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Abstract—Extracting planar graph from network topologies is of great importance for efficient protocol design in wireless ad hoc and

sensor networks. Previous techniques of planar topology extraction are often based on ideal assumptions, such as UDG

communication model and accurate node location measurements. To make these protocols work effectively in practice, we need

extract a planar topology in a location-free and distributed manner with small stretch factors. The planar topologies constructed by

current location-free methods often have large stretch factors. In this paper, we present a fine-grained and location-free network

planarization method under �-quasi-UDG communication model with � � 1=
ffiffiffi
2
p

. Compared with existing location-free planarization

approaches, our method can extract a provably connected planar graph, called topological planar simplification (TPS), from the

connectivity graph in a fine-grained manner using local connectivity information. We evaluate our design through extensive simulations

and compare with the state-of-the-art approaches. The simulation results show that our method produces high-quality planar graphs

with a small stretch factor in practical large-scale networks.

Index Terms—Wireless sensor networks, planarization, location-free, connectivity, fine grained, topological planar simplification

Ç

1 INTRODUCTION

NODES in wireless ad hoc and sensor networks are
inherently placed in a geometric environment and can

only communicate with nodes within a certain geometry
neighborhood. The inherent geometry properties have been
exploited to design a number of efficient protocols for
wireless networks, such as geographic routing, topology
discovery, etc. It is crucial to extract a planar topology from
the communication graph while preserving the intrinsic
network distances for the successful execution of many
protocols. For example, in geometric routing (a.k.a geo-
graphic routing) protocols [1], [2], [3], [4], the faces of planar
communication graph are used to perform perimeter
routing, which guarantees packet delivery and greatly
reduces the protocol complexity. In network localization
schemes, planarized network topology helps to design
efficient localization algorithms [5]. In topology discovery
schemes [6], special planar substructures of network
communication graph, i.e., boundary cycles, are extracted

to locate communication holes, which contributes to the
detection of faulty nodes and improves the load balancing
and resilience of routing.

The most prominent approaches for addressing network
planarization problem utilize the geometry locations of
nodes [7], [8], [9], [10], [11]. In particular, the majority of
those location-based algorithms [7], [8] are designed under
communication models of unit disk graph (UDG), and a few
ones [9], [10] make an effort to construct planar graphs in
quasi unit disk graph (quasi-UDG) and extended graphs.
The dependence on node locations, however, limits the
applicability of those methods because acquiring location
information is often practically difficult and expensive for
large-scale networks. It is usually costly to equip every node
with GPS devices to get accurate location measurement. For
range-based and range-free localization methods, the
problem is computationally NP-hard [12]. Those localiza-
tion algorithms usually output probabilistic results as they
suffer from error accumulation, flip ambiguity, etc. It is,
thus, important to relax the assumption on location
measurements to enhance the applicability of algorithms
in resource-limited wireless networks.

Recently, location-free planarization has received con-
siderable attention. Funke and Milosavljevic [13] propose a
distributed method to find a provable planar graph, called
combinatorial Delaunay map (CDM). Zhang et al. [14]
formalize network planarization as the NP-hard bipartite
planarization problem, and propose a layer-by-layer
planarization method. Spanning ratio (or distortion) is
widely recognized as an important metric to measure the
quality of a planar subgraph [8]. Though current location-
free solutions [13], [14] shed some light on the challenging
issue of location-free planarization, given the large distor-
tion of those planar structures constructed by them, they
cannot be easily applied in those applications that demand
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a high-quality planar topology. For example, Zhang et al.’s
method [14] requires that the network be deployed in
regions with square-like shapes. When the network
deployment region has feature-rich shapes or holes, planar
graphs extracted by their method could have arbitrarily
large distortion. Comparatively, Funke and Milosavljevic’s
method does not put any conditions on the shape of
network deployment regions. However, it outputs a well-
connected CDM only when each Voronoi tile of CDM has a
large diameter: their theoretical result requires the diameter
be at least 290 (in hop-number metric), although their
simulation results show that their method still works when
the diameter of each Voronoi tile is at most 10. Under such
circumstances vertices of CDM are indeed a sparse
sampling of the network, which in turn results in a large
stretch factor of the constructed topology. If we force
vertices of CDM to be a dense sampling of the network,
e.g., the diameter of each Voronoi tile is at most 4, CDM
will be disconnected and contain many connected compo-
nents, as illustrated in the example shown in Fig. 1a.

In this design, we make the first attempt toward location-
free planarization such that the constructed planar structure
has a small stretch factor for most inputs. We construct a
high-quality virtual planar backbone of the network, called
topological planar simplification (TPS). Our method first
performs a uniform sampling in the network and constructs
a simplified structure, called restricted witness graph
(RWG), that is a spanner, but maybe not a planar graph.
We construct a minimal connectivity subgraph of the
network graph to represent RWG, called underlying
representation. We exploit underlying representations of
RWG to acquire the intrinsic geometric structure of RWG
from the underlying deployment domain. Based on under-
lying representations, we define conflicts between RWG
edges to capture all possible edge potentially causing non-
planarity of RWG. Our conflict resolution techniques locally
search proper underlying paths and dynamically eliminate
a separable conflict. Although both Funke and Milosavlje-
vic’s and our methods extract planar graphs from similar
background graphs, the high-level ideas for planar graph
constructions are different. In their method, the planar
drawing of CDM is generated from a set of deterministic

safe paths. However, our work uses underlying representa-
tions to construct a planar drawing of TPS in a dynamic
fashion such that edges not in CDM can often be
transformed into conflict-free edges and be selected into
TPS. As a result, our TPS is at least as good as a supergraph
of CDM, and outperforms CDM on many practical
instances. In this example shown in Fig. 1, the TPS extracted
from the same network is greatly superior to the CDM.

The main contributions of this work are as follows: we
propose a practical distributed algorithm that does not use
any location, angular, or distance information but merely
connectivity information to extract a provable planar
topology, i.e., TPS, under �-quasi-UDG communication
model with � � 1=

ffiffiffi
2
p

. We prove that TPS is a connected
planar substructure for all possible inputs under quasi-UDG
models. Although we currently cannot guarantee the TPS
constructed by our algorithm has constant stretch factors for
arbitrary inputs, we provide a simple condition to test the
output of our algorithm for correctness. If this condition is
satisfied, a constant planar spanner is definitely generated
by our algorithm. We evaluate the performance of our
method through extensive simulations. The simulation
results show that the TPS built by our algorithm always
has a small stretch factor in practical networks where nodes
are deployed in a uniformly random distribution with
different configurations, including varying the shapes of
deployment regions, node density, network scale, etc. Our
method is, thus, successful in producing high-quality planar
graphs in practice. Hence, our design achieves a fine-grained
location-free planarization. TPS is expected to improve the
performance of many applications built upon CDM graphs
greatly, e.g., geometric routing protocols [4]. It can also be
beneficial to various applications, such as network localiza-
tion, segmentation, and topology discovery [6], [15].

The remainder of this paper is organized as follows: we
discuss related work in Section 2, and introduce the
problem formulation in Section 3. Section 4 presents the
algorithm of topological planar simplification. Section 5
further discusses details of this design. We analyze the
correctness and performance of our algorithm in Section 6
and present the evaluation in Section 7, followed by the
conclusion in Section 8.

