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Designing Multicast Protocols for
Non-Cooperative Networks
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Abstract—Conventionally, most network protocols assume that
the network entities who participate in the network activities
will always behave as instructed. However, in practice, most
network entities are selfish: they will try to maximize their own
benefits instead of altruistically contributing to the network by
following the prescribed protocols. Thus, new protocols should
be designed for the non-cooperative network that is composed of
selfish entities. In this paper, we specifically show how to design
truthful multicast protocols for non-cooperative networks such
that these selfish entities will follow the protocols out of their
own interests. By assuming that every entity has a fixed cost
for a specific multicast, we give a general framework to decide
whether it is possible and how, if possible, to transform an existing
multicast protocol to a truthful multicast protocol by designing
a proper payment protocol. We then show how the payments to
those relay entities are shared fairly among all receivers so that it
encourages collaboration among receivers. As running examples,
we show how to design truthful multicast protocols for several
multicast structures that are currently used in practice.

Index Terms—Control theory, combinatorics, economics, non-
cooperative, multicast, payment, sharing.

I. INTRODUCTION

Since first introduced by Deering in [1] and the audiocast
experiment by IETF, multicast has received more and more
attention over the past few years due to its resource sharing
capability. In multicast, there is a topology, either a tree or a
mesh, that connects the source to a set of receivers, and the
packet is only duplicated at the branching nodes. Numerous
multicast protocols have been proposed, and most of them as-
sumed that the network entities will relay the multicast packets
as prescribed by the multicast protocol without any deviation.
While this may be true for the case of LAN multicast in
which all network entities belong to the same organization,
it can not be taken for granted when the multicast datagrams
are routed through different IP networks (called autonomous
systems (ASs) in some places). Although multicast benefits the
whole system by saving bandwidth and resource, it is dubious
that multicast will also bring benefit to every individual AS
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who relays packets. Thus, it is more reasonable to assume that
these ASs, probably owned by different organizations or users,
are selfish: they aim to maximize their own benefits instead
of faithfully conforming to the prescribed multicast protocols.
A network composed of selfish ASs is generally known as a
non-cooperative network. In this paper, we would like to use
the terminology “agent” instead of AS because it reflects the
selfish nature of the AS.

Nisan and Ronen [2] studied the unicast routing problem
in non-cooperative networks and introduced the idea of algo-
rithmic mechanism design. They proposed to give the agents
some proper payments to ensure that every agent conforms to
the prescribed protocol regardless of other agents’ behavior,
which is known as truthful or strategyproof. They designed
the payment for unicast by using the VCG mechanism [3]–
[5], which is considered as one of the most positive results in
mechanism design. Unfortunately, the VCG mechanism has
its own drawback. For multicast, if we want to apply the
VCG mechanism, we have to find the minimum cost multicast
tree, which is known to be NP-Hard for both link weighted
networks [6], [7] and node weighted networks [8], [9]. If we
insist on applying the VCG mechanism to a multicast topology
that does not have the minimum cost, the VCG mechanism is
no longer truthful [10]. Thus, some payment schemes other
than the VCG mechanism should be designed for multicast.
Recently, several non-VCG truthful payment schemes were
proposed in [10] for several commonly used multicast trees.
In this paper, instead of focusing on a specific multicast
structure, we study whether it is possible to transform a
multicast protocol using any given multicast structure to a
truthful multicast protocol, and if possible, how to design such
truthful multicast protocol.

Designing a truthful payment scheme is not the whole
story for many practical applications. A natural question to be
answered is who will be charged for the payments to the relay
agents. A simple solution is that the organization to which
the receivers belong pays [10]. However, this solution is not
panacea. In many applications such as video streaming, each
individual receiver often has to pay for receiving the data. How
to charge the receivers for multicast transmission has been
studied extensively in literatures [11]–[16]. In most of their
models, they assumed that (1) every receiver has a valuation
for receiving the data and the receiver is selfish, (2) all relay
agents are cooperative and will reveal their true costs, and (3)
the multicast tree is fixed as the union of the shortest paths
from the source to receivers. In a sharp contrast, we take the
selfish behavior of the relay agents into account in this paper.
Thus, we model the network differently by assuming that
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(1) the relay agents are selfish and rational, (2) the receivers
always receive the data and pay what they “should” pay in a
fair way, and (3) the multicast topology could be any structure,
including trees and meshes. To the best of our knowledge, this
is the first paper to consider multicast pricing when the relay
agents are non-cooperative. We also show the hardness when
both the receivers and the relay agents are selfish and rational,
and each receiver has a privately known valuation.

The main contributions of this paper are two-fold. First, we
present a general framework to decide whether it is possible,
and how, if possible, to transform an existing multicast proto-
col to a truthful one. We then show how the payments to the
relay agents are shared fairly among the receivers. As running
examples, we show how to design truthful multicast protocols
for some commonly used Inter-AS multicast protocols.

The rest of the paper is organized as follows. We introduce
some preliminaries, related works, our communication model,
and the problems to be solved in Section II. In Section III,
we discuss the existence of the truthful payment and how to
compute it based on a given multicast structure. We show
how to design truthful multicast protocols for the Inter-AS
multicast protocol based on source-based tree in Section IV
and shared-based tree in Section V. An alternative model for
truthful multicast is discussed in Section VI. We conclude our
paper in Section VII.

II. TECHNICAL PRELIMINARIES

A. Algorithmic Mechanism Design
In a standard model of algorithmic mechanism design, there

are n agents {1, 2, · · · , n}. Each agent i has some private
information ti, called its type, e.g., its cost to forward a packet
in a network environment. All agents’ types define a profile
t = (t1, t2, · · · , tn). Each agent i declares a valid type τi,
which may be different from its actual type ti, and all agents’
strategies define a declared type vector τ = (τ1, · · · , τn).
A mechanism M = (O,P) is composed of two parts: an
allocation method O that maps a declared type vector τ
to an output o, and a payment scheme P that decides the
monetary payment pi = Pi(τ) for every agent i. Each
agent i has a valuation function wi(ti, o) that expresses its
preference over different outcomes. Agent i’s utility (also
called profit) is ui(ti, o) = wi(ti, o) + pi. An agent i is said
to be rational if it always chooses its strategy τi to max-
imize its utility ui. Let τ−i = (τ1, · · · , τi−1, τi+1, · · · , τn),
i.e., the strategies of all other agents except i and τ |ia =
(τ1, τ2, · · · , τi−1, a, τi+1, · · · , τn). In this paper, we are only
interested in a mechanism M = (O,P) that satisfies the
following three conditions:

1) Incentive Compatibility (IC): For every agent i and any
τ , wi(ti,O(τ |iti)) + pi(τ |iti) ≥ wi(ti,O(τ)) + pi(τ).

2) Individual Rationality (IR): It is also called Voluntary
Participation. Every participating agent i must have a non-
negative utility, i.e., wi(ti,O(τ |iti)) + pi(τ |iti) ≥ 0.

3) Polynomial Time Computability (PC): O(·) and P(·)
are computable in polynomial time.

A mechanism is truthful if it satisfies both IR and IC. Thus,
for every agent i, revealing its true type ti maximizes its utility
regardless of what other agents do.

VCG MECHANISM: A mechanism M = (O,P) belongs
to the Vickrey-Clarke-Groves (VCG) mechanism family [3]–
[5] if (1) there are fixed positive numbers βi, i ≤ i ≤ n,
such that the output O(t) maximizes the objective function
g(o, t) =

∑
i βi · wi(ti, o), and (2) the payment to the agent

i is Pi(t) = 1
βi

∑
j 6=i βj · wj(tj ,O(t)) + hi(t−i). Here hi()

is an arbitrary function of t−i, e.g., hi(t−i) = − 1
βi

∑
j 6=i βj ·

wj(tj ,O(t−i)). A VCG mechanism is truthful [5].

B. Network Model and Problem Statement

In this paper, we focus on the Inter-AS multicast instead
of the Intra-AS routing because Intra-ASs are usually co-
operative instead of non-cooperative. Here, we model the
Inter-AS network topology as a graph G = (V, E, c), where
V = {v1, · · · , vn} is the set of ASs, E = {e1, e2, · · · , em}
is the set of links between ASs. Usually, in Inter-AS routing,
each AS actually is an independent economic decision maker
who could choose its strategy for financial advantage in routing
decisions. We assume that each AS vi is an individual agent
and it has a fixed private cost ci to transmit a unit size of
data in multicast. Thus, every AS is called upon to declare its
cost to the protocol. When the nodes are the selfish agents,
we call this network a node weighted network. On the other
hand, sometimes we need to treat the selfish agents as links
in the network, e.g., the multicast datagram is sent from one
AS to another AS by using application layer tunneling through
other ASs. If links are agents, the network is modeled as a link
weighted network. Most of our general techniques in Section
III and Section IV are not specific to one model, and thus
can be applied to both models. Notice that all our results also
apply to other network models, such as peer-to-peer networks
(P2P) [25], [26].

