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Abstract

A wireless ad hoc network is often composed of a set V of n wireless devices dis-
tributed in a two-dimensional domain. For each wireless device (also called node)
u ∈ V , there is a transmission region within which signal-to-noise-ratio (SNR) is
at least a threshold γ so that the signal transmitted by u can be correctly received
by other nodes with high probability. The transmission region is often modeled as
a disk centered at the node u. In addition, for each node u, there is an interference
region within which the transmission from u makes the signal-to-interference-and-
noise-ratio (SINR) of the legitimate receiver smaller than the threshold γ so that
the legitimate receiver cannot correctly receive the message from the legitimate
transmitter.

In this paper, we first present new graph models to model the communication
graphs and the interference graphs defined by wireless ad hoc networks with atten-
tion to interference-free channel assignment or scheduling. Then we propose some
simple approximation algorithms and/or PTASs (polynomial time approximation
scheme) to approximate several classical graph problems such as maximum inde-
pendent set, minimum vertex cover and minimum vertex coloring in these graph
models. In addition, we also discuss various possible applications for these simple
approximation algorithms and/or PTASs in wireless ad hoc networks.
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1 Introduction

Wireless networking has received significant attention over the last few years
due to its potential applications in various situations such as battlefield, emer-
gency relief and so on. There are no wired infrastructures or cellular structures
in wireless ad hoc networks. Multi-hop communication (carried out by relaying
on intermediate nodes) is required when the receiver node is not within the
sender’s transmission range. Thus, each wireless node also acts as a router,
forwarding data packets for other nodes.

A wireless ad hoc network is often composed of a set u of n wireless devices
distributed in a two-dimensional domain. For each wireless device (also called
node) u ∈ V , there is a transmission region within which signal-to-noise-ratio
(SNR) is at least a threshold γ so that the signal transmitted by node u can
be correctly received by other nodes with high probability. We assume that
each wireless node has an omni-directional antenna, i.e., a single transmission
of a node can be received by any node within a certain distance. Thus, the
transmission region of u is often modeled as a disk centered at the node u
with radius tu. Here tu is called the transmission range of node u. When all
wireless nodes have the same transmission radius, the communication network
of a wireless ad hoc network is often modeled by unit disk graphs (UDG), in
which two nodes are connected iff their Euclidean distance is no more than
the transmission range. However, generally and practically, different wireless
nodes will have different transmission range due to various tasks performed or
different devices or different power capacities.

To increase the capacity of the network, frequency spectrum has to be reused
as radio spectrum is one of the scarcest resources available. Interference is one
of the major concerns in designing wireless networks. Signal-to-interference
ratio is used to measure the quality of the received signal. It is defined as the
ratio of the received signal strength from the intended source node to the re-
ceived signal strengths from all other wireless nodes using the same frequency
spectrum. The larger the signal-to-interference ratio, the better the quality
of the wireless networks. Thus, it is often assumed in the literature that, for
each node u, there is an interference region within which the transmission
from u makes the signal-to-interference-and-noise-ratio (SINR) of the legit-
imate receiver smaller than the threshold γ so that the legitimate receiver
cannot correctly receive the message from the legitimate transmitter. In other
words, when a node u transmits a signal, we assume that the signal in its in-
terference region is strong enough to cause interference to every node v inside
the interference region. And it does not cause interference to nodes outside of
the interference region. Obviously, it is assumed that the node v intends to
receive signal from some node w other than u. Here we assume that no node
which transmits on a certain frequency can, at the same time, receive on the
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same frequency. Thus, we assume an interference occurs if the transmission
region of one node (node w here) intersects with the interference region of an-
other node (node u here). See Figure 1 for illustrations. Most researchers, for
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Fig. 1. Interference happens at node v when the transmission region (denoted by
the shaded disk) of node w intersects with the interference region of node u.

simplicity, treat the transmission region of a node as its interference region.
However, this simplification is not accurate in practice. Recently, more and
more researchers have realized that the range of interference is larger than
the transmission range [1–4]. For example, [1] uses a simple analytic model to
show that in the open space environment, the interference range of a receiver
is 1.78 times the transmitter-receiver distance. According to the IEEE 802.11
protocol implementation in the NS-2 network simulator, the interference range
is more than two times the size of the communication range.