2 RELATED WORK

We can divide existing work on network planarization into
two categories: location-based and location-free. For location-
based planarization, most efforts focus on finding planar
structures for geometric UDGs, which is widely used in
topology control for wireless ad hoc networks. Some well
known structures include Gabriel graph (GG), relative
neighborhood graph (RNG), local minimum spanning
trees (LMSTs), restricted Delaunay graph (RDG) [7],
localized Delaunay graph (LDel) [8], etc. There also exist
some location-based methods seeking planar graphs in
quasi-UDGs or extended graphs, such as GridGraph [10]
and CLDP [9]. Please refer to good surveys by Wang [11]
for more location-based methods. We here pay more
attention to location-free methods [13], [14] as our work is
in this category.

We use a simple example in Fig. 2 to explain the main
idea of Funke and Milosavljevic’s method [13]. Their
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Fig. 1. Demo CDM and TPS in a network deployed in a complex
geometric region. As a dense sampling of the network, 367 nodes
(approximate one of ten total network nodes) are selected as the
vertices of CDM and TPS. Bold lines denote edges of CDM and TPS.
CDM is disconnected into 96 components while TPS is a well-connected
graph with a small stretch factor.



method has two steps. In the first step, some nodes are
selected as landmarks from connectivity graph, labeled by li
in Fig. 2a, i from 1 to 6. Each nonlandmark node is affiliated
with a landmark closest to itself in terms of hop count. The
connectivity graph is partitioned into a collection of disjoint
subsets, Voronoi tiles. Further a combinatorial Delaunay
graph (CDG) is built to capture the adjacency between the
tiles. In the example, each tile includes three nodes li, vi and
v0i, i from 1 to 6. Those techniques in their first step,
including network sampling, partition and CDG construc-
tion, have been proposed and used in previous work [4],
[16], [17]. A similar first step also is adapted in our method.
The key contribution of Funke and Milosavljevic’s work is
the techniques that extract a planar CDM graph from CDG.
In particular, each landmark li is a vertex of CDM. An edge
ðli; ljÞ is added to CDM if the following two conditions are
satisfied: 1) there exists a path from li to lj in the network
that consists of a sequence of nodes associated with li
followed by a sequence of nodes associated with lj; 2) one-
hop neighbors of the path only contain nodes associated
with landmark li or lj. CDM is guaranteed to be planar in �-
quasi-UDG with � � 1=

ffiffiffi
2
p

. Although CDM is a good
structure to approximate global network skeletons, CDM
is often disconnected to cause large distortions when tile
sizes are relatively small. In this example shown in Fig. 2b,
CDM contains four connected branches. Comparatively,
our method explores effective new techniques to planarize
the network in a fine-grained manner.

Zhang et al. [14] planarize a square-shaped network
under realistic models with nonuniform transmission
ranges. The main idea of their method is to label network
nodes in layers, then planarize the network in a layer-by-
layer manner through by formulating it as NP-hard
bipartite planarization problem. There are two main
shortages in their method. First, the method mainly works
in networks that have regular square-shaped deployment
region. It is hard to be extended into networks with
arbitrary shapes, such as irregular outer boundary or inner
holes. Two shortest path trees built by their method could
only cover a small portion of the network with complex
shapes. Consequently, the found planar graph will inevi-
tably have a large distortion, as explained in Section 7.1.
Second, they present centralized fixed parameter tractable
(FPT) algorithms for the NP-hard bipartite planarization
problem, which essentially requires the global connectivity
information and incurs high complexity of communication
and computation. It remains unknown how to perform their
algorithms in an efficient distributed manner.

3 PROBLEM FORMULATION

We present network assumptions and formulate the pro-
blem of topological planar simplification. We consider a

collection of nodes deployed over a plane region. Each node
has a unique identity (ID). Nodes are only capable of
communicating with other nodes in its proximity. We
assume that the coordinates of nodes are unavailable, in
the sense that nodes can determine neither distances nor
orientations. This makes our approach robust to situations
where geometry information is missing or only partially
available. We extract planar network topology in a con-
nectivity graph G, where vertices and edges identify the
nodes and communication links, respectively. Connectivity
graph is far from a general graph in spite of missing location
information, and has its inherent geometry properties. The
quasi-UDG, known as generalized UDG model, can reflect
the proximity and radio irregularity, and better capture the
characteristics of wireless networks than UDG, so that it is
widely used to model wireless ad hoc and sensor networks
[10], [13], [18].

3.1 Graph Notation and Terminology

We introduce some graph notations used in this work. LetH
be a simple graph with vertex set V ðHÞ and edge set EðHÞ.
Given a vertex or edge set X in H, H½X� denotes the
subgraph ofH induced byX. Given two vertex setsX and Y
in H, we use dHðX;Y Þ to denote the minimum hop-number
distance inH between any one vertex inX and any vertex in
Y . In the rest we will also write dHðX;Y Þ as dHðH½X�; Y Þ,
dHðX;H½Y �Þ or dHðH½X�; H½Y �Þ for the convenience. The
diameter DðHÞ of H is the maximum distance between any
two vertices in H. This work focuses on graph spanner
instead of geometrical spanner. A general definition for
graph spanner is given as follows: An ð�; �Þ-spanner [19] of
H is a subgraph H 0 such that dH 0 ðu; vÞ � �dHðu; vÞ þ �, for
any two vertices u; v in H. If � ¼ 1, the spanner is called an
additive �-spanner. If � ¼ 0, this definition reverts to the
usual definition of a multiplicative �-spanner, and � is the
stretch factor. A node subset of a graph is a k-hop maximal
independent set (kMIS) if it meets the following two
conditions: 1) the pairwise distances of the nodes in the
subset are all greater than k; 2) adding any extra nodes into
the set will break the first condition.

Graph H is a �-quasi-UDG with parameter 0 < � � 1 if
there exists an embedding " : V ! IR2, which maps the
vertices of H into the euclidean plane, such that for any two
vertices u and v in V ðHÞ, 1) if the euclidean distance
j"ðuÞ"ðvÞj � �, then ðu; vÞ is an edge in EðHÞ; 2) if
j"ðuÞ"ðvÞj > 1, then ðu; vÞ is not an edge in EðHÞ; 3) and if
� < j"ðuÞ"ðvÞj � 1, ðu; vÞ can be or not an edge in EðHÞ. An
embedding " is called a realization of H. When � ¼ 1, a
quasi-UDG is a UDG. This study uses combinatorial quasi-
UDGs, where only a collection of vertices and connectivity
among vertices are known, different with geometric quasi-
UDGs, where a realization is also given.

Let p ¼ H½Vp� be a subgraph ofH induced by a sequence of
distinct vertices Vp ¼ fv1; v2; . . . ; vmg � V ðHÞ such that
EðpÞ ¼ fðvi; viþ1Þ : i 2 ½1;m� 1�g and no other edges exist
between any two of these vertices. We refer to p as a chordless
path of length jpj ¼ m. A shortest path tree is a subgraph of a
given graph constructed such that the total distance from a
selected root node to other nodes is minimized. A simple
cycle C is a connected subgraph of H and the degree of each
vertex inC is two. A cycleC can be identified by its incidence
vector bðCÞ ¼ ðb1; b2; . . . ; bi; . . .Þ, for i 2 ½1; jEðHÞj�, with bi ¼
1 iff ei 2 EðCÞ and bi ¼ 0 iff ei 62 EðCÞ. The length jCj of cycle
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Fig. 2. A simple example for CDM and TPS.