Given a set of multicast group members, in this paper, the
receivers are the ASs with some attached group members
instead of the actual end hosts who are the multicast group
members. For the convenience of our analysis, we assume that
s is the source AS in one specific multicast and the size of
the data is normalized to 1. We also assume that agents in the
network will not collude to improve their profits together. In
order to prevent monopoly, we assume that the network is bi-
connected. Given a source node s = q0 and a set of multicast
receivers R = {q1, q2, · · · , qr} ⊂ V , we need to

1) construct a topology (a tree, a mesh, a ring, etc.) that
spans the source and all receivers;

2) calculate a payment for each relay AS according to a
payment scheme that is truthful;

3) charge each receiver according to a payment sharing
scheme that is fair. We will formally define what is fair
in subsection III-C.

Here the multicast protocol for the network with n ASs
is a mechanism M = (O,P, ξ) for the n selfish agents.
The allocation method O is the method to construct the
multicast topology and the output o is the constructed topology
which includes all relay ASs who are selected to participate
the multicast sessions. The payment scheme P decides the
payment for each relay AS. The payment sharing scheme ξ is
used for sharing the charges for each receiver.
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One thing we should highlight here is that, instead of rein-
venting the wheel by designing some new multicast structures,
we focus on how we can design a truthful payment scheme
for a certain existing multicast protocols to ensure that they
work correctly even in non-cooperative networks. Based on
the truthful payment scheme we designed, we further study
how we charge the receivers in a fair way.

Given a structure H ⊆ G, we use c(H) to denote the total
cost of all agents in H . If we change the cost of any AS i to c′i,
we denote the new network as G′ = (V, E, c|ic′i), or simply
c|ic′i. If we remove one AS vi from the network, we denote
it as c|i∞. Hereafter, we use LCP(u, v, c) to denote the least
cost path from node u to node v in a network G = (V, E, c).
For simplicity of notations, we will use only the cost vector c
to denote the network G = (V,E, c) if no confusion is caused.
We let c−i denote the costs of all ASs other than AS vi. We
summarize all notations and abbreviations used in this paper
in Table I which is given in Appendix.

C. Related Work
Routing has been part of algorithmic mechanism design

from the very beginning. Nisan and Ronen [17] provided a
polynomial-time truthful mechanism for unicast routing in a
centralized computational model. Each link ei of the network
is an agent and has a private cost ti of sending a message.
Their mechanism is essentially a VCG mechanism. The result
in [17] is extended in [18] to deal with unicast problem for all
pairs of agents. They assume that there is a traffic demand Ti,j

from an agent i to an agent j. They also gave a distributed
method to compute the payment. Anderegg and Eidenbenz
[19] recently proposed a similar routing protocol based on the
VCG mechanism for wireless ad hoc networks. By assuming
that each node is a selfish agent, Wang and Li [20] proposed
an asymptotically optimum centralized method to compute the
payment for unicast and showed that no truthful mechanism
can prevent collusion among any pair of agents.

For multicast, Feigenbaum et al. [15] assumed that there is
a universal tree T spanning all receivers and for every subset
Q ⊆ R of receivers, the tree T (Q) spanning Q is merely the
subtree of T that spans Q. They also assumed that the link
costs are publicly known and each receiver qi has a privately
known valuation wi on receiving the data. It will report a
number w′i, which is the amount of money it is willing to pay
to receive the data, and w′i may be different from wi. They
studied how to select a subset Q ⊂ R of receivers according to
some criteria and proposed to use Shapely value and marginal
cost to share the link cost of the multicast tree. Maximizing
profit in multicast was studied in [21], [22] ( [22] is based
on cancellable auction [23]). Sharing the cost of the multicast
structure among receivers to achieve some fairness was studied
in [14], [16], [24], [27]–[29]. Wang et al. [10] studied how to
design truthful multicast protocols for various multicast trees
in wireless networks when the nodes or links are selfish.

III. CHARACTERIZATION OF TRUTHFUL MULTICAST
ROUTING

Several multicast topologies have been proposed and used
in practice and more topologies are expected to appear in the

Algorithm 1 Payment Scheme P
1: For any agent i not selected to relay, its payment is 0.
2: For any agent i selected to relay, its payment is κi(O, c−i).

near future. It will be difficult, if not impossible, to design
a truthful multicast mechanism for each of these topologies
individually. Thus, instead of studying some specific multicast
topologies, we focus on designing a general framework to
solve the problem whether there is, and how to design if it
exits, a truthful mechanism for a given multicast topology.
We also consider how to charge the receivers to cover the
payments to the selfish relay agents.

Intuitively, we may still want to use the VCG payment
schemes for these multicast topologies. Notice that an alloca-
tion method of a VCG mechanism is required to maximize
the total valuations of agents. This makes the mechanism
computationally intractable in many cases, e.g., multicast.
Notice that replacing the optimal solution with non-optimal
approximation usually leads to untruthful mechanisms [10].
Thus a mechanism other than VCG is needed when we cannot
find the optimal solution or the objective is not to maximize
the total valuation of the agents. This paper presents the first
general framework to design truthful mechanisms for multicast
in case we cannot find a structure with the minimum total cost.

A. Existence of Truthful Payment Mechanism

Before we design some truthful payment scheme for a
given multicast topology, we should decide whether such
payment scheme exists or not. The following definition and
theorem will present a sufficient and necessary condition for
the existence of the truthful payment scheme.

Definition 1: A method O constructing a multicast topol-
ogy satisfies the monotone non-increasing property (MNP)
if for every agent i and fixed c−i, the following condition is
satisfied: if agent i is selected as a relay agent with cost ci2 ,
then it is also selected with a cost ci1 < ci2 .

Obviously, the above condition is equivalent to the following
condition: there exists a threshold value κi(O, c−i) such that
if i is selected as a relay agent, then its cost is at most
κi(O, c−i). For convenience, we use Oi(c) = 1 (respectively,
0) to denote that agent i is selected (respectively, not selected)
to the multicast topology when the cost vector is c.

Theorem 1: Given a method O constructing a multicast
topology, there exists a payment P such that M = (O,P)
is truthful if and only if O satisfies the MNP.
The detailed proof of this theorem is given in Appendix. In the
proof, we first prove that if there exists a truthful payment P
based on O then O satisfies the MNP. Then, by constructing
the following payment scheme P , we prove that if O satisfies
MNP, there exists a truthful mechanism M = (O,P) .

B. Rules to Find Truthful Payment Scheme

Given a multicast structure satisfying MNP, it seems quite
simple to find a truthful payment scheme by applying Algo-
rithm 1. However, sometimes the process to find the thresh-
old value in Algorithm 1 is far more complicated. Instead
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Algorithm 2 A round-based multicast method

1: Set r = 1 and c(1) = c and Q(1) = R initially.
2: repeat
3: Let Or be a deterministic method that decides in round

r which agents will be selected.
4: Update the network cost vector and receiver set, i.e., we

obtain a new network cost vector c(r+1) and receiver set
Q(r+1) according to an updating rule Ur:

Ur : Or × [cr, Q(r)] → [c(r+1), Q(r+1)].

5: until the desired property of the multicast topology is met
6: Return the union of the selected relay agents in all rounds.

of trying to propose a unified approach that can find the
threshold value for all multicast topologies satisfying MNP,
we present some useful techniques to find the threshold value
under certain circumstances. Our general approach works as
follows. First, given an allocation method O that constructs
a multicast structure, we decompose it into several simpler
allocation methods. We then find the threshold value for each
of the decomposed methods. Finally, we calculate the original
threshold value by combining the threshold values for those
decomposed methods. In the following, we present several
useful decomposition techniques.

1) Simple Combination: Given a multicast method O, let
κ(O, c) denote the n-tuple vector

(κ1(O, c−1), κ2(O, c−2), · · · , κn(O, c−n)).

Here, κi(O, c−i) is the threshold value for agent i when the
multicast topology is constructed by O and the costs c−i of
all other agents are fixed. We then present a simple but useful
technique to find the threshold value.

Theorem 2: Given g allocation methods O1, · · · ,Og each
satisfying MNP, and the threshold value κ(Oi, c) for each Oi,
the method O(c) = O1(c)

∨O2(c)
∨ · · ·∨Og(c) satisfies

MNP. Moreover, the threshold value for O is

κ(O, c) = max
1≤i≤g

{κ(Oi, c)}.