In this paper, we will propose a number of general graph models (namely,
the general disk graph model, the interference graph model, the mutual com-
munication graph model, the mutual-inclusion graph model and the conflict
graph model) to model the communication networks or the interference graphs
induced by a wireless ad hoc network by assuming that a node has an inter-
ference region larger than its transmission region. Notice that though many
researchers have realized the large interference range, we are the first to model
the underlying communication graph of ad hoc networks by considering the in-
terference ranges. Some of our new graph models are similar to widely studied
intersection graphs [5–7] in graph theory. Intersection graphs are graphs each
of whose vertices is represented by a set, and two vertices are connected if their
corresponding sets have a non-empty intersection. The example of intersection
graphs includes interval graph [8], unit disk graph [9–11], and coin graph [12].
It is well-known that many classical NP-hard graph problems remain NP-hard
even when they are restricted to intersection graph models. For example, the
maximum independent set (MIS) problem, the minimum vertex cover (MVC)
problem, and the minimum graph coloring (MGC) problem (also called mini-
mum vertex coloring problem) remain NP-hard even when we restrict them to
unit disk graphs [10]. Since UDG is a special case of graph models introduced
here, constructing MIS remains NP-hard when restricted to these new graph
models. Recently, Erlebach et al. [13] proposed a PTAS for MIS on traditional
disk graphs based on the shifting strategy [14]. These classical graph problems
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have many potential applications in wireless ad hoc networks. For example,
the solutions for MIS problem have been widely used for constructing virtual
backbone for wireless ad hoc networks [15–21].

The main contributions of this paper are as follows: (1) We propose a number
of new graph models to capture the communication characteristics or the
interference characteristics of wireless ad hoc networks; (2) We present a simple
approximation algorithm to compute a maximal independent set whose size is
no more than a small constant times of the optimum in the new graph models;
(3) We propose two PTASs to approximately solve the maximum weighted
independent set problem and the minimum weighted vertex cover problem
in the new graph models; (4) We show that the traditional simple greedy
coloring method still achieves a constant approximation for minimum graph
coloring problem in the new graph models. Notice that the methodologies
of these simple algorithms and PTASs are not new but the analysis of their
performance guarantees under the new graph models are not trivial extensions,
which need to be carefully designed and proved.

The rest of the paper is organized as follows. In Section 2, we introduce our
network models (intersection graphs) and three classical graph problems, then
review previous results on these problems. We also discuss several possible
applications of these problems and our proposed algorithms in mobile ad hoc
networks. In Section 3, we show that the previous centralized method for
computing MIS in disk graph model, when the transmission region is same
with the interference region for every node v, still works in other models
introduced in this paper. We also give a PTAS for approximating the maximum
weighted independent set. In Section 4, we present algorithms suitable for
approximating the minimum weighted vertex cover. Section 5 is devoted to
study the approximation of graph coloring. We conclude our paper in Section 6
by pointing out some possible future research directions.

2 Preliminaries

2.1 Wireless Ad Hoc Network Models

We consider a wireless ad hoc network consisting of a set V of n wireless nodes
distributed in a two-dimensional plane. In addition, we assume that the nodes
are static or can be viewed as static during a reasonable period of time. Define
the transmission radius of a node as the radius of the disk representing its
transmission region. Similarly, we define the interference radius as the radius
of the disk representing the interference region of this node. Each node v ∈ V
has a transmission radius tv and an interference radius rv, where 0 < tv ≤ rv.
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Let D(v, r) denote the disk centered at v with radius r. Each wireless node
then defines two disks: the transmission disk D(v, tv) and the interference disk
D(v, rv). The set of wireless nodes V defines two sets of disks T = {D(v, tv) |
v ∈ V } and D = {D(v, rv) | v ∈ V } in the two dimensional plane. Given two
wireless nodes u and v, define their intersection region I(u, v) as follows:

I(u, v) = (D(u, tu) ∩ D(v, rv))
⋃

(D(u, ru) ∩ D(v, tv)) .