C is the number of its edges, jEðCÞj. The vector space over
GF ð2Þ generated by the incidence vectors of cycles is called
the cycle space of H, where GF ð2Þ denotes the Galois field
over f0; 1g. The addition of two cycles C1 and C2 is the
modulo 2 addition of their incidence vectors. It corresponds
to the symmetric difference C1 � C2 ¼ ðEðC1Þ

S
EðC2ÞÞn

ðEðC1Þ
T
EðC2ÞÞ. Given a cycle set C ¼ fCi : i 2 ½1; n�g, the

cycle sum of C is
P
C ¼ C1 � C2 � � � � � Cn. A cycle basis B of

H is a basis of CH . Given a cycle C and a cycle set C in graph
H, if C is the sum of cycles in C, C ¼

P
C, C is a cycle partition

of C in G [20]. We use jCjmax to denote the length of the
longest cycle in C. Given two paths p1 and p2 sharing the same
endpoints in H, let E0 ¼ ðEðp1Þ

S
Eðp2ÞÞ n ðEðp1Þ

T
Eðp2ÞÞ

be the symmetric difference of edges in p1 and p2. The
concatenation of p1 and p2, denoted by dp1p2, is a subgraph ofH
induced by E0. Graph dp1p2 includes either a simple cycle or a
union of edge-disjoint simple cycles.

3.2 Topological Planar Simplification

Spanner property is widely recognized as an important
metric to measure the quality of a planar subgraph [8]. The
two properties of planarity and spanner, however, are often
in conflict with each other. For example, given any
0 < � < 1, there exists �-quasi-UDGs such that it is
theoretically infeasible to construct a planar multiplicative
spanner with constant stretch factor in these �-quasi-UDGs.
Though planar ð�; �Þ-spanner in combinatorial quasi-UDGs
still has not been sufficiently studied, it is known that a �-
quasi-UDG, � � 1=

ffiffiffi
2
p

, has a planar ð�; �Þ-spanner with
bounded constant � and �. This is due to the fact that a
1=

ffiffiffi
2
p

-quasi-UDG has an important “link-crossing” property.
That is, given a 1=

ffiffiffi
2
p

-quasi-UDG H, if two edges ðu; vÞ and
ðx; yÞ in H cross in a valid realization of H, there exist at
least three edges between nodes u; v; x; y in H. By default,
the spanner mentioned in the rest refers to its general
definition. This study focuses on extracting a planar
structure from the connectivity graph G such that a planar
ð�; �Þ-spanner can be efficiently constructed from this
structure. We formalize this problem as topological planar
simplification as follows.

Definition 1 (Topological planar simplification). Given a
connectivity graph G ¼ ðV ;EÞ, a topological planar sim-
plification of G is a planar graph G0 ¼ ðV 0; E0Þ, where V 0 is a
subset of V , and each edge ðu; vÞ 2 E0 corresponds to a path p
connecting u and v in G. G0 is called a ð�; �Þ-TPS of G, if
there exist two constants � and � such that dG0 ðu; vÞ <
� � dGðu; vÞ for u; v 2 V 0, and dGðv; V 0Þ � � for any v 2 V .

4 TOPOLOGICAL PLANAR SIMPLIFICATION

ALGORITHM

We present a distributed algorithm to construct a TPS
using connectivity information. Our algorithm mainly
includes three components: 1) construct RWG with under-
lying representation, 2) calculate maximal conflict-free edge set,
and 3) perform conflict resolution. We next describe the
details of each component. We use an example illustrated
in Fig. 3 to explain this design. Given an arbitrary
connectivity graph G, such as the one shown in Fig. 3a,
our algorithm aims at extracting a TPS graph GTPS from G.

Square nodes and bold-line edges in Fig. 3i show one TPS
found by our method.

4.1 Construct RWG with Underlying Representation

We first introduce the definition of restricted witness graph.
RWG is inspired by the witness complex [21]. Witness
complex becomes popular in wireless network since a
special case of witness complexes, i.e., combinatorial
Delaunay triangulation (CDT), is used as a tool for
landmark-based routing [13], [16]. Witness complex, how-
ever, can generally have an arbitrary stretch factor since the
size of its tile is not bounded. This motivates us to define
RWG to bound the size of tiles. RWG is a good structure for
building a constant spanner, as discussed in Section 6.

Definition 2 (Restricted witness graph). Given a graph G,
and two positive constants � and �, a ð�; �Þ-restricted
witness graph GR is defined on G as follows: 1) each vertex
vi of GR corresponds to a vertex subset Vi of V ðGÞ such that
DðG½Vi�Þ � � and

SjV ðGRÞj
i¼1 Vi ¼ V ðGÞ; 2) an edge ðvi; vjÞ of

GR exists if and only if dGðVi; VjÞ � �.

We next present a practical construction for a specific
RWG used in this work. This procedure mostly resembles
the construction of CDG used in previous work [13]. Given
connectivity graph G, we select a kMIS in G, denoted by
VkMIS. Throughout this paper we fix k to be a small
constant 2 to build a dense sampling of network. We use
VkMIS as landmarks to partition G into proper tiles.
Specifically, for each vertex v in G but not in VkMIS, v is
affiliated with the landmark l, l 2 VkMIS, such that for any
other landmark l0 in VkMIS, dGðv; lÞ � dGðv; l0Þ and the node
ID of l is less than that of l0 if dGðv; lÞ ¼ dGðv; l0Þ. We, thus,
partition the graph nodes into disjoint subsets (or tiles). No
ties are permitted during this RWG construction, since in
practice that makes the resulting RWG more planar. The
edges of RWG are further obtained according to whether
nodes between two tiles share at least one common edge.
It is not difficult to see that all these operations can be
implemented in a distributed manner. The above con-
struction achieves a ð2k; 1Þ-RWG. We use GR to denote the
built RWG. A ð2kþ 1; 2kÞ-spanner of G can be built from
GR, as shown in Lemma 5. Fig. 3b illustrates the above
operations. Nodes in the same tiles are connected by light
lines and labeled with the same marks. Dark lines show
the edges that witness the adjacency between tiles. In
Fig. 3c, square landmarks are connected by bold lines to
indicate the RWG.

We next construct a minimal subgraph of G to represent
the RWG GR, called an underlying representation, presented
in Definition 3. The construction of an underlying repre-
sentation for RWG is an important step to identify edges
that lead to nonplanarity of RWG. This point will be
explained in Section 4.2.

Definition 3 (Underlying representation). An underlying
representation ðL; P Þ for RWG GR is a collection of
landmark nodes L and paths P in G. L denotes underlying
nodes in one-to-one correspondence with the vertices of GR,
and P denotes underlying paths in one-to-one correspon-
dence with the edges of GR. For each edge e ¼ ðl; l0Þ in GR, its
underlying path pe 2 P is defined as one chordless path in G
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which connects landmarks l and l0 and only consists of nodes

associated with landmarks l and l0.

An underlying representation for RWG GR obviously

exists, and can be easily found by using local connectivity.

A landmark node only needs to gather the connectivity

within k hops and interacts with landmarks of neighboring

tiles to construct underlying paths locally. In practice, one

edge of GR often has many candidate underlying paths. To

reduce the cost of recording an underlying path, we select

one of the shortest underlying paths. Fig. 3d shows one

underlying representation for the RWG shown in Fig. 3c.
As a remark, RWG in Definition 2 is defined in a very

general manner. RWG does not require that each node in a

tile must be closest to the landmark in its tile as CDG, which

potentially makes it more flexible to construct RWG than

CDG, as discussed in Section 5.1.