The proof of Theorem 2 is straightforward and thus is
omitted here. We will show how to use this simple combination
technique in Section IV. Notice each individual method Oi

may not construct a multicast tree at all.
2) Round-based Method: Many multicast topologies are

constructed in a round-based manner: in each round some
previously unselected agents are selected, and then the network
and the receiver set are updated if necessary. In Algorithm 2,
we give a general characterization of a round-based method
that constructs a multicast topology.

To illustrate the general round-based method, in Algorithm
3 we review a round-based multicast tree construction method
[7] that finds a tree whose cost is no more than 2 times that
of a minimum cost Steiner tree (MCST) in a link weighted
network. We denote the constructed multicast tree as LST,
which stands for Link-weighted Steiner Tree.

Here, no receiver remains in R corresponds to the desired
property of the general round-based method; LCP(s, qi, d)

Algorithm 3 Link weighted multicast structure [7]
1: repeat
2: Let d be the vector of costs declared by all agents.
3: Find one receiver in the receiver set R, say qi, that is

closest to the source s, i.e., LCP(s, qi, d) has the lowest
cost among the shortest paths from s to all receivers.
Connect qi to the source s using LCP(s, qi, d), i.e., all
agents on this path are selected.

4: Set the cost of every link on this path to 0. Remove qi

from the receiver set R.
5: until no receiver remains in R

in round r corresponds to Or; setting costs of links on
LCP(s, qi, d) to 0 and removing qi from R is the updating rule
Ur. To study whether a general round-based method implies a
truthful payment scheme we propose the following definition.

Definition 2: An updating rule Ur is said to be crossing-
independent if for any agent i not selected in round r:

• c
(r+1)
−i and Q(r+1) do not depend on c

(r)
i .

• For a fixed c
(r)
−i , if d

(r)
i < c

(r)
i then d

(r+1)
i < c

(r+1)
i .

Theorem 3: A round-based multicast method O satisfies
MNP if, for every round r, method Or satisfies MNP and
the updating rule Ur is crossing-independent.

Proof: For an agent i, fix the cost c−i of all other agents.
We prove that if i is selected when the cost vector is a =
{c−i, ci}, then it is also selected when the cost vector is b =
{c−i, c

′
i} such that c′i < ci. Without loss of generality, we

assume that i is selected in round r when the cost vector is a.
Then when the cost vector is b, if agent i is selected before
round r, our claim holds. Otherwise, in round r, a

(r)
−i = b

(r)
−i

and a
(r)
i > b

(r)
i since agent i is not selected in the previous

rounds. Notice that agent i is selected in round r when the
cost vector is a

(r)
i . Thus, agent i is also selected in round r

when the cost vector is b
(r)
i since Or satisfies MNP.

In Algorithm 4, we show how to find the threshold value
for any selected agent k when the truthful payment scheme
exists for a round-based multicast method.

We use the network in Figure 1 to illustrate how to find
the threshold value for link v3v4 based on LST. In the first
round, v3v4 cannot be selected, thus `1 = 0. In second round,
it is easy to observe that when v3v4’s cost is smaller than 0.9,
the path v3v4v5q1 is selected and when v3v4’s cost is greater
than 0.9, path sq1 is selected. Thus, the threshold value for
v3v4 in this round is `2 = 0.9. Notice that the updating rule of
Algorithm 3 does not change the cost of an unselected agent,
i.e., it is crossing-independent and fi(x) = x. Thus, the final
threshold value is simply max{`1, `2} = 0.9, which is the
payment to link v3v4. Similarly, we can find all selected links’
threshold values as shown by the numbers in the parenthesis
in Figure 1(b).

C. Fair Payment Sharing Scheme

For a given set of receivers, after we calculate the payment
pk(d) for every relay agent k based on declared costs d, we
are ready to study how to share the payments fairly among
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Algorithm 4 Computing payment for a selected agent k based
on round-based method O

1: Initially set the cost ck of k to ∞ and r = 1.
2: repeat
3: Find the threshold value for agent k based on Or

under cost vector c
(r)
−k and receiver set Q(r). Let `r =

κk(Or, cr
−k) be the threshold value found. Here we set

`r = 0 if agent k cannot be selected in this round under
any cost.

4: Update the cost vector and receiver set to obtain the
new cost vector c(r+1) and Q(r+1). Set r = r + 1.

5: until the desired property of the multicast topology is met
6: Fix c−k and assume x is the payment for agent k. Let

fi(x) be the cost for agent k in round i if the original
cost is c|kx. Then x the largest value that satisfies the
following inequalities: fi(x) ≤ `i for 1 ≤ i ≤ r. In other
words, the payment to an agent k is the largest possible
value it could declare such that it is still selected in some
round.
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(a) The multicast tree (b) Payment for links LST ({q1, q2})
Fig. 1. Payment calculation based on LST found by Algorithm 3.

receivers. Notice that the payment sharing is different from
the traditional cost sharing. How to share the multicast cost
among the receivers has been studied previously in [11], [12],
[15], [27], with the assumption that the costs of relay agents
are public and the multicast topology is a fixed tree. Most of
the literatures used the Equal Link Split Downstream (ELSD)
pricing scheme to charge receivers: the cost of a link is shared
equally among all its downstream receivers. As we will show
later, if we use the ELSD to share the total payment among
receivers, it usually is not fair.

Given a set of receivers R, let P(R, d) =
∑

k pk(R, d)
denote the total payment to all relay agents. For a sharing
scheme ξ, let ξi(R, d) denote the sharing (or called charge)
of a receiver qi. Let ξ(R, d) =

∑
qi∈R ξi(R, d) be the total

payment collected from all receivers. We call a sharing scheme
ξ reasonable or fair if it satisfies the following criteria.

1) Budget Balance (BB): The total payment to all agents
should be shared by all receivers, i.e., P(R, d) = ξ(R, d).

2) Nonnegative Sharing (NNS): Any receiver qi’s sharing
should be positive, i.e., ξi(R, d) > 0.

3) Cross-Monotone (CM): For any two receiver sets R1 ⊆
R2 containing qi: ξi(R1, d) ≤ ξi(R2, d). In other words,
for a given network, receiver i’s sharing does not increase
when more receivers require service.

4) No-Free-Rider (NFR): The sharing ξi(R, d) of a receiver
qi ∈ R is at least 1

|R| of its unicast sharing ξi(qi, d). Thus,

the sharing of any receiver will not be too small.
By assuming a universal multicast tree and publicly known

link costs, Feigenbaum et al. [15] proved that ELSD cost
sharing scheme is fair. Unfortunately, the ELSD scheme is
not fair if it is used to share the payment.

Lemma 4: ELSD is not a fair sharing scheme for payment
P defined based on tree LST.

Proof: We prove it by presenting a counter example using
the network shown in Figure 1 (a). When consider only one
receiver in LST, we have P(q1, c) = 2.6 and P(q2, c) = 1.4+
1.5 = 2.9. See Figure 2 for illustration. For two receivers
q1, q2, if we use ELSD to share payment, the sharing by q1 is
ξ1({q1, q2}, c) = 1.4

2 + 0.9 + 1.1 + 1.5 = 4.2 which is larger
than its sharing ξ1(q1, c) = 2.6 when q1 is the only receiver.
Thus, ELSD violates the CM property. It implies that ELSD
is not a fair sharing scheme for multicast topology LST.
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Fig. 2. LST (q1) and LST (q2) and their corresponding payment.

Furthermore, using the same example, we prove that:
Lemma 5: No payment sharing scheme satisfies both CM

and BB for the truthful payment scheme based on LST.
Proof: For the sake of contradiction, we assume that

a sharing scheme ξ′ satisfies both CM and BB. From the
property of BB, we have ξ′1(q1, c) = 2.6, ξ′1(q2, c) = 2.9
and ξ′1({q1, q2}, c) + ξ′2({q1, q2}, c) = 6.4. From CM, we
have ξ′1({q1, q2}, c) ≤ ξ′1(q1, c) = 2.6 and ξ′2({q1, q2}, c) ≤
ξ′2(q2, c) = 2.9. Combining these two inequalities, we obtain
6.4 = ξ′1({q1, q2}, c) + ξ′2({q1, q2}, c) ≤ 2.9 + 2.6 = 5.5,
which is a contradiction.

Thus, given a certain multicast topology and its corre-
sponding truthful payment scheme, a fair payment sharing
scheme may not exist. It is attractive and important to find
the necessary and sufficient condition for the existence of a
fair sharing scheme for a given payment scheme.