See Figure 2 for an illustration of intersection regions.

u v

Fig. 2. The black region denotes the intersection region I(u, v). The shaded disks
are the transmission disks and the non-shaded disks are the interference disks.

We then introduce several intersection graph models to model wireless ad hoc
networks.

Disk graphs has been widely studied. Traditionally, a disk graph is the inter-
section graph of the set of disks each of which is centered at a unique node
from a node set V , i.e., two nodes u, v ∈ V are connected in the traditional
disk graph if the two disks centered at u and v have a non-empty intersection.
We first extend this conventional definition to wireless ad hoc networks where
each wireless node defines two disks, namely, the interference disk and the
transmission disk. Here, the disk graph (DG) for wireless ad hoc networks has
an edge uv if and only if the intersection area I(u, v) is not empty. In other
words, there is an edge uv if and only if ‖uv‖ ≤ min(tu + rv, ru + tv). Here
‖uv‖ is the Euclidean distance between two wireless nodes u and v. Notice
that, the special case when tu = ru for all wireless nodes u was studied in
[13,29] recently. Li et al. [29] also studied some other geometry graphs derived
from wireless networks when every node u has tu = ru.

In wireless ad hoc networks, if two nodes u and v are not connected in the disk
graph, then they can transmit messages simultaneously without causing inter-
ference to each other under our interference model. Therefore, the chromatic
number of the disk graph defined above is an upper bound of the minimum
number of frequencies (also called channels) needed when we must assign a
channel to each node so that all nodes can communicate simultaneously with-
out interferences. Here we assume that a wireless node can tune its receiving
device to different channels other than its transmission channel.

Obviously, the disk graph model is an over-estimation for interferences for ad
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hoc wireless networks. For example, when the intersection region I(u, v) of two
corresponding wireless nodes u and v is not empty, these two nodes can still
use the same channel if the intersection region I(u, v) does not contain any
wireless node inside. To capture this property, we define the interference graph
(IG) as follows: two nodes u and v are connected if and only if there is a node
from V inside their intersection region I(u, v). The chromatic number of the
interference graph is exactly the minimum number of channels needed when
we must assign a channel to each node so that all nodes can communicate
simultaneously without causing interferences in our interference model.

The interference graph model captures all links (u, v) where u and v cannot
transmit simultaneously using the same channel. In the actual wireless com-
munications, two nodes u and v can communicate with each other directly
if they are within the transmission range of each other. We call the graph
formed by all such links (u, v) as mutual communication graph (MCG). In
other words, a link uv is kept in the mutual communication graph if and only
if there is a physical symmetric link uv. In the remainder of the paper, we will
not study the approximation algorithms for MCG since this has been studied
in [29]. For completeness, we also introduce two interesting new graph models
here, namely, mutual-inclusion graph (MG) and conflict graph (CG). We be-
lieve that these two new graph models may also find some applications later
in wireless ad hoc networks. In the mutual-inclusion graph, two nodes u and v
are connected if and only if the intersection region I(u, v) contains both u and
v inside. While in the conflict graph model, two nodes u and v are connected
if and only if the intersection region I(u, v) contains at least one of u and v
inside. Obviously, the chromatic number of the conflict graph is a lower-bound
of the minimum number of channels needed when we must assign a channel
to each node so that all nodes can communicate without interferences.

By definition, MCG ⊆ MG ⊆ CG ⊆ IG ⊆ DG.

2.2 Graphs Problems and Their Applications

A subset of vertices in a graph G is an independent set (IS) if for any pair
of vertices, there is no edge between them. It is a maximal independent set
if no more vertices can be added to it to form a larger independent set. It
is a maximum independent set (MIS) if no other independent set has more
vertices. The goal of the MIS problem is to compute, given a graph, a subset
of pair-wisely unconnected vertices with the maximum cardinality.