4.2 Calculate Maximal Conflict-Free Edge Set

The RWG is nonplanar in most practical instances, e.g., the
one shown in Figs. 3c. In this section, we explore the
underlying representation of RWG to extract a maximal
conflict-free edge set from RWG GR. The subgraph of GR

induced by conflict-free edges is a planar graph, because we
can use the underlying paths of conflict-free edges to
construct a planar drawing, as explained in Lemma 4. We
next introduce contiguous paths and conflicts among RWG
edges in Definitions 4 and 5, respectively.

Definition 4 (Contiguous paths). Given two paths p1 and p2

in G, p1 and p2 are contiguous if the distance between p1 and
p2 in G is not greater than 1, dGðp1; p2Þ � 1.

In other words, p1 and p2 are contiguous if p1 contains at
least one node v such that v 2 V ðp2Þ or v is neighboring to at
least one node in p2.
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Fig. 3. Topological planar simplification and embedding. (a) The connectivity graph G with 400 nodes and average node degree 10.69, following
0.75-quasi-UDG model. (b) RWG construction. Nodes in the same tile are labeled with the same flag. Light lines are edges among nodes in the same
tile, and dark lines show edges between nodes in different tiles. (c) The RWG, whose vertices and edges are denoted by squares and lines
respectively. (d) Underlying paths, denoted by lines. (e) The subgraph of G induced by all nodes in the underlying paths. (f) Conflict graph, whose
vertices and edges are dots and dark lines, respectively. The circles show a maximal independent set. (g) Maximal conflict-free graph of RWG.
(h) Underlying paths of maximal conflict-free graph. (i) The obtained TPS after conflict resolution for remained edges. (j) The CDM extracted in the
same network by previous work [13]. (k) and (l) are two planar embeddings of TPS.



Definition 5 (Maximal conflict-free edge set). Given an
underlying representation ðL; P Þ of RWG GR in G, two edges
e ¼ ðle; l0eÞ and f ¼ ðlf ; l0fÞ in GR are in conflict with respect
to the underlying representation ðL; P Þ if their endpoints do
not share any underlying node in L, fle; l0eg

T
flf ; l0fg ¼ ;, and

their underlying paths pe and pf in P are contiguous.
Otherwise, e and f are conflict-free with respect to ðL; P Þ.
An edge set E0 in GR is conflict-free if any two edges in E0

are conflict-free with respect to ðL; P Þ, and E0 is maximal if it
is not a proper subset of any other conflict-free edge set in GR.

We construct a maximal conflict-free edge set in RWG
GR. For each underlying path, we first determine other
underlying paths that are contiguous to it. We thus obtain
the conflict relationship between any two edges in GR.
Based on these conflict relationships, we further construct a
conflict graph GX, as follows: One vertex in GX corre-
sponds to one edge in GR, and one edge in GX represents
the conflict relationship of two edges in GR. Finally, we
build a maximal independent set VMIS in GX, and
accordingly we obtain an edge set EVMIS

in GR. Edges
EVMIS

are in one-to-one correspondence with vertices VMIS.
EVMIS

is a maximal conflict-free edge set in GR. All these
operations in this component, including determining the
conflict relationship between two RWG edges, computing a
maximal independent set, and, etc., can be easily imple-
mented in a distributed manner. We finally add all vertices
in GR and edges EVMIS

to GTPS , that is, V ðGTPSÞ ¼ V ðGRÞ,
EðGTPSÞ ¼ EVMIS

.
Fig. 3e shows the subgraph of G induced by all nodes in

the underlying paths. Conflict graph GX is shown in Fig. 3f,
where one dot identifies an edge in GR, one dark line
represents a conflict relationship, and the maximal inde-
pendent set VMIS is denoted by circle nodes. Figs. 3g is the
maximal conflict-free edge set EVMIS

in GR.

4.3 Perform Conflict Resolution

In this component, we deal with the remaining edges that
cannot be added into the maximal conflict-free edge set,
denoted by EL ¼ EðGRÞnEðGTPSÞ. Each edge in EL conflicts
with at least one edge in EðGTPSÞ in the current underlying
representation. Some conflicts are caused by real crossing
underlying paths, and others may be created due to the
improper selection of underlying representation. For exam-
ple, the conflict between edges ð17; 8Þ and ð23; 15Þ corre-
sponds to real edge intersection in Fig. 3f. Nevertheless, the
conflict between edges ð13; 17Þ and ð23; 15Þ is noncritical and
can be resolved by using proper underlying representations.
We next present techniques that resolve those conflicts
caused by unfavorable underlying representations or real
intersections. In particular, we separate the non-critical
conflicts by calculating new underlying paths, or try to relax
real conflicts such that stretch factor is as small as possible
while planarity is preserved.

We start with a simple scenario to introduce the problem
of conflict resolution. Let e be one edge in EL that conflicts
with only one edge f in GTPS in the current underlying
representation ðL; P Þ. Suppose we can find another under-
lying path p0e for e to replace its original underlying path pe
in P and upgrade the current underlying representation
ðL; P Þ to ðL; P 0Þ. If e does not conflict with f in the new

underlying representation ðL; P 0Þ and does not come into
conflict with other edges, clearly a new conflict-free edge set
is found, and edge e can be added to GTPS . However, it is
often infeasible to find such a good underlying path for e.
Most new underlying paths for e will cause new conflicts
with other edges. Let f be one edge in conflict with e. The
underlying path for f may also need to be modified to make
e and f conflict-free. The modified underlying path for f can
further cause new conflicts. The problem becomes more
complicated when edge e conflicts with multiple edges in
GTPS , for it becomes more difficult to eliminate multiple
conflicts simultaneously. In these circumstances we wonder
whether edge e can still be added to GTPS without
destroying the planarity of GTPS . We thus propose a simple
method to resolve each conflict individually. In particular,
for each edge e0 in conflict with e in GTPS , if we can find
proper separable underlying paths for both e0 and e to make
them conflict-free, we can add e into GTPS safely. We next
present the definition of cycle-homotopy paths and separ-
able conflicts.

Definition 6 (Cycle-homotopy paths). Given two paths p1

and p2 with the same endpoints in G and a positive integer ‘0,
p1 and p2 are of ‘0-cycle homotopy in G, denoted by p1 ’ p2,
if the concatenation dp1p2 of p1 and p2 admits a cycle partition C
in G, dp1p2 ¼

P
C, such that each cycle in C has the length at

most ‘0, jCjmax � ‘0.

In this paper, we fix ‘0 be a small constant 4, i.e., ‘0 ¼ 4.
For an edge e in RWG GR, we use UðeÞ to denote the set of
all underlying paths of e in G.

Definition 7 (Separable conflict). Given two edges e1 and e2

in GR, let p1; p
0
1 2 Uðe1Þ and p2; p

0
2 2 Uðe2Þ be paths in G. p1

and p2 are separable paths and the conflict between edges e1

and e2 is separable, if p1 ’ p01, p2 ’ p02, and p1 and p2 are
contiguous while p01 and p02 are not contiguous.