IV. TRUTHFUL MULTICAST USING SOURCE-BASED TREE

In this section, we illustrate how to design a truthful mul-
ticast protocol with the support of Multiprotocol Extensions
for BGP-4 [30]. We treat every AS i in the network as a node
in the graph, and assume that it has a fix cost ci to relay
a unit size of datagram for a specific multicast regardless of
its downstream links. This could be because that the multicast
ASs adopt the Reverse Path Broadcasting (RPB) scheme or the
cost of sending extra copies to other interfaces is negligible.
Thus, the network is modeled as a node weighted graph. All
our results presented hereafter also apply to the case when the
network is modeled as a link weighted graph. We focus on the
source-based tree in this section and discuss the shared-based
tree in the next section.
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A. Construct Multicast Tree

Before designing a truthful multicast protocol, we review
some technical details of MBGP including the multicast
tree construction method. Multiprotocol extension for BGP
(MBGP) [30] is an extension to the existing Border Gate
Way (BGP) protocol [31]. In BGP, every node vi stores, for
each other node vj , the least cost path (the sequence of ASs
traversed) from vi to vj . Let D be the diameter of the network,
i.e., the maximum number of ASs in an least cost path (LCP).
An AS stores O(n ·D) AS numbers. In BGP, to perform Inter-
AS multicast routing, we use the BGP infrastructure that was
in place for unicast routing. A multicast routing protocol, such
as Protocol Independent Multicast (PIM) dense mode, uses the
multicast BGP database to perform Reverse Path Forwarding
(RPF) lookups for multicast-capable sources.

Thus, given a set of receivers R, the least cost path between
the source s and each receiver qi ∈ R under the reported cost
profile d is already in receiver qi’s unicast database. The union
of all least cost paths between the source and the receivers is
called the least cost path tree, denoted by LCPT(R, d). Every
node that is the part of the multicast tree LCPT has a copy of
the tree topology and all datagrams are routed along the tree.

B. Payment Scheme

It was shown in [10] that the direct application of VCG
payment scheme on LCPT is not truthful. In other words, a
node may have incentives to lie about its cost when VCG
payment scheme is used. On the other hand, since LCPT
is formed by the union of the least cost paths, by applying
Theorem 2, we can show that LCPT satisfies MNP. Thus, there
exists a truthful payment scheme and the truthful payment can
be found according to Theorem 1. It works as follows.

For each receiver qi ∈ R, we find the least cost path
LCP(s, qi, d) from the source s (say q0) to qi, and com-
pute an intermediate payment pi,0

k (d) to every node vk on
LCP(q0, qi, d) using the VCG payment scheme for unicast
pi,0

k (d) = dk + c(LCP(q0, qi, d|k∞))− c(LCP(q0, qi, d)).
The final payment to a node vk ∈ LCPT is

pk(d) = max
qi∈R

pi,0
k (d) (1)

The payment to a node is zero if it is not on LCPT.

C. Distributed Payment Algorithm

Remember that MBGP is only an extension to the BGP
which is used for unicast. Usually the unicast is a dominant
activity in the Inter-AS routing instead of multicast. Thus, we
assume that each AS already implements a truthful payment
scheme based on VCG for unicast. In [18], Feigenbaum et al.
proposed a distributed algorithm to compute the payment pi,j

k

for every pair of nodes vi, vj and every node vk on the least
cost path LCP(vi, vj , d). Their approach is an extension to
the existing BGP routing and converges to a stable state after
D−k rounds, where D−k is the maximum possible diameter
of graph G after removing any node k from the network. In
their approach, at every node vi, they only store the length of
the path LCP(vi, vj , d) for every node vj , which requires an

Algorithm 5 Distributed payment computing
1: for every receiver qi do
2: Prepare a control datagram composed of the payment

pi,0
k for every node vk on path LCP(q0, qi, d).

3: Sends datagram containing the payment information to
its parent in the tree LCPT.

4: Upon receiving a packet containing the payment from its
child which is originated from receiver qi, node vk extracts
the payment pi,0

k and sends the datagram containing all
remaining payment information to its parent if it exists.

5: When a node vk receives pi,0
k from every downstream

receiver qi, it computes the maximum of them as its final
payment.

extra O(n) space. However, in our approach, we require that
every node vi stores all the payments pi,j

k for every possible
source node vj and every node vk on path LCP(vi, vj , d). Our
approach requires an extra space size of O(α·D) for every AS,
where α is the number of possible source node and D is the
diameter of the network. Clearly, it avoids the recalculation of
every pi,j

k when some nodes’ costs are updated. The following
algorithm summarize the distributed payment computing for
multicast when s = q0 is the source node.

Now we discuss the overhead of our distributed multicast
payment computation in terms of both communication mes-
sages and memory space used in the AS. It is not difficult
to observe that every node receives at most r packets of size
O(D) where r is the number of the receivers and D is the
diameter of the network. For every node vi, it only needs to
store for each multicast session S the final payment pS , which
is negligible. However, sometime in order to achieve a high
efficiency, node vk may cache every intermediate payment
pi,0

k . Even in this case, it only needs an extra O(r) space
which is much smaller than the space needed for one session
of multicast in a cooperative network. Overall, the overhead
needed to calculate the payment is small both in terms of space
and network message.

D. Payment Sharing Among Receivers

In literature, the Shapely value [32] is one of the most
commonly used sharing schemes to achieve BB and CM.
If the total payment P(R, d) satisfies non-decreasing and
submodular property, then the Shapely value minimizes the
worst-case network welfare loss among all sharing schemes
that achieve BB and CM. Here, a payment P is submodular
if ∀R1 ⊆ Q and R2 ⊆ Q, P(R1, d) + P(R2, d) ≥ P(R1 ∪
R2, d) + P(R1 ∩ R2, d). The network welfare is defined as
the total valuation of all selected receivers minus the cost of
the network providing service. If we apply Shapely value to
multicast payment sharing, we obtain the following formula

ξi(R, d) =
∑

T⊆R−qi

|T |!(|R| − |T | − 1)!
|R|! (P(T∪{qi}, d)−P(T, d))

By assuming a fixed multicast tree and publicly known
link costs, Feigenbaum et al. [15] proved that ELSD sharing
scheme is the Shapely Value. Intuitively, one may want to use



7

5

q

4

s

21

v

v

q

v3 7

2

3

5

q

4

s

21

v

v

q

v3 7

2

3

5

q

4

s

21

v

v

q

v3 7

2

3

(a) Network (b) LCPT(q1, d) (c) LCPT({q1, q2}, d)

Fig. 3. ELSD sharing scheme is not fair for payment based on LCPT.

ELSD as the payment sharing scheme. Unfortunately, we will
show by example that ELSD is not fair when coupled with
LCPT. Consider a network shown by Figure 3(a). There are
two receivers q1, q2. Tree LCPT(q1, d) is shown in Figure 3(b).
The total payment to nodes on LCPT(q1, d) is 3. Consider
LCPT({q1, q2}, d) illustrated by Figure 3(c). The payment to
only relay node v5 is 7. If we apply ELSD to share this
payment, the shared payment of receiver q1 is 7

2 = 3.5 when
the receiver set is {q1, q2}. Notice that the payment sharing by
q1 is only 3 when it is the only receiver. Thus, ELSD violates
the CM property here. Therefore some fair sharing scheme
other than ELSD should be designed. We can use Shapely
value due to the following lemma.

Lemma 6: The total payment P(R, d) for tree LCPT, is
nondecreasing and submodular with respect to receiver set R.

Please see Appendix for the proof of the lemma. Con-
sequently, we obtain a sharing scheme satisfying CM and
BB by applying Shapely value. However, for any receiver
qi ∈ R, there are 2|R|−1 subsets in R − qi. Thus, simply
applying Shapely value directly is computational intractable
when the number of receivers is large. Therefore, we present
another interpretation of the sharing scheme that can be
computed efficiently. The basic idea is that a receiver should
only pay a proportion of the payment that is due to its
existence. Roughly speaking, our payment sharing scheme
works as follows. Notice that a final payment to a node
k is the maximum of payments pi

k by all receivers. Since
different receivers may have different values of payment to
agent k, the final payment Pk should be shared proportionally
to their values, not equally among them (as what we do
for cost sharing). Figure 4 illustrates the payment sharing
scheme that follows. For any node vk, let R(vk) be the set
of downstream receivers of vk. Without loss of generality,
we assume that R(vk) = {qσ1 , qσ2 , · · · , qσ|R(vk)|} such that
0 ≤ pσ1

k ≤ pσ2
k ≤ · · · ≤ p

σ|R(vk)|
k , i.e., pk = p

σ|R(vk)|
k . We then

divide the payment pk into |R(vk)| portions: pσ1
k , pσ2

k − pσ1
k ,

· · · , pσi

k − p
σi−1
k , · · · , p

σ|R(vk)|
k − p

σ|R(vk)|−1

k . Each portion
pσi

k −p
σi−1
k is then equally shared among the last |R(vk)|−i+1

receivers, which have the largest |R(vk)| − i + 1 payments to
vk.