Given a graph G = (V,E), a subset V ′ ⊆ V of vertices is a vertex cover if for
every edge in E, V ′ contains at least one of its end-vertices. In other words,
every edge is dominated by some node from V ′. The goal of minimum vertex
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cover (MVC) problem is to find a vertex cover with the minimum cardinality.

The graph coloring (GC) problem (often called vertex coloring problem) is to
assign each vertex a color. A vertex coloring is valid if two adjacent vertices
are assigned different colors. The minimum graph coloring (MGC) problem is
to use minimum number of colors so a valid vertex coloring can be obtained.

These three problems are classical graph optimization problems. It has been
proved that they all are NP-hard even under the traditional intersection graph
model. The algorithms to solve these classical graph problems can be widely
used for different applications in wireless networks. For example, the algo-
rithms for the maximum independent set have been used as clustering algo-
rithms for wireless ad hoc networks [15–22]; the algorithms for the minimum
vertex coloring have been applied to solve the channel assignment problems
[23,24] and packet scheduling [25–28] in wireless ad hoc networks. In Sub-
section 2.5, more possible applications of these problems for wireless ad hoc
networks are discussed in detail. Therefore, in this paper, we are interested in
designing efficient algorithms to approximate the maximum independent set,
the minimum vertex cover, and the minimum graph coloring for the graph
models defined above. These efficient algorithms will help us solving several
hard (NP-complete) optimization problems pertaining to QoS- and energy-
aware dynamic wireless ad hoc network infrastructures, besides routing, and
medium access mechanisms.

Given a graph G of n vertices and a problem P , let OPTP (G) denote an
optimum solution of problem P when the input graph is G. For a maxi-
mization problem P (such as maximum independent set), an algorithm is
a ρ-approximation algorithm for problem P if, given any input graph G,
it runs in polynomial time and always computes a solution that is at least
1
ρ
OPTP (G). For a minimization problem P (such as minimum vertex cover),

an algorithm is a ρ-approximation algorithm for problem P if, given any input
graph G, it runs in polynomial time and always computes a solution that is at
most ρ · OPTP (G). An algorithm is a polynomial-time-approximation-scheme
(PTAS) if, for any additional parameter ε > 0, it runs in time polynomial of n
and always computes a solution that is at least 1

1+ε
OPTP (G) for a maximiza-

tion problem P and at most (1 + ε) · OPTP (G) for a minimization problem
P .

2.3 Previous Results

For unit disk graphs, Marathe et al. [11] gave simple centralized heuristics
to approximate the maximum independent set, the minimum vertex cover,
the minimum vertex coloring, the minimum dominating set, and the mini-
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mum connected dominating set within constant 3, 3
2
, 3, 5, and 10 respectively.

Hunt et al. [30] then presented the first PTASs to approximate the maximum
independent set, the minimum vertex cover, and the minimum dominating
set in UDG. Recently, Wang et al. [22] proposed a distributed algorithm to
approximate maximum weighted independent set for wireless networks.

For traditional disk graphs, it was claimed in [11] that the MIS problem can be
approximated within 5. Then Erlebach et al. [13] proposed an elegant PTAS
for maximum weighted independent set (MWIS) and the maximum weighted
vertex cover (MWVC) based on the shifting strategy proposed by Hochbaum

[14]. The algorithm runs in time 1
ε2 n

O( 1
ε4

). Thus, when each node u has the
same transmission range tu and the interference range ru, we already have
PTASs for both MWIS and MWVC problems in the disk graph model.

Recently, Li et al. [29] also studied the MWIS and MWVC problems under
the following graph models derived from wireless ad hoc networks: interference
graph IG, mutual-inclusion graph MG, and the conflict graph CG when the
interference region of every node is the same as its transmission region. Both
simple heuristics with constant bounded approximation ratios and PTASs are
given for the maximum weighted independent set and the minimum weighted
vertex cover under the graph models DG, IG, MG, and CG. Simple heuris-
tics with constant approximation ratios are presented for the minimum graph
coloring problems over all graph models.