Take the network in Fig. 3 for example. We test the
separability of conflicts for the two edges left ð14; 10Þ and
ð23; 15Þ. They conflict with ð24; 25Þ and ð17; 8Þ, respectively.
The test result shows that both the conflict between ð14; 10Þ
and ð24; 25Þ and the conflict between ð23; 15Þ and ð17; 8Þ are
not separable. Thus, the two edges left cannot be added to
the current TPS GTPS . We here explain the effectiveness of
separable-conflict testing as follows: in this example, we can
verify that both the conflict between ð13; 17Þ and ð23; 15Þ
and the one between ð13; 17Þ and ð23; 15Þ are separable.
Hence, if edge ð23; 15Þ is put into GTPS instead of edges
ð13; 17Þ, ð2; 8Þ, and ð17; 8Þ in the step of calculating maximal
conflict-free edge set, ð13; 17Þ and ð2; 8Þ will be added to
GTPS through separable-conflict testing in this step.

After separable conflict resolution, the edges left are
mainly the ones causing nonplanarity of RWG. In this
example, ð14; 10Þ and ð23; 15Þ are the remaining edges, and
their underlying paths intersect with underlying paths of
other edges in GTPS , which means that adding any of them
into GTPS has the risk of destroying the planarity of GTPS . In
the rest, we refer to the edges potentially causing non-
planarity of RWG as risky edges in RWG for conciseness. We
apply a simple principle of lazy adding for the risky edges.
Given a remaining edge e ¼ ðu; vÞ 2 EðGRÞnEðGTPSÞ, our
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method locally tests whether there exists a path p in GTPS ,
such that p connects u and v, and the length of p is bounded
by a constant �. If so, edge ðu; vÞ can be ignored safely,
because the stretch ratio of GTPS can still be bounded by a
constant without adding ðu; vÞ to GTPS . In this paper, we fix
the length of an alternate path to be a small constant. Our
extensive simulations verify that � ¼ 3 is enough to
eliminate all remaining edges in practical networks where
nodes are deployed in a uniformly random distribution
with different configurations, including varying the shapes
of deployment regions, node density, etc. If unfortunately
we cannot find an alternate path of bounded length for one
remaining edge, more techniques can be used to handle the
special cases, as discussed in Section 5.

4.4 Putting It All Together

We now have all the components to build the whole
algorithm and analyze the time complexity of this design.
Our algorithm first generates an RWG from the connectivity
graph, and then modifies RWG to obtain a TPS while
keeping small distortion. Algorithm 1 summarizes the main
steps of our algorithms.

Algorithm 1. Topological Planar Simplification

Input: Connectivity graph G

Output: A topological planar simplification GTPS for G
1: Construct restricted witness graph GR. Construct a

kMIS VkMIS in G, k ¼ 2. Use VkMIS as landmarks to

partition V ðGÞ into a collection of node-disjointed tiles.

Edges of GR are obtained according to whether nodes

among two tiles share at least one common edge in G.

2: Construct an underlying representation ðL; P Þ for

GR. L :¼ VkMIS, P :¼ ;.
3: for each edge e ¼ ðl; l0Þ in EðGRÞ do

4: Build one shortest path pe in G that connects

landmarks l and l0 and consists only of nodes

associated with landmarks l and l0. Add pe into P .

5: end for

6: Build a conflict graph GX for GR with respect to ðL; P Þ.
Construct a maximal independent set VMIS in GX , and

obtain maximal conflict-free edge set EVMIS

in GR. V ðGTPSÞ :¼ V ðGRÞ, EðGTPSÞ :¼ EVMIS
.

7: for each edge e ¼ ðvi; vjÞ in EðGRÞnEðGTPSÞ do

8: Add e to EðGTPSÞ, if the conflict between e and any

edge in EðGTPSÞ is separable.

9: end for

10: if EL ¼ EðGRÞnEðGTPSÞ is not empty then

11: Perform non-separable conflict resolution for each

edge in EL, and update GTPS .

12: end if

13: Output GTPS .

In particular, in the first component, we select a kMIS in
G, k ¼ 2, as landmarks to partition G into proper tiles, and
then construct an RWG GR, as shown in Figs. 3b and 3c. Let
� be the maximum node degree and n be the total number
of the nodes in the network. The best distributed determi-
nistic MIS algorithm [22] runs in Oðlog � log	 nÞ time in
growth-bounded graph (GBG) model. GBG formulates a
general family of graphs covering UDGs and quasi-UDGs.
To affiliate each node with a landmark, a simple option is to

use Dijkstra’s algorithm to calculate a single-source shortest
path tree for each landmark simultaneously. Each landmark
l can perform a restricted flooding to construct its shortest
path tree, whose height is bounded by k and root is l.
Dijkstra’s algorithm performs at most Oð�kþ2Þ number of
operations. Hence, this component requires

Oðmaxflog � log	 n;�kþ2gÞ

time at most. RWG is a good structure to construct a
constant spanner of network graph, but usually not a planar
graph. We need to locate the set of edges breaching the
planarity of RWG, and extract a planar graph while keeping
the distortion as small as possible. Without location
information, it becomes difficult to locally determine those
edges that cause nonplanarity of RWG. This design exploits
the fact that the communication graph is not an arbitrary
graph but has its intrinsic geometric structure derived from
the underlying deployment domain. We extract a subgraph
from G as the underlying representation of RWG. Each edge
of RWG corresponds to an underlying path in the original
graph, as illustrated in Fig. 3d.

In the second component, we construct a high-quality
planar subgraph of RWG by combining the techniques of
topological graph theory and the geometrical properties of
quasi-UDG. To capture all possible edges causing non-
planarity of RWG, we introduce the conflict among RWG
edges. We build a conflict graph for RWG and thus
construct a maximal conflict-free edge set in RWG, as
shown in Figs. 3f and 3g. The subgraph induced by conflict-
free edges is guaranteed to be a planar graph, because we
can use the underlying representation of those conflict-free
edges to construct a planar drawing, as illustrated in
Fig. 3h. Time cost of the second component is dominated by
the MIS computation in the conflict graph for RWG. From
Lemma 6, we know that the maximum node degree of GR is
bounded by a constant. Hence, it is not difficult to show that
the maximum node degree of a conflict graph is also
bounded by a constant. So, an MIS in the conflict graph can
be computed in Oðlog	 nÞ time.

In the third component, we deal with the remaining
edges that cannot be put into the maximal conflict-free edge
set. Each remaining edge conflicts with at least one edge in
current TPS graph GTPS . For each conflict, we first try to
separate it through calculating new underlying paths.
Thanks to Lemma 7, we know that the length of an
underlying path pe is bounded by 8ðkþ 1Þ2. Hence, if a
conflict is separable, we can eliminate it within Oð�16ðkþ1Þ2Þ
time by enumerating all possible underlying paths. For a
remaining edge e ¼ ðu; vÞ entangled in non-separable con-
flicts, our method locally tests whether there exists a path p
in GTPS such that p connects u and v and the length of p is
bounded by a constant �. We fix the length of an alternate
path to be a small constant 3, i.e., � ¼ 3. These tests can be
finished in constant time. If all the remaining edges are
disposed, our algorithm finishes and outputs a planar graph
with small distortion. In the example in Fig. 3, the remaining
two edges ð14; 10Þ and ð23; 15Þ can both be replaced with
path of two hops in the TPS, such as paths 23-8-15 or 23-1-15
for ð23; 15Þ. Our algorithm outputs the final TPS, shown in
Fig. 3i. For comparison, CDM graph is also calculated in this
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example, shown in Fig. 3j. As a result, our algorithm can be
finished in polynomial time. Further, when the maximal
node degree � is bounded by a constant, the time complex-
ity of our algorithm reduces to Oðlog	 nÞ.