We first illustrate how to calculate the payment sharing by
receiver q1 using Algorithm 6 for a network represented by
Figure 3. For node v5, the two intermediate payments are
p1

v5
= 3 and p2

v5
= 7. First, we obtain a rank of these receivers

based on the intermediate payments of {q1, q2}. Then p1
v5

= 3
is equally split between q1 and q2 and p2

v5
− p1

v5
= 4 is

charged to q2 alone. Thus, receiver q1 is charged 3/2 = 1.5
and receiver q2 is charged 1.5+4 = 5.5 in LCPT({q1, q2}, d).
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Fig. 4. Share the payment to service providers among receivers fairly.

Algorithm 6 Fair payment sharing scheme for LCPT.
1: for each node vk ∈ LCPT(R, d) do
2: Let R(vk) be the set of downstream receivers of vk,

i.e., pk(d) = maxqi∈R(vk) pi
k(d) = maxqi∈R pi

k(d).
3: Sort the receivers in R(vk) according to pi

k(d) in an
ascending order. If two or more receivers have the same
value, the receiver with smaller ID ranks first. Let σ =
{σ0, σ1, · · · , σ|R(vk)|} be the ranking. Here, we add a
dummy payment pσ0

k (d) = 0 to ranking σ.
4: For a receiver not in R(vk), its sharing of the payment

pk(d) of node vk is 0.
5: For a receiver qσa ∈ R(vk), its sharing of the payment

pk(d) to node vk is:

fk
σa

(R, d) =
a∑

x=1

pσx

k (d)− p
σx−1
k (d)

|R(vk)| − x + 1
(2)

In other word, for two receivers qσx , qσx+1 who are con-
secutive in ranking σ, the difference p

σx+1
k (d)−pσx

k (d)
is shared by all receivers who rank after qσx−1 .

6: The total charge for receiver qi in LCPT is

ξi(R, d) =
∑

vk∈LCPT(R,d)

fk
i (R, d) (3)

Here, q1’s sharing is smaller than the sharing 3 when q1 is the
only receiver. This shows that the payment sharing scheme
described by Algorithm 6 is fair for this specific network. The
following theorem shows that our sharing scheme is indeed
the Shapely value.

Theorem 7: Our sharing scheme defined by Algorithm 6 is
the Shapely value.

Refer to Appendix for the proof of the theorem. Recall
that when applying Shapely value to a payment satisfying
submodular and non-increasing property, the resulting sharing
scheme satisfies BB, CM, NNS and NFR. Thus, we have the
following theorem directly.

Theorem 8: The sharing scheme in Algorithm 6 for LCPT
satisfies NNS, CM, NFR and BB.

E. Distributed Computing of Payment-Sharing

In practice, we may need to implement a distributed pay-
ment sharing scheme. In the following, we present a distributed
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Algorithm 7 Distributed payment sharing scheme
1: Initially, the source node s sends all its children in LCPT

a r-dimensional vector ϑ = 0 for all receivers.
2: Every node vk in LCPT(R, d), upon receiving a sharing

vector ϑ̃ from its parent, updates the charge for each of
its downstream receivers qi as ϑk[i] = ϑ̃[i] + f i

k(R(vk)).
Here, f i

k(R(vk)) is calculated according to Algorithm 6.
3: if node vk has at least one downstream receiver then
4: for every children node vj , it constructs a charge vector

ϑj = (ϑ[i1], ϑ[i2], · · · , ϑ[i|R(vj)|]) Here, the charge
ϑ[it], 1 ≤ t ≤ |R(vj)|, is for receiver qit who is a
downstream receiver of node vj . It then sends vector
ϑj to node vj .

5: Every receiver qi will finally receive a charge ϑ[i] which
is equal to ξi(R, d) defined in Equation (3).

algorithm that implements our payment sharing scheme. It
requires at most O(r) space for each agent and with O(r · h)
total messages, where h is the height of LCPT.

In our distributed algorithm, for any node vk ∈
LCPT(R, d), we not only need its final payment pk(d), but
also need the intermediate payment pj

k(d) for every down-
stream receiver qj . We assume that this is already available
through our distributed payment computing scheme (see Al-
gorithm 5). In our distributed charge scheme, at every node vk,
we use ϑk[i] to store the sum of the charge of vk’s upstream
nodes to the receiver qi. Our distributed payment sharing
scheme is implemented in a top-down fashion from the source
to all receivers. It is easy to show that Algorithm 7 indeed
computes the payment sharing of each receiver correctly.

V. TRUTHFUL MULTICAST USING SHARED-BASED TREE

In section IV, we discussed how to design a truthful
multicast protocol using MBGP based on a source-based tree
LCPT. However, in practice, Inter-AS multicast usually uses a
shared-based tree (SBT) instead due to the following reasons:

1) Multicast routing protocols (such as MOSPF, DVMRP
and PIM-DM) using a source-based tree are suitable for
LAN networks while multicast routing protocols (such as
PIM-SM and CBT) using a shared-based tree are more
suitable for networks composed of different ASs;

2) The shared-based tree is more scalable than the source-
based tree for applications in which every group member
could act as a source.

Furthermore, we can show that the size of extra space needed
to support the multicast payment calculation could be reduced
significantly. Here, we use the PIM-SM as the routing protocol
and the AS should also support MBGP in order to conduct
multicast.

We first review the multicast tree construction method by the
PIM-SM multicast protocol. For a specific multicast group, the
PIM-SM protocol specifies a Rendezvous Point (RP) and the
RP maintains a RP-tree, which is usually a least cost path tree
that spans all the group members. When any group member
wants to send data to the group, it first encapsulates each data
packet in a Register message and sends it by unicast to the

Algorithm 8 Truthful payment scheme for SBT
1: Assume that s = q0 is the RP for a multicast group; and

qi is the source node for a specific multicast session.
2: Let d be the cost vector declared by all relay nodes.
3: Set the receiver set Q as R\qi.
4: Compute the payment pQ

k (d) for every node vk on the tree
LCPT(Q, d) rooted at RP s and spanning all receivers Q.
Set pQ

k (d) = 0 for other nodes vk.
5: Calculate the payment pi,0

k (d) for every node vk on path
LCP(qi, q0, d). Set pi,0

k (d) = 0 otherwise.
6: for each node vk do
7: pk(d) = pQ

k (d) + pi,0
k (d).

Algorithm 9 Fair payment sharing scheme for SBT
1: Set the receiver set Q = R\qi.
2: Share the payment incurred by unicast between qi and RP

equally among all receivers Q. The payment shared by
receiver qk is denoted as ξuni

k (Q, d).
3: Share the payment of multicast with source s = q0 and

receiver set Q among all receivers according to Algorithm
6. The payment shared by receiver qk is denoted as
ξmul
k (Q, d).

4: The final payment shared by the receive qk is ξk(Q, d) =
ξuni
k (Q, d) + ξmul

k (Q, d) when qi is the source.

RP for that group. The RP decapsulates the register messages
and forwards the enclosed data packet to downstream group
members on the shared RP-tree. Upon receiving data packet
from its upstream AS, each intermediate AS further forwards
data packets to its downstream ASs. Thus, we can treat
the multicast based on a shared-based tree as two separate
activities: a unicast from the source to RP, and a multicast
with RP as the virtual source node.

We then discuss how to compute the payment to each
relay agent and share these payments among receivers. Let
pR

k (d) denote the payment to a relay node vk ∈ LCPT(R, d)
according to our truthful payment scheme (see formula (1)).
Algorithm 8 presents our truthful payment scheme for multi-
cast based on a shared-based tree.

Theorem 9: The payment scheme defined by Algorithm 8
is truthful.

The proof of Theorem 9 is straightforward and thus is
omitted. A distributed payment computing protocol similar to
Algorithm 5 can be easily designed and thus is omitted here.
We then discuss how to share the payments among receivers
in Algorithm 9.

Theorem 10: The payment sharing scheme defined in Al-
gorithm 9 is fair, i.e., it satisfies NNS, CM, NFR and BB.

Both the proof of the correctness of the above method
and distributing payment-sharing computing are similar to the
source-based tree case, thus are omitted here. Here, we do
not consider the source qi as a receiver, which implies that
qi does not share any payment. If qi should also be treated
as a receiver and share the payment in certain circumstances,
we just need to modify the receiver set Q = R instead of
Q = R\qi in Line 1 of Algorithm 9.
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Algorithm 10 Payment sharing for selfish receivers R

1: Q ← R.
2: repeat
3: Prune out the branches of the original LCPT that do

not have receivers in Q.
4: For each receiver qi ∈ Q, compute the payment sharing

ξi(Q, d) based on the declared costs of all relay agents.
5: ∀qi ∈ Q, the receiver qi is removed from Q if

ξi(Q, d) > ζi, i.e., Q ← Q− {qi} if ξi(Q, d) > ζi.
6: until no receiver is removed in this round
7: All remaining receivers Q ⊆ R will receive the data and

pay a sharing ξi(Q, d) ≤ ζi.

