα. Figure 8 (a) and (b)
show the distributions of AOR and APCR respectively when
the node degrees are drawn from two uniform distributions
[log 100, 5 log 100] and [2 log 100, 10 log 100]. Figure 8 (c)
shows that the AOR, MOR and APCR change when the
network density changes. It is interesting to observe that both
AOR and APCR first decrease when the network density (i.e.,
the average node degree) increases from10 to 32, and then
increase slightly when the network density increases from30
to 42. They both become steady when the network density is
greater than42. It is interesting to analyze this phenomenon
theoretically.

C. Performance Comparison with Unicast

In this simulation, we compare the average cost and pay-
ment per receiver in multicast based onLCPT with those of

unicast. We randomly generaten terminals wheren varies
from 100 to 500. The degree of each node is randomly drawn
from the uniform distribution[log n, 5 log n]. For a specific
network, we average the cost and payment for all receivers.

Figure 9 (a) plots the cost and payment for multicast and
unicast per receiver when the number of receivers is15,
while Figure 9 (b) shows the results when10% of nodes
are receivers. Observe that the average cost and payment per
receiver for multicast based onLCPT are smaller than the
average cost and payment per receiver for unicast respectively.
Furthermore, under most of the cases, the payment per receiver
for LCPT payment is even smaller than the cost per receiver
for unicast. This ensures us that multicast not only saves the
total resources, but also benefits the individual receiver even
in selfish networks. We then vary the network size among
100, 200, 300, 400, 500 and the number of receivers from1 to
30. Figure 9 (c) shows the unicast cost (the upper surface) and
the LCPT based multicast payment (the lower surface).

From the results of previous three simulations, we observe
that AOR and APCR are both quite small for a random
network, and even MOR is smaller than1.7 generally. Thus,
we conclude that the theoretical worst case could happen with
only a low probability in a random network.

VIII. C ONCLUSION AND FUTURE WORKS

In this paper we discuss how to design truthful payment
schemes and payment sharing mechanisms that stimulate
cooperation for multicast in a non-cooperative network. We
assumed that a group of receivers is willing to pay to receive
the data and each possible relay agent has a privately known
cost of providing the relay service. In our truthful multicast
protocol, each selfish relay agentk is first asked to declare a
cost for relaying data for other ASs. In return, it will get a
payment based on the reported costs of all relay agents that
can provide the service. The objective of every individual relay
agent is then to maximize its profit. A multicast protocol is
said to be truthful if no speculation and counter speculation
happens,i.e., every relay agent will maximize its profit when
it truthfully reports its cost.

It is well-known that the traditional protocols designed for
conforming agents cannot prevent the selfish agents from
manipulating their reported costs to increase their benefits.
Instead of redesigning the wheel, it is preferred to enhance an
existing multicast protocol to deal with selfish agents. In this
paper, we specifically gave a general rule to decide whether
it is possible and how, if possible, to transform an existing
multicast protocol to a truthful multicast protocol. We then
showed how the payments to all the relay agents could be
sharedfairly among all receivers so that it encourages col-
laboration among receivers. As running examples, we showed
how to design a truthful multicast protocol when the least cost
path tree or the shared-based tree is used for multicast. We also
discussed in detail how to implement this scheme on each
selfish node in a distributed manner. Extensive simulations
have been conducted to study the relations between payment
and cost of the multicast structure when least cost path tree is
used. As all truthful mechanisms, the proposed scheme pays
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each relay agent more than its declared cost to prevent it from
lying. Our extensive simulations showed that the overpayment
is small when the cost of each agent is a random value chosen
in some range.

As we mentioned early, this paper is the first step to
exploring the general network protocol design when relay
agents are non-cooperative. There are many interesting and
important issues that have not been touched and thus are left
for further study.
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IX. A PPENDIX

Lemma 6 The total paymentP(R, d) to treeLCPT is nonde-
creasing and submodular with respect to receiver setR.

Proof: By the definition ofLCPT, obviously if R ⊂
R′ ⊆ Q, then LCPT(d,R) ⊆ LCPT(d,R′). Remember the

final payment to a relay agentvk based on receiver setR is

pk(R, d) = max
qi∈R

pi
k(d)

Observe thatpi
k(d) is not affected by the receiver setR.

Thus, for any relay nodevk, if R ⊂ R′ ⊆ Q then
pk(R, d) ≤ pk(R′, d). Thus, the total payment to agents on
treeLCPT(R, d) is nondecreasing.

We then prove that the total paymentP(R, d) is a sub-
modular function of setR, i.e., ∀R1 ⊆ Q and R2 ⊆ Q,
P(R1, d)+P(R2, d) ≥ P(R1∪R2, d)+P(R1∩R2, d). Since
P(R, d) =

∑
vk∈R pk(R, d), it is sufficient to prove that,∀k,

pk(R1, d) + pk(R2, d) ≥ pk(R1 ∪R2, d) + pk(R1 ∩R2, d).

We prove this by studying two cases whether the agentvk is
on LCPT(R1 ∩R2, d) or not.