5 DISCUSSION

We discuss more details in this design. We deal with
complicated conflict resolution, and construct the planar
embedding of TPS.

5.1 Additional Optimizations

We here present a simple solution to isolated nonseparable
conflicts. Let edges e1 and e2 be a pair of conflicting edges in
RWG. The conflict between e1 and e2 is isolated, if they do
not conflict with any other edges in RWG. Given an isolated
nonseparable conflict between edges e1 ¼ ðu1; v1Þ and
e2 ¼ ðu2; v2Þ, we locally modify the original RWG as follows:
we aggregate four tiles associated with landmarks u1, v1, u2,
and v2 into a super tile. A new landmark is selected in this
super tile such that its hop distance to other nodes in the
super tile is at most k0 ¼ 4kþ 2. Such modification thus
removes isolated non-separable conflicts from RWG and
TPS. A TPS remains a subgraph of RWG. Clearly, if all
nonseparable conflicts are isolated and eliminated by this
method, a ð2�k0 þ 1; 2k0Þ-TPS is obtained.

We propose an additional technique to ensure the
connectivity of GTPS . Clearly, when G is connected, the
RWG GR built from G is connected. We further guarantee
that GTPS is connected if GR is connected. In particular,
each node in GTPS tries to flood a color in GTPS . The color is
represented by its node ID or a randomly generated
number. During flooding, the smallest color value sup-
presses the others. When this flooding procedure finishes,
GTPS is dominated by one color value if GTPS is connected.
Otherwise, each connected component of GTPS is identified
by a different color. We further consider nodes in GR with
the same color as a single virtual node, and conceptually
obtain a overlay graph G0 on top of GR. One node of G0

corresponds to one connected component of GTPS . If GTPS

is disconnected, G0 will contain more than one node. We
then build a spanning tree T on G0. One edge in T may
correspond to multiple edges in GR. For each edge e ¼ ðu; vÞ
in T , we select one edge in EðGRÞnEðGTPSÞ to represent it,
and thus obtain a set of edges in GR, denoted by ET . We
add all these edges ET into GTPS . The updated GTPS is
guaranteed to be a connected planar graph. For the
distributed implementation of these operations, the key
issue is to ensure that only one edge in EðGRÞ n EðGTPSÞ is
selected to bridge two connected components of GTPS , out
of a possibly large number of edges connecting the two
components. This can be achieved by another round of
message flooding. After previous message flooding, nodes
in one connected component share a common color,
different with the colors of other components. Let l be a
node in GTPS . If the color of at least one of l’s neighbors in
GR is different with that of l, we say l is a border node in
GTPS . Border nodes witness the adjacency between con-
nected components. Each border uses the composite value
of its color and ID as its new color and floods messages.
Messages with the smallest color in alphabetical order still

suppresses the others. When this flooding procedure
finishes, only one edge in EðGRÞ n EðGTPSÞ is selected to
connect two components of GTPS .

As a last remark, this work utilizes a uniform sampling
(kMIS) of the network as landmarks to build an RWG,
which makes risky edges in RWG usually appear scatte-
redly and sparsely. Our extensive simulations also verify
that the technique for isolated nonseparable conflicts is
practically effective enough to resolve all remaining edges
in RWG. Conceptually, however, it is possible to construct
an RWG instance artificially such that nonseparable risky
edges are hinged into a large component of network scale. It
is indeed impossible to solve such ill cases using only local
connectivity information. If forced to find planar spanner
for such RWG cases, we have to collect connectivity
information of network scale and partially utilize centra-
lized computation, which is too costly for large networks. It
is more feasible and efficient to perform our method on
those ill cases as follows: we first recognize and locate the
network regions where large hinged crossing components
happen. In those regions, we randomly regenerate the
landmarks and rebuild a new network partition. The
updated RWG can mostly make the ill scenarios disappear
with high probability. We can thus planarize the whole
network in a divide-and-conquer fashion.

5.2 Construct Planar Embedding of TPS

It is important and useful to construct a planar drawing for
TPS. For example, face structure of a planar graph can be
obtained through a planar embedding. Face information is
explicitly required in many applications of network
planarization, such as geometric routing. We can use the
method discussed in previous work [13] to construct a
planar embedding of TPS, because TPS has a better
connectivity than CDM and contains a lot of triangles.
First, we identify a triangle in TPS graph as landmarks,
e.g., in Fig. 3k, nodes in triangle h1; 11; 13i are selected as
landmarks. We initially assign coordinates of an equilateral
triangle to the vertices of landmarks. Then we fix the
landmarks and iteratively place every vertex into the center
of gravity of its neighbors in a distributed manner [23].
When this process comes to an equilibrium state, as
illustrated in Fig. 3k, we obtain a planar straight-line
drawings of TPS. The planar embedding assigns each
vertex in TPS graph a virtual coordinate. Hence, each face
of TPS is calculated in a distributed manner as face routing
operations in geometric routing protocols, such as GFG [1],
GPSR [2], and GOAFR [3]. Further, we can look for the
longest face cycle in this embedding in terms of hop
numbers, denoted by the bold lines in Fig. 3k. The longest
face cycle typically corresponds to the face cycle of the
outer boundary in the network. If we place this longest face
cycle on a unit circle (or regular polygon) and repeat
the above embedding procedure, a different planar embed-
ding can be obtained. In such embedding the edges are
usually of more proper length than those in the initial
embedding, as shown in Fig. 3l.

Note that this rubber-banding embedding technique
itself does not guarantee to find a unique planar embedding
of TPS. A graph has a unique embedding if and only if it is a
subdivision of a triconnected planar graph, as described in
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Theorem 1.1 in the literature [24]. The problem of comput-
ing all possible planar embeddings of planar graphs is well
studied in the field of planar graph drawing, and can be
solved in polynomial time [25].

6 CORRECTNESS OF ALGORITHM

This section analyzes the correctness and performance of
our algorithm. We first prove planarity of TPS, and then
discuss the connectivity of TPS. The main results are shown
in Theorems 1, 2, and 3.

We present Lemmas 1, 2, 3, and 4 before proving
Theorem 1. Given a quasi-UDG H with an embedding ",
we can use the embedding " to draw the vertices and
edges of H in the plane, and thus obtain an image of H in
it. We define this image as the embedding map of H,
denoted by M"ðHÞ, or simply MðHÞ. For example, the
union of all lines in Fig. 3e can be viewed as an
embedding map of all the underlying paths. We further
define the shadow of H as follows: The shadow S"‘0ðHÞ of
H, or simply SðHÞ, is the union of the embedding map
MðHÞ and the solid polygons that are surrounded by
cycles not greater than ‘0 in H. In this definition of graphs’
shadow all cycles of size ‘, ‘ � ‘0 ¼ 4, are filled in and
become solid polygons [20]. For conciseness from now on,
we refer to 1=

ffiffiffi
2
p

-quasi-UDG as quasi-UDG unless other-
wise specified. Note that geometric realizations of quasi-
UDGs are used in the later proofs, but they cannot be
obtained explicitly, when only connectivity information is
given. These proofs indeed exploit the properties of
combinatorial quasi-UDGs that are independent of specific
embeddings. It is sufficient for our proofs that those
geometric realizations conceptually exist.

Lemma 1. Given two noncontiguous paths p1 and p2, their
embedding mapsMðp1Þ andMðp2Þ do not share any one point.