VI. SHARING PAYMENT AMONG SELFISH RECEIVERS

So far, each receiver qi is assumed to pay its fair sharing
ξi(R, d) computed by our payment sharing Algorithm 6.
In practice, each individual receiver may have a maximum
valuation indicating how much it is willing to pay to receive
the information from the source. A receiver will choose to
receive the information if and only if the charge is at most
its valuation. Furthermore, a receiver could also be selfish and
rational: it will always maximize its profit by manipulating
its reported valuation, should it be possible. This makes the
multicast design even harder when both the relay agents and
the receivers could be selfish. It is well-known that a cross-
monotone cost sharing scheme implies a truthful mechanism
for selfish receivers [27]. Thus, when each receiver qi is
willing to pay at most ζi for the data, we may design a
payment-sharing mechanism as follows.

However, we found out that a selected relay agent may have
incentives to lie about its relay cost under payment scheme
defined in Algorithm 6. Next, we show that a relay agent could
change the payment sharing of its downstream receivers by
reporting a higher or lower cost.

Figure 5 illustrates such an example of reporting a lower
cost. Here the private valuations of receivers q1 and q2 are 12
and 17 respectively. The true costs of links are c(sv3) = 5,
c(sv4) = 3, c(v3q1) = 5, c(v4q2) = 5, and c(q1q2) = 3. For
the sake of simplicity, we assume that all links (except link
v4q2) report their costs truthfully in the remaining discussion.
Notice when link v4q2 truthfully reports its cost, the multicast
tree consists of links sv3, v3q1, sv4 and v4q2, as shown by
Figure 5 (b). In addition, the payments to selected links are
psv4 = c(sv3) + c(v3q1) + c(q1q2)− c(v4q2) = 8, pv4q2 = 10,
psv3 = 6, pv3q1 = 6, and the payments to all other links are
0. Consider two receivers q1 and q2: the payment sharing by
receiver q1 is psv3 + pv3q1 = 12, which is not larger than its
valuation 12; the payment sharing by q2 is psv4 + pv4q2 = 18,
which is larger than its valuation 17. Consequently, the receiver
q2 will not join the multicast (illustrated by Figure 5 (c)). In
other words, link v4q2 gets payment 0.

Let’s see what happens if link v4q2 lies its cost down to 3 <
c(v4q2) (illustrated by Figure 5 (d)). Figure 5 (e) shows the
multicast tree constructed in this scenario. Notice that when
link v4q2 reported its cost as 3, the payments to selected links
are psv4 = 10, pv4q2 = 10, pq1q2 = 4, and the payments to all

other links are 0. It is easy to show that the payment sharings
by receivers q1 and q2 are 7 and 16 respectively. Then both
q1 and q2 will join the multicast now. Thus, the link v4q2 gets
a payment 10 when it lies its cost down to 3. This example
shows that a relay agent could lie down its cost to improve its
utility. We can devise an example in which a relay agent can
lie up its cost to improve its utility.

VII. CONCLUSION

In this paper we discuss how to design truthful payment
schemes and payment sharing mechanisms that stimulate
cooperation for multicast in a non-cooperative network. It
is well-known that the traditional protocols designed for
conforming agents cannot prevent the selfish agents from
manipulating their reported costs to increase their benefits.
Instead of redesigning the wheel, it is preferred to enhance an
existing multicast protocol to deal with selfish agents. In this
paper, we specifically gave a general rule to decide whether
it is possible and how, if possible, to transform an existing
multicast protocol to a truthful multicast protocol. We then
showed how the payments to all the relay agents could be
shared fairly among all receivers so that it encourages col-
laboration among receivers. As running examples, we showed
how to design a truthful multicast protocol when the least
cost path tree or the shared-based tree is used for multicast.
We also discussed in detail how to implement this scheme
on each selfish node in a distributed manner. As all truthful
mechanisms, the proposed scheme pays each relay agent more
than its declared cost to prevent it from lying. This paper
is the first step to exploring the general network protocol
design when relay agents are non-cooperative. There are many
interesting and important issues that have not been touched
(such as how to prevent collusion among agents, how to model
multicast game as repeated games, and how to use Nash
equilibrium to design multicast protocol instead of truthful
algorithmic mechanism) and thus are left for further study. In
addition, how to efficiently implement the proposed multicast
mechanisms in real ASs need to be further investigated.

REFERENCES

[1] Steve E. Deering, Multicast Routing in a Datagram Internetwork, Ph.D.
thesis, Stanford University, Dec 1991.

[2] Noam Nisan, “Algorithms for selfish agents,” in Proceedings of the
16th Symposium on Theoretical Aspects of Computer Science, LNCS,
vol. 1563, pp. 1–15, 1999.

[3] W. Vickrey, “Counterspeculation, auctions and competitive sealed
tenders,” Journal of Finance, vol. 16, no. 1, pp. 8–37, 1961.

[4] E. H. Clarke, “Multipart pricing of public goods,” Public Choice, vol.
11, no. 1, pp. 17–33, 1971.

[5] T. Groves, “Incentives in teams,” Econometrica, vol. 41, no. 4, pp.
617–631, 1973.

[6] Gabriel Robins and Alexander Zelikovsky, “Improved steiner tree
approximation in graphs,” in Proc. of ACM SODA, 2000, pp. 770–779.

[7] H. Takahashi and A. Matsuyama, “An approximate solution for the
steiner problem in graphs,” Math .Jap., vol. 24, no. 6, pp. 573–577,
1980.

[8] P. Klein and R. Ravi, “A nearly best-possible approximation algorithm
for node-weighted steiner trees,” Journal of Algorithms, vol. 19, no. 1,
pp. 104–115, 1995.

[9] S. Guha and S. Khuller, “Improved methods for approximating node
weighted steiner trees and connected dominating sets,” Information and
Computation, vol 150, no. 1, pp. 57–74, 1999.



10

3

3
5

5

5

1712

v

s

q
21

43v

q

3

3
5

5

5

12 17

v

s

q
21

43v

q

3

3
5

5

5

12 17

v

s

q
21

43v

q

3

3
3

5

5

12 17

v

s

q
21

43v

q

3

12

3

5

5
3

17

v

s

q
21

43v

q

(a) original network (b) LCPT (c) pruned LCPT (d) link v4q2 lies (e) pruned LCPT after lie
Fig. 5. A relay agent could lie down its cost to improve its utility using Algorithm 6.

[10] Weizhao Wang, Xiang-Yang Li, and Yu Wang, “Truthful multicast in
selfish wireless networks,” in Proc. of ACM MobiCom, pp. 402–413,
2004.

[11] Shai Herzog, Scott Shenker, and Deborah Estrin, “Sharing the cost of
multicast trees: an axiomatic analysis,” in ACM SigComm. 1995, pp.
315–327.

[12] Ron Cocchi, Scott Shenker, Deborah Estrin, and Lixia Zhang, “Pricing in
computer networks: motivation, formulation, and example,” IEEE/ACM
Trans. Netw., vol. 1, no. 6, pp. 614–627, 1993.

[13] Micah Adler and Dan Rubenstein, “Pricing multicasting in more
practical network models,” in ACM SODA. 2002, pp. 981–990.

[14] Joan Feigenbaum, Arvind Krishnamurthy, Rahul Sami, and Scott
Shenker, “Hardness results for multicast cost sharing,” Theor. Comput.
Sci., vol. 304, no. 1-3, pp. 215–236, 2003.

[15] Joan Feigenbaum, Christos H. Papadimitriou, and Scott Shenker, “Shar-
ing the cost of multicast transmissions,” Journal of Computer and System
Sciences, vol. 63, no. 1, pp. 21–41, 2001.

[16] Joan Feigenbaum, Arvind Krishnamurthy, Rahul Sami, and Scott
Shenker, “Approximation and collusion in multicast cost sharing
(abstract),” in Proc. of ACM Economic Conference, pp. 253–255, 2001.

[17] Noam Nisan and Amir Ronen, “Algorithmic mechanism design,” in
Proc. of ACM STOC, 1999, pp. 129–140.

[18] J. Feigenbaum, C. Papadimitriou, R. Sami, and S. Shenker, “A BGP-
based mechanism for lowest-cost routing,” in ACM PODC, 2002, pp.
173–182.