2.4 Our Results

In this paper, we present efficient simple approximation algorithms to solve
MIS, and MGC under all graph models (disk graphs, interference graphs,
mutual-inclusion graphs, mutual communication graphs, and conflict graphs)
derived from wireless ad hoc networks. We then present PTASs for the MWIS
and MWVC problems for all graph models introduced in this paper. Our
simple constant approximation algorithms need only every node’s interference
radius and the underline graph structure, but no transmission radius and
the geometry location of each node are needed. Our PTASs need the exact
geometry location and the interference radius of each node instead. We present
PTASs for MIS and MVC when the network is modeled by graph models
DG, IG, MG, and CG. We also show that the graph coloring problem in
these graph models can be approximated with 5 for mutual-inclusion graphs,
mutual communication graphs, and conflict graphs and 40 for disk graphs
and interference graphs. Notice that, when rv = tv for every node v, the
graph coloring problem in DG can be approximated within 5 using a simple
heuristic [29]. However, when rv �= tv, this simple heuristic cannot guarantee
approximation ratio 5 anymore; instead, we show that it is at most 40 and at
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least 12 by giving an example.

2.5 Applications in Wireless Ad Hoc Networks

The problems (maximum independent set, minimum vertex cover and mini-
mum graph coloring) we will study are three classical graph problems. They
have been used to model several optimization problems in different applica-
tions in wireless networks.

Cluster technique has been widely used in wireless ad hoc network. It is one
popular way to avoid flooding in the whole networks by restricting the com-
munications to only be in a backbone formed by a subset of wireless nodes.
Clustering method selects a subset of wireless nodes as clusterheads, and forms
a hierarchical structure like Internet to perform the communications. Usually,
the hierarchical structure (often called virtual backbone) is a connected dom-
inating set. Many connected dominating set based (or cluster based) routing
protocols have been proposed [17,18,34–36]. Efficient algorithms for construct-
ing connected dominating sets in ad hoc wireless networks were well studied
[15–22]. Several of them used the maximum independent set as the first step
in their algorithms to select clusterheads. For example, in [20,21], they first
built a maximal independent set by an MIS algorithm based on node IDs,
then select several connectors to connect the nodes in the maximal indepen-
dent set to a connected dominating set. Since they used the unit disk graph
model, they proved that the maximal independent set constructed in the first
step of their algorithm is at most 5 times the optimum. Therefore, when we
use the intersection graphs to model the communications in the networks, we
can apply our MIS heuristic or PTAS to build MIS and form the hierarchical
cluster structure.

Notice that our PTAS actually approximates the maximum weighted inde-
pendent set in which every node has a generic weight. Here the weight of
each node could be defined by various practical applications. For example, the
weight may represent the fitness or priority of each node to be a clusterhead.
The lower weight means the higher priority. In practice, the weight could rep-
resent the power consumption rate of this node, the non-robustness of this
node or a function of its security level. Recently, many proposed clustering
algorithms [16,37–44] also considered different weights (such as node-degree,
transmission power, stability or mobility and the battery power of the nodes)
as a priority criterion to decide whether a node will be a clusterhead.

Beside forming the backbone for routing or broadcasting, the maximum inde-
pendent set algorithms can also be used in other applications. For example,
Zheng et al. [45] studied the time indexing problem in sensor networks. To
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enable time-indexed in-network storage of sensor data, they selected a subset
of sensors, i.e., rendezvous points to collect, compress and store sensor data
from its neighborhood for pre-defined periods of time. To consider the energy
and storage balancing, we can apply our maximum independent set algorithms
to select the rendezvous points. Another example, in [46], a simple cluster al-
gorithm is used for selecting the wireless agents to perform intrusion detection
in wireless ad hoc networks. We can also apply our method to their intrusion
detection system to achieve more robust and power efficient agent selection.