Case 1: Agent vk is not on LCPT(R1 ∩ R2, d). Without
loss of generality, assume thatvk is on LCPT(R1 \ R2, d).
Then pk(R2, d) = pk(R1 ∩ R2, d) = pk(R2 \ R1, d) =
0. Consequently,pk(R1 ∪ R2, d) = maxqi∈R1∪R2 pi

k(d) =
maxqi∈R1 pi

k(d) + maxqi∈R2\R1 pi
k(d) = maxqi∈R1 pi

k(d).
Therefore, in this case we have

pk(R1, d) + pk(R2, d) = pk(R1 ∩R2, d) + pk(R1 ∪ xR2, d)

Case2: Agent vk is on LCPT(R1 ∩ R2, d). Without loss of

generality, assumepk(R1, d) ≤ pk(R2, d). Thus,

pk(R1 ∪R2, d) = max
qi∈R1∪R2

pi
k(d)

= max{max
qi∈R2

pi
k(d), max

qi∈R1\R2

pi
k(d)}

≤ max{max
qi∈R2

pi
k(d), max

qi∈R1
pi

k(d)}
= max

qi∈R2
pi

k(d) = pk(R2, d)

On the other hand, we havepk(R2, d) ≤ pk(R1 ∪ R2, d).
Thus,pk(R2, d) = pk(R1 ∪ R2, d). The factR1 ∩ R2 ⊆ R1

implies pk(R1 ∩R2, d) ≤ pk(R2, d). Therefore, we have

pk(R1, d) + pk(R2, d) ≥ pk(R1 ∩R2, d) + pk(R1 ∪R2, d)

This finishes our proof.
Theorem7: Our payment sharing scheme defined in Algorithm
6 is the Shapely value.

Proof: Remember Shapely value for multicast is

fi(R) =
X

T⊆R\qi

|T |!(|R| − |T | − 1)!

|R|! [P(T ∪ qi, d)−P(T, d)] (4)

In other words, the Shapely value of the receiverqi is fi(R)
given a set of receiversR. Notice that an agentvk will
contribute toP(T ∪ qi, d)− P(T, d) if and only if

1) Agent vk is an upstream agent of receiverqi.
2) pT

k (d) < pi
k(d), wherepT

k (d) = maxqj∈T pj
k(d).

For fixed T , agentvk satisfying above two criteria will add
non-negative valuepi

k(d)− pT
k (d) to P(T ∪ qi, d)−P(T, d).

Let T=x be a receiver set with the highest rank inσ that
is exactlyx. Similarly, we useT<x to denote a receiver set
with the highest rank inσ that is less thanx. Let gi

k(R) be
payment to agentvk that is shared by receiverqi. Assume that
qi is rankeda in the rankingσ when sorting the payment to



agentvk in a increasing order. Then

gi
k(R) =

∑
T<a⊆R\qi

|T<a|!(|R|−T<a−1)!
|R|! · pi

k(d)

−∑a−1
x=0

∑
T=x⊆R−qi

|T=x|!(|R|−|T=x|−1)!
|R|! · pσx

k (d)

Let γ be the number of receivers who are not the down-
stream receivers ofvk. Simplifying the first part of the
equation, we getX

T<a⊆R−qi

|T<a|!(|R| − T<a − 1)!

|R|! · pi
k(d)

= pi
k(d) ·

γ+a−1X
x=0

x!(|R| − x− 1)!

|R|! ·
 

a + γ − 1

x

!
=

pi
k(d)

|R| − a− γ + 1
=

pi
k(d)

|R(vk)| − a + 1

Simplifying the second part of the equation, we get
a−1X
x=0

X
T=x⊆R−qi

� |T=x|!(|R| − |T=x| − 1)!

|R|! · pσx
k (d)

�
=

a−1X
x=0

 
pσx

k (d) ·
x+γ−1X

y=0

(y + 1)!(|R| − y − 2)!

|R|! ·
 

x + γ − 1

y

!!
=

a−1X
x=1

pσx
k (d)

(|R| − x− γ + 1) · (|R| − x− γ)

=

a−1X
x=1

pσx
k (d)

(|R(vk)| − x + 1) · (|R(vk)| − x)

=

a−1X
x=1

pσx
k (d) ·

�
1

(|R(vk)| − x)
− 1

(|R(vk)| − x + 1)

�
=

p
σa−1
k (d)

(|R(vk)| − a + 1)
−

a−1X
x=1

pσx
k (d)− p

σx−1
k (d)

(|R(vk)| − x + 1)

Combining the above two equations, thengi
k(R) equals to

pi
k(d)

|R(vk)| − a + 1
− [

p
σa−1
k (d)

(|R(vk)| − a + 1)
−

a−1X
x=1

pσx
k (d)− p

σx−1
k (d)

(|R(vk)| − x + 1)
]

=

aX
x=1

pσx
k (d)− p

σx−1
k (d)

(|R(vk)| − x + 1)

It shows that the sharingf i
k(R) computed in Algorithm 6

equals the sharing defined by the Shapely value.