[19] Luzi Anderegg and Stephan Eidenbenz, “Ad hoc-VCG: a truthful and
cost-efficient routing protocol for mobile ad hoc networks with selfish
agents,” in ACM MobiCom. 2003, pp. 245–259.

[20] Weizhao Wang and Xiang-Yang Li, “Low-Cost Routing in Selfish
and Rational Wireless Ad Hoc Networks,” IEEE Trans. on Mobile
Computing vol. 5, no. 5, pp. 596–607, 2006.

[21] Kamal Jain and Vijay V. Vazirani, “Applications of approximation
algorithms to cooperative games,” in ACM STOC, 2001, pp. 364–372.

[22] Shuchi Chawla, David Kitchin, Uday Rajan, R. Ravi, and Amitabh
Sinha, “Profit maximizing mechanisms for the extended multicasting
games,” Tech. Rep. CMU-CS-02-164, Carnegie Mellon University, July
2002.

[23] J. D. Hartline A. Fiat, A. V. Goldberg and A. R. Karlin, “Competitive
generalized auctions,” in ACM STOC. 2002, pp. 72–81.

[24] Lavy Libman and Ariel Orda, “Atomic resource sharing in noncoopera-
tive networks,” Telecommunication Systems, vol. 17, no. 4, pp. 385–409,
2001.

[25] Yunhao Liu, Li Xiao, and Lionel M Ni, “Building a Scalable Bipartite
P2P Overlay Network,” IEEE TPDS, Vol. 18, No. 9, 2007, Pages 1296-
1306.

[26] Yunhao Liu, Li Xiao , Xiaomei Liu, Lionel M Ni, and Xiaodong Zhang,
“Location Awareness in Unstructured Peer-to-Peer Systems,” IEEE
TPDS, Vol. 16, No. 2, 2005, Pages 163-174.

[27] Herve Moulin and Scoot Shenker, “Strategyproof sharing of submodular
costs: Budget balance versus efficiency,” Economic Theory, vol. 18, no.
3, pp. 511–533, 2001.

[28] S. Shenker, D. Clark, E. Estrin, and S. Herzog, “Pricing in computer
networks: Reshaping the research agenda,” ACM SIGCOMM Computer
Communication Review, vol. 26, no. 2, pp. 19–43, 1996.

[29] Shai Herzog, Scoot Shenker, and Deborah Estrin, “Sharing the cost
of multicast trees: An axiomatic analysis,” IEEE/ACM Transactions on
Networks, vol. 5, no. 6, pp. 847–860, 1997.

[30] Juniper Networks, Multiprotocol Extensions for BGP-4, RFC 2858.
[31] Cisco Systems, A Border Gateway Protocol 4 (BGP-4), RFC 1771.
[32] L. S. Shapley, “A value for n-person games,” in Contributions to the

Theory of Games, pp. 31–40. Princeton University Press, 1953.

APPENDIX

Theorem 1 Given a method O constructing a multicast
topology, there exists a payment P such that M = (O,P)
is truthful if and only if O satisfies the MNP.

Proof: We first prove that if there exists a truthful
payment P based on O then O satisfies the MNP. For the
sake of contradiction, we assume that there is a truthful
payment scheme P and O that does not satisfy MNP. From the
definition of MNP, there exists an agent i and two cost vectors
c|ici1 and c|ici2 with ci1 < ci2 such that Oi(c|ici2) = 1 and
Oi(c|ici1) = 0. Let Pi(c|ici1) = p0

i and Pi(c|ici2) = p1
i .

Consider a network with a cost vector c|ici1 , the utility for
the agent i when it reveals its true cost is ui(ci1) = p0

i . When
agent i lies its cost to ci2 , its utility becomes p1

i − ci1 . Since
payment scheme P is truthful, we have p0

i ≥ p1
i − ci1 .

Similarly we consider another network with a cost vector
c|ici2 . Agent i’s utility is p1

i − ci2 when it reveals its true
cost. Similarly, if it lies its cost to ci1 , its utility is p0

i . Since
payment scheme P is truthful, p0

i ≤ p1
i − ci2 .

Thus, we have p1
i − ci2 ≥ p0

i ≥ p1
i − ci1 , which implies that

ci1 ≥ ci2 . It is a contradiction to ci1 < ci2 .
We then prove that if O satisfies MNP, there exists a truthful

mechanism M = (O,P). We prove it by constructing the
payment scheme P shown in Algorithm 1 .

From the definition of MNP, the payment scheme P satisfies
IR. Thus we only need to prove that the payment scheme P
satisfies IC. We prove it by cases.

Case 1: Agent i lies its cost upward to ci or downward to
ci, but it does not change the output whether agent i is selected
or not. Notice that, for a fixed c−i, when the output of agent
i does not change, its payment is the same. Thus, agent i’s
utility remains the same, implying that agent i does not have
incentive to lie in this case.

Case 2: Agent i is selected when it reveals its actual cost
ci, and it lies its cost upward to ci such that it is not selected.
From the property of MNP, we know ci ≤ κi(O, c−i). This
ensures that agent i gets non-negative utility when it reveals its
actual cost ci. When i lies its cost to ci, it gets zero payment
and zero utility. Therefore, agent i won’t lie in this case.

Case 3: Agent i is not selected when it reveals its actual cost
ci, and it lies its cost downward to ci such that it is selected.
Similarly, we have ci ≥ κi(O, c−i), which implies that agent
i gets a non-positive utility. Comparing with the zero utility
when agent i reveals its true cost, agent i also has no incentive
to lie in this case.

Actually, if we require that relay agents who are not selected
should receive zero payment, our payment scheme illustrated
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by Algorithm 1 is the only truthful payment scheme.
Lemma 6 The total payment P(R, d) to tree LCPT is nonde-
creasing and submodular with respect to receiver set R.

Proof: By the definition of LCPT, obviously if R ⊂ R′ ⊆
Q, then LCPT(d,R) ⊆ LCPT(d,R′). Remember the final
payment to a relay agent vk based on receiver set R is

pk(R, d) = max
qi∈R

pi
k(d)

Observe that pi
k(d) is not affected by the receiver set R.

Thus, for any relay node vk, if R ⊂ R′ ⊆ Q then
pk(R, d) ≤ pk(R′, d). Thus, the total payment to agents on
tree LCPT(R, d) is nondecreasing.

We then prove that the total payment P(R, d) is a sub-
modular function of set R, i.e., ∀R1 ⊆ Q and R2 ⊆ Q,
P(R1, d)+P(R2, d) ≥ P(R1∪R2, d)+P(R1∩R2, d). Since
P(R, d) =

∑
vk∈R pk(R, d), it is sufficient to prove that, ∀k,

pk(R1, d) + pk(R2, d) ≥ pk(R1 ∪R2, d) + pk(R1 ∩R2, d).

We prove this by studying two cases whether the agent vk is
on LCPT(R1 ∩R2, d) or not.

Case 1: Agent vk is not on LCPT(R1 ∩ R2, d). Without
loss of generality, assume that vk is on LCPT(R1 \ R2, d).
Then pk(R2, d) = pk(R1 ∩ R2, d) = pk(R2 \ R1, d) = 0.
Consequently, pk(R1 ∪ R2, d) = maxqi∈R1∪R2 pi

k(d) =
maxqi∈R1 pi

k(d) + maxqi∈R2\R1 pi
k(d) = maxqi∈R1 pi

k(d).
Therefore, in this case we have

pk(R1, d) + pk(R2, d) = pk(R1 ∩R2, d) + pk(R1 ∪ xR2, d).

Case 2: Agent vk is on LCPT(R1∩R2, d). Without loss of
generality, assume pk(R1, d) ≤ pk(R2, d). Thus,

pk(R1 ∪R2, d) = max
qi∈R1∪R2

pi
k(d)

= max{max
qi∈R2

pi
k(d), max

qi∈R1\R2

pi
k(d)}

≤ max{max
qi∈R2

pi
k(d), max

qi∈R1
pi

k(d)}
= max

qi∈R2
pi

k(d) = pk(R2, d)

On the other hand, we have pk(R2, d) ≤ pk(R1 ∪ R2, d).
Thus, pk(R2, d) = pk(R1 ∪ R2, d). The fact R1 ∩ R2 ⊆ R1

implies pk(R1 ∩ R2, d) ≤ pk(R2, d). Thus, pk(R1, d) +
pk(R2, d) ≥ pk(R1 ∩R2, d) + pk(R1 ∪R2, d).
Theorem 7: Our payment sharing scheme defined in Algorithm
6 is the Shapely value.