Proof. This directly follows from the link-crossing property
of quasi-UDGs. tu

Lemma 2. Given a vertex v and ‘-size cycle C in G, ‘ � ‘0, point
MðvÞ does not fall into the shadow SðCÞ of cycle C, if
dGðv; CÞ � 2.

Proof. Let v0 be any vertex in cycle C and kMðvÞMðv0Þk
denote the euclidean distance between points MðvÞ and
MðvÞ. If MðvÞ is located in the interior of SðCÞ in any
valid realization of G, it is not difficult to verify that
kMðvÞMðv0Þk � 1=ð2sinð�=‘0ÞÞ � 1=

ffiffiffi
2
p

. Hence, we have
dGðv; CÞ ¼ 1 when G is 1=

ffiffiffi
2
p

-quasi-UDG, which leads to
contradiction. tu

Lemma 3. The embedding maps of two separable paths either do
not intersect or intersect even number of times.

Proof. Let p1 and p2 be two separable paths. According to

the definitions of cycle-homotopy paths and separable-

conflict testing, we know the following facts: first, there

exist two paths p01 and p02 in G such that p1 ’ p01, p2 ’ p02,

and p01 and p02 are not contiguous; second, the concatena-

tion dp1p01 (or dp2p02) admits a cycle partition C1 (or C2)

in G such that the length of each cycle in C1 (or C2) is ‘0 at

most. Let S1 be the union of the following plane regions:

shadow SðCÞ of every cycle C 2 C1, images Mðp1Þ and

Mðp01Þ. S2 is defined in the same way as S1. We know

that the two endpoints of p1 (or p2) do not fall into the

shadow S2 (or S1), due to Lemma 2 and the fact that a

landmark and its one hop neighbors belong to the same

tile in the RWG when the tile size k � 2. Hence, if the

embedding maps Mðp1Þ and Mðp2Þ intersect, Mðp1Þ (or

Mðp2Þ) can be smoothly deformed to Mðp01Þ (or Mðp02Þ)
without leaving the region S1 (or S2, respectively). As a

result, Mðp1Þ and Mðp2Þ either do not intersect or

intersect even number of times. tu
Lemma 4. Given an RWG GR with an underlying representation
ðL; P Þ and a subgraph H of GR, H is planar if any two edges
in H are conflict-free or the conflict between them is separable
with respect to the underlying representation ðL; P Þ.

Proof. We first explore the underlying representation and
draw H in the plane. Given an edge e in H, we use pe to
denote the underlying path of e. We utilize the
embedding maps of underlying nodes and paths to
draw the vertices and edges in H, respectively. For each
edge e ¼ ðu; vÞ in H, we find a simple (nonself-
intersecting) polygonal curve in the embedding map
MðpeÞ that connects points MðuÞ and MðvÞ. We use DðeÞ
to denote this polygonal curve drawn for e. Let e1 and e2

be any two edges in H that do not share any endpoint.
If e1 and e2 are conflict-free, Dðe1Þ and Dðe2Þ do not
intersect due to Lemma 1. If the conflict between e1 and
e2 is separable, Dðe1Þ and Dðe2Þ either do not intersect
or intersect even number of times according to Lemma 3.
Thus, we construct a drawing for H such that the drawn
paths for every pair of non-adjacent edges in H either
do not intersect or intersect in even times. Hence, H is
planar, following Theorem A in literature [26], which
shows even edge crossings does not destroy the
planarity of a graph. tu

Theorem 1. Given a combinatorial �-quasi-UDG G with
� � 1=

ffiffiffi
2
p

, a TPS GTPS constructed from G by our algorithm
is a connected planar graph.

Proof. In this design, we first extract a maximal conflict-free
graph from RWG as the initial TPS. We further extend
the TPS by performing separable conflict resolution on
the remaining edges in RWG. Planarity of TPS is
preserved in these steps due to Lemma 4. Moreover,
other complicated conflict resolution mechanisms dis-
cussed in Section 5.1 also preserve the planarity of TPS.
The connectivity of TPS is ensured by an additional
technique presented in Section 5.1. tu

We next show the spanner property of restricted witness
graph in Lemma 5.

Lemma 5. Given an RWG GR constructed from G with
parameter k, a ð2kþ 1; 2kÞ-spanner of G can be built from GR.

Proof. We construct a spanning subgraph G0 of G such that
G0 is a ð2kþ 1; 2kÞ-spanner. The construction goes as
follows: for each landmark vertex v in GR, we build a
shortest path tree Tv in the tile rooted at v. For each edge
e ¼ ðu; vÞ of GR, we select one shortest path connecting

DONG ET AL.: FINE-GRAINED LOCATION-FREE PLANARIZATION IN WIRELESS SENSOR NETWORKS 979



u and v in G, denoted by pe. G
0 is set to be the subgraph

of G that is induced by all the edges in the shortest path
trees, denoted by ET ¼

S
v2V ðGRÞEðTvÞ, and edges in the

shortest path, denoted by Ep ¼
S
e2EðGRÞ EðpeÞ, that is,

EðG0Þ ¼ ET

S
Ep. For any two nodes u and v in G, let p

be one shortest path in G0 that connects u and v and
passes through m landmarks. Clearly, jpj � ð2kþ 1Þ �
ðm� 1Þþ 2k� ð2kþ 1Þ � dGðu; vÞþ 2k, as the shortest path
connecting u and v in G travels at most dGðu; vÞ þ 1

different tiles. tu

Generally, it is easy to show that when we relax the
restrictions on the selection of landmarks and permit any
node in a tile serve as the landmark of the tile, a ð2� þ �; 2�Þ-
spanner of G can be constructed from a ð�; �Þ-restricted
witness graph of G.

If all the edges left are disposed through performing
conflict edge resolution, our constructed planar graph is a
ð2�kþ 1; 2kÞ-TPS, as shown in Theorem 2.

Theorem 2. A ð2�kþ 1; 2kÞ-TPS is obtained after successfully

performing conflict edge resolution.

Proof. This directly follows from Lemma 5 and
Theorem 1. tu

We next compare TPS with CDM in Theorem 3. More
concretely, Funke and Milosavljevic [13] indicate that a
combinatorial Delaunay map faithfully reflects the topology
of the network, and prove a CDM has good connectivity
when built from large tiles. We show that TPS is at least a
supergraph of CDM. On some instances it is strictly better,
as illustrated by the examples in Figs. 1, 2, and 3. Our
experiments show that TPS outperforms CDM on many
practical instances as well.

Theorem 3. Given a combinatorial �-quasi-UDG G with

� � 1=
ffiffiffi
2
p

, when TPS and CDM are constructed by using the

same landmarks and tiles in G, TPS is a supergraph of CDM.

Proof. Let ðl; l0Þ be any edge in a CDM graph. According to
the rules of CDM construction, we know that there
exists a path in G that connects landmarks l and l0 and
consists of a sequence of nodes in tile l followed by a
sequence of nodes in tile l0, meanwhile, one-hop
neighbors of the path contains only nodes in tile l or
tile l0. Any possible conflict between two CDM edges is
clearly separable. Hence, given any possible network
instances, a CDM graph will be subgraph of a TPS
constructed by this design. tu

Finally, we present Lemmas 6 and 7, which are required
in the analysis of complexity of algorithm.

Lemma 6. Given a combinatorial �-quasi-UDG G with � �
1=

ffiffiffi
2
p

and an RWG GR constructed from G by our algorithm,

the maximum node degree of GR is bounded by a constant.