Recently, Wan et al. [47] showed another application for maximum indepen-
dent set in OVSF-CDMA (Orthogonal Variable Spreading Factor - Code Divi-
sion Multiple Access) wireless ad hoc networks. In contrast to the conventional
orthogonal fixed-spreading-factor CDMA code, OVSF-CDMA code consists
of an infinite number of codewords with variable rates but not every pair of
codewords are orthogonal to each other. In an OVSF-CDMA wireless ad hoc
network, a code assignment has to be conflict-free, i.e., two nodes u and v
can be assigned the same codeword or two non-orthogonal codewords if and
only if neither of them is within the interference range of the other and no
other node is located in the intersection region I(u, v). In [47], the authors
proposed several conflict-free CDMA/OVSF code assignment algorithms for
wireless ad hoc networks when the interference region of every node is same as
its transmission region. Their algorithms can achieve the total throughput or
minimum rate within a constant factor of the optimum. All of their approxi-
mation algorithms applied some maximal independent set algorithms as part
of their methods. If we would like to consider the non-identical transmission
and interference ranges, we can apply our proposed MIS algorithm to do the
code assignment for OVSF-CDMA wireless ad hoc network.

Vertex cover problem also has been studied and applied in research of wireless
networks [48–50]. It was used for proving the NP-hardness of some optimiza-
tion problems, such as minimum energy broadcast [48,49]. In [50], Zheng et
al. studied wakeup mechanism for ad hoc networks to save energy in ad hoc
networks. A wakeup mechanism associates each node with a slot schedule of
length, termed as the wakeup schedule function (WSF). The authors showed
the asymmetric WSF design problem is related to the vertex covering problem.

The last problem (minimum graph coloring or often called minimum vertex
coloring) was also applied in wireless ad hoc networks to solve channel as-
signment or traffic scheduling problems [23–28,51,52]. In [27], Negi and Ra-
jeswaran derived a bound on MAC (Medium Access Control) performance
based on their physical layer model, by specifying a graph coloring heuristic.
In [28], Tseng, Wu and Chen proposed a scheduling method called maximum
traffic scheduling for IEEE 802.15.3. Their scheduling method applied our
graph coloring method in [29] to finding the chromatic number. Both [25] and
[26] also studied packet scheduling problem in wireless ad hoc networks by
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using coloring techniques. In addition, it is also well-known that coloring algo-
rithms of graphs are applicable in channel assignment algorithms in wireless
networks. For example, both [23] and [24] treated the channel assignment as
a coloring problem and proposed different solutions. A distributed vertex col-
oring method was also used in the method proposed in [51] for constructing
connected dominating sets for ad hoc networks. In [52], the authors proposed
linear programs to output the bound of the power rate function of wireless
ad hoc networks, where they also applied vertex coloring method on a usage-
conflict-graph.

3 Maximum Independent Set

In this section, we first present an algorithm that is easy to implement and
approximates the MIS within 5 for mutual-inclusion graphs, mutual communi-
cation graphs and conflict graphs, and 40 for the disk graphs and the interfer-
ence graphs introduced here. We next present a PTAS for the MIS problem in
all graph models introduced in this paper by extending the methods presented
in [13,29].

3.1 Simple Approximation Method

Assume that we know the interference radius rv of each wireless node v. In
addition, we also know the graph representation of the underlying graph, which
could be DG, MG, IG, or CG. If the graph structure is unknown, then we need
the transmission range tv and the exact geometry location of each node v to
construct the corresponding graph.

Algorithm 1 Simple Approximation of Maximum Independent Set

Input: A graph G defined based on one of the four graph models.
Output: A maximal independent set I.

1: I ← ∅.
2: repeat
3: Finds the node, say v, with the smallest interference radius rv;
4: Adds it to the independent set, i.e., I ← I ⋃{v};
5: Removes this node and all its adjacent nodes from the graph G.
6: until G is empty

Obviously, this algorithm does compute a maximal independent set with O(n log n)
running time. We then prove the following theorems that guarantee the qual-
ity of the computed independent set. Let I be the computed independent set
of nodes.
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Theorem 1 The computed I has size at least 1
5

of that of MIS if the input
graph is a mutual-inclusion graph or a conflict graph.

Proof. Notice that the independent set I computed by our algorithm is
maximal. Therefore, every node in an optimum MIS solution is either in I
or is connected to some node from I. We claim that, for any node u in I,
there are at most 5 nodes from an optimum MIS solution such that they are
connected