Proof: Remember Shapely value for multicast is

fi(R) =
∑

T⊆R\qi

|T |!(|R| − |T | − 1)!

|R|! [P(T ∪ qi, d)−P(T, d)] (4)

In other words, the Shapely value of the receiver qi is fi(R)
given a set of receivers R. Notice that an agent vk will
contribute to P(T ∪ qi, d)− P(T, d) if and only if

1) Agent vk is an upstream agent of receiver qi.
2) pT

k (d) < pi
k(d), where pT

k (d) = maxqj∈T pj
k(d).

For fixed T , agent vk satisfying above two criteria will add
non-negative value pi

k(d)− pT
k (d) to P(T ∪ qi, d)−P(T, d).

Let T=x be a receiver set with the highest rank in σ that
is exactly x. Similarly, we use T<x to denote a receiver set
with the highest rank in σ that is less than x. Let gi

k(R) be

payment to agent vk that is shared by receiver qi. Assume that
qi is ranked a in the ranking σ when sorting the payment to
agent vk in a increasing order. Then

gi
k(R) =

∑

T<a⊆R\qi

|T<a|!(|R| − T<a − 1)!

|R|! · pi
k(d)

−
a−1∑
x=0

∑

T=x⊆R−qi

|T=x|!(|R| − |T=x| − 1)!

|R|! · pσx
k (d).

Let γ be the number of receivers who are not the down-
stream receivers of vk. Simplifying the first part of the
equation, we get

∑

T<a⊆R−qi

|T<a|!(|R| − T<a − 1)!

|R|! · pi
k(d)

= pi
k(d) ·

γ+a−1∑
x=0

x!(|R| − x− 1)!

|R|! ·
(

a + γ − 1

x

)

=
pi

k(d)

|R| − a− γ + 1
=

pi
k(d)

|R(vk)| − a + 1
.

Simplifying the second part of the equation, we get
a−1∑
x=0

∑

T=x⊆R−qi

( |T=x|!(|R| − |T=x| − 1)!

|R|! · pσx
k (d)

)

=

a−1∑
x=0

(
pσx

k (d) ·
x+γ−1∑

y=0

(y + 1)!(|R| − y − 2)!

|R|! ·
(

x + γ − 1

y

))

=

a−1∑
x=1

pσx
k (d)

(|R| − x− γ + 1) · (|R| − x− γ)

=

a−1∑
x=1

pσx
k (d)

(|R(vk)| − x + 1) · (|R(vk)| − x)

=

a−1∑
x=1

pσx
k (d) ·

(
1

(|R(vk)| − x)
− 1

(|R(vk)| − x + 1)

)

=
p

σa−1
k (d)

(|R(vk)| − a + 1)
−

a−1∑
x=1

pσx
k (d)− p

σx−1
k (d)

(|R(vk)| − x + 1)
.

Combining the above two equations, then gi
k(R) equals to

pi
k(d)

|R(vk)| − a + 1
− [

p
σa−1
k (d)

(|R(vk)| − a + 1)

−
a−1∑
x=1

pσx

k (d)− p
σx−1
k (d)

(|R(vk)| − x + 1)
] =

a∑
x=1

pσx

k (d)− p
σx−1
k (d)

(|R(vk)| − x + 1)

It shows that the sharing f i
k(R) computed in Algorithm 6

equals the sharing defined by the Shapely value.
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TABLE I
NOTATIONS AND ABBREVIATIONS USED IN THIS PAPER.

V , E, c, ci The set of ASs, the set of links be-
tween ASs, the cost vector of ASs,
and the cost of AS vi

G = (V, E, c) The network (a node-weighted graph)
R =
{q1, q2, · · · , qr},
s = q0

The set of multicast receivers and the
source

G′ =
(V, E, c|ic′i)
or c|ic′i)

A new network if we change the cost
of AS vi to c′i

LCP(u, v, c) The the least cost path from node u
to node v in a network G

c−i The costs of all ASs other than AS vi

O, P , ξ The method of constructing a multi-
cast topology, the payment scheme,
the sharing scheme

κi(O, c−i) The threshold value such that if vi is
selected as a relay agent, then its cost
is at most κi(O, c−i)

Oi(c) = 1 (or 0) Agent vi is selected (or not selected)
to the multicast topology when the
cost vector is c

d, di The vector of declared cost of ASs,
the declared cost of AS vi

pi(d) or pi(R, d) The payment of agent vi based on
declared cost d

P(R, d) =∑
i pi(R, d)

The total payment to all relay agents

ξi(R, d) the sharing (or called charge) of a
receiver qi

ξ(R, d) =∑
qi∈R ξi(R, d)

The total payment collected from all
receivers

c(r), Q(r), c
(r)
i ,

d
(r)
i , Ur, Or

The cost vector, receiver set, cost of
vi, declared cost of vi, updating rule,
and selection method in round r

`r =
κk(Or, cr

−k)
The threshold value found in round r

fr(x) The cost for agent vk in round r if
the original cost is c|kx

pi,j
k (d) or pi,j

k The payment to node vk for unicast
from node vi to node vj

pi,0
k (d) or pi,0

k ,
pi

k(d) or pi
k

The payment to node vk for traffic
from the source q0 to receiver qi

fk
i (R, d) or

fk
i (R)

The sharing of the payment pk(d) to
node vk for a receiver qi

LCPT, LST, SBT Least cost path tree, link-weighted
Steiner tree, share-based tree

MNP Monotone Non-increasing Property
ELSD Equal Link Split Downstream
BB, NNS, CM,
NFR

Budget Balance, Nonnegative Shar-
ing, Cross-Monotone, No-Free-Rider

Xiang-Yang Li (M’99, SM’08) has been an Asso-
ciate Professor (since 2006) and Assistant Professor
(from 2000 to 2006) of Computer Science at the
Illinois Institute of Technology. He is a visiting pro-
fessor of Microsoft Research Asia for one year from
May, 2007. He also holds visiting professorship or
adjunct-professorship at the following universities in
China: TianJing University, WuHan University, and
NanJing University. He received MS (2000) and PhD
(2001) degree at Department of Computer Science
from University of Illinois at Urbana-Champaign.

He received the Bachelor degree at Department of Computer Science and
Bachelor degree at Department of Business Management from Tsinghua
University, China, both in 1995. His research interests span the wireless ad
hoc networks, game theory, computational geometry, and cryptography and
network security. He has published more than 120 papers in peer-reviewed
journals and conferences. He served various positions (various chairs and
TPC members) at numerous international conferences. He served as a co-chair
of ACM FOWANC 2008 workshop, a co-chair of AAIM 2007 conference,
a TPC co-chair of WTASA 2007, and TPC members of ACM MobiCom,
ACM MobiHoc, IEEE INFOCOM, IEEE ICDCS, and so on. He has been
invited to serve on the panel or review research proposals such as National
Science Foundation (US), National Science Foundation of China, and RGC
HongKong. He is an editor of Ad Hoc & Sensor Wireless Networks: An
International Journal. He has served as a guest editor of IEEE JSAC and
ACM MONET. He is a Senior Member of the IEEE, member of IEEE
Communication Society, ACM, ACM Sigmobile.

Yu Wang received the PhD degree in computer
science from Illinois Institute of Technology in 2004,
the BEng degree and the MEng degree in computer
science from Tsinghua University, China, in 1998
and 2000. He has been an assistant professor of
computer science at the University of North Carolina
at Charlotte since 2004. His current research inter-
ests include wireless networks, ad hoc and sensor
networks, mobile computing, and algorithm design.
He has published more than 60 papers in peer-
reviewed journals and conferences. He has served

as program chair, publicity chair, and program committee member for several
international conferences. He is the program co-chair of the first ACM
International Workshop on Foundations of Wireless Ad Hoc and Sensor
Networking and Computing (FOWANC 2008), and was the program co-chair
of the 26th IEEE International Performance Computing and Communications
Conference (IEEE IPCCC 2007). Dr. Wang is an editorial board member
of the International Journal of Ad Hoc and Ubiquitous Computing, and
an associate editor of the International Journal of Mobile Communications,
Networks, and Computing. Dr. Wang is a recipient of Ralph E. Powe Junior
Faculty Enhancement Awards from Oak Ridge Associated Universities. He is
a member of the ACM, IEEE, and IEEE Communications Society.

Zheng Sun (M’04) received the B.S. degree in
computer science from Fudan University, Shanghai,
China, in 1995, and the M.S. and Ph.D. degrees in
computer science from Duke University, Durham,
NC, in 1998 and 2003, respectively. From 1999 to
2002, he was with Microsoft Corporation and Perfect
Commerce as a Software Developer. In 2003, he was
with the Hong Kong Baptist University, Hong Kong,
where he was an Assistant Professor of computer
science. He has been with Google Inc., Mountain
View, CA, since 2005. His research interests include

robotic motion planning, computational geometry, and data mining and its
applications in e-commerce.