Proof. This directly follows the packing property of quasi-
UDG, that is, the maximum independent nodes that can
be packed in a unit of area is bounded by a constant. tu

Lemma 7. Given a combinatorial �-quasi-UDG G with

� � 1=
ffiffiffi
2
p

, an RWG GR constructed from G by our algorithm

with tile parameter k, and any edge e in GR, the length of any
underlying path of e is bounded by 8ðkþ 1Þ2.

Proof. Let l; l0 2 V ðGRÞ be two landmarks and e ¼ ðl; l0Þ 2
EðGRÞ. Let Vl � V ðGÞ be all the nodes affiliated with

tile l. For any node v 2 Vl, we know that dGðl; vÞ � k
according to the construction of RWG. The euclidean

distance between nodes v and l is, thus, not greater than

k. Let n0 be the maximum number of independent

nodes that we can place in the big disk with radius

kþ 1 under 1=
ffiffiffi
2
p

-quasi-UDG model. Clearly, n0 <

ð�ðk þ 1Þ2Þ=ð�ð1=
ffiffiffi
2
p
Þ2Þ ¼ 2ðkþ 1Þ2. Two tiles l and l0

thus contain at most 4ðkþ 1Þ2 independent nodes.

Hence, the chordless underlying path pe of e contains

at most 8ðkþ 1Þ2�1 nodes. tu

7 EVALUATION

We conduct extensive simulations to evaluate the effective-
ness of this approach. We compare this design with two
state-of-the-art approaches: CDM graph-based planariza-
tion proposed by Funke and Milosavljevic [13], denoted by
CDM, and robust planarization proposed by Zhang et al.
[14], denoted by ZJC. They are recognized as the most
important connectivity-based and distributed planarization
methods in wireless ad hoc and sensor networks.

7.1 Qualitative Evaluation

In this set of simulations, we compare TPS with CDM and
ZJC qualitatively. We uniformly deploy nodes in regions
with different shapes. By default, the networks are
generated under 0.8-quasi-UDG model.

We first present some results to visually demonstrate the
quality of TPS, and then examine the large distortions of
CDM and ZJC. In particular, we vary the average node
degrees and network shapes to show that our approach is
robust to network density and shape, as shown in Figs. 4a,
4b, 4c, 4d, 4e, 4f, 4g, and 4h. We can see that TPS outputs
dense well-connected graphs in all those network config-
urations. We compare TPS with CDM in the same networks.
We increase the density of kMIS landmarks and reduce
tile’s sizes by changing the parameter k, from 5 to 2. Figs. 4i,
4j, 4k, 4l, 4m, 4n, 4o, and 4p show a set of results in a “G”-
shape network. Compared with TPS, CDM is rather sparse
and has a large distortion. CDM is disconnected and
contains many connected branches, when parameter k
becomes smaller and kMIS landmarks form a dense
sampling of the network.

We further perform ZJC in the networks that have the
same shapes as Figs. 4e, 4f, 4g, and 4h. The results of ZJC are
shown in Figs. 4q, 4r, 4s, and 4t. We can see that two shortest
path trees built by ZJC may cover only a small portion of the
network, which causes large distortions among nodes that
are not covered by the trees. By varying many different
shapes, we find ZJC mainly works in networks with regular
square-like shapes. When the network regions have feature-
rich outer boundary or inner holes and thus cannot be split
into two triangular subregions, the two shortest path trees
built by ZJC cannot cover the whole network well, which
could result in arbitrarily large distortion in the planar
graph extracted by ZJC.
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Due to the page limit, we skip many results on CDM and
ZJC in network fields of various different shapes. Generally,
we have the following observations: TPS and CDM are
independent from the network shape since they only use
local connectivity information, while ZJC needs global
connectivity and probes to network shapes. Hence, we will

mainly compare TPS with CDM in the following quantita-

tive results.

7.2 Quantitative Results

In this set of simulations, we quantitatively examine the

distortion of TPS in practical networks. We deploy
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Fig. 4. Qualitative evaluation on TPS, CDM, and ZJC. (a)-(h) show TPS results in networks with various shapes and average node degrees, tile
radius k ¼ 2. (i)-(p) compare TPS and CDM, varying tile radius k from 5 to 2. (q)-(t) are the results of ZJC, and each figure plots two trees rooted at
two square nodes and the base path [14] denoted by bold line.



2,500 nodes in a square area by uniformly random
distribution. We use 0.8-quasi-UDG to build connectivity
graphs with an average node degree around 11. We vary
the densities of kMIS landmarks, k from 2 to 6. Under each
configuration, our simulation takes 100 runs with random
network generation and reports the average. The results are
shown in Table 1.

We first measure the multiplicative stretches between
landmark nodes. In particular, a TPS GTPS is transformed
into an edge-weighted graph as follows: for each edge e ¼
ðu; vÞ in GTPS , the weight of e is equal to the hop number of
the shortest underlying path of e. The multiplicative stretch
between any two nodes u and v in GTPS is the ratio of their
distance in GTPS to distance in connectivity graph G, that is,
dGTPS

ðu; vÞ=dGðu; vÞ. Both the worst and average stretches
are computed. The worst stretch is the maximum stretch
between any two nodes, and the average stretch calculates
the average of all stretches between any two nodes. tmax and
tavg are the worst and average stretch, respectively. 	 is the
standard deviation. Our method finishes normally in all
these simulations, and achieves a small stretch factor.
Accordingly ð�; �Þ-spanner is also guaranteed due to the
successful implementation of our method. These theoretical
values of � and � are calculated according to Theorem 2.
From Table 1, we can see TPS performs well in practical
networks. Especially when k ¼ 2, the worst and average
stretch factors are less than 2 and 1.2 respectively, much
better than the theoretical results provided in Theorem 2.

We next check the multiplicative stretches between any
two nodes in the whole network. We need to construct a
spanning graph G0 of G from a TPS. G0 is built in the same
way as discussed in the proof of Lemma 5, and multi-
plicative stretch between any two nodes u and v in G is
dG0 ðu; vÞ=dGðu; vÞ. We can see the worst and average stretch
factors are still greatly better than the theoretical bounds in
Table 1. Further, a TPS with smaller tile’s size k provides a
better multiplicative stretch for the network. This is
consistent with our intuition that a TPS with small tiles
achieves a dense sampling of the network and produces a
spanner with a small addictive stretch, thus can better
reflect real network distances.

We finally compare TPS with CDM. We find that there
always exist some instances in each network configuration
where CDM graph is disconnected, which makes it
infeasible to calculate the average stretch factor for CDM.
Instead, we have to utilize other metric to measure the
quality of CDM. In Table 1, we use branch, degree, and ratio
to denote the number of connected branches, vertex degree
of CDM, and the ratio of the number of edges in TPS to that
in CDM, respectively. From Table 1, we can see that TPS has

much better connectivity than CDM, especially when tile’s

sizes decrease.

8 CONCLUSIONS

As a crucial issue in wireless ad hoc and sensor networks,

network planarization is previously addressed either under

ideal assumptions, or in relaxed models while not providing

any guarantee on the quality in terms of connectivity or

distortion. We present a practical method to perform

topological planar simplification on networks, and take the

first attempt towards extracting a provably planar topology

from the network in a fine-grained and location-free manner.

The simulation results show that our method always

produces planar graphs with small stretch factors, which

significantly outperforms the state-of-the-art approaches.
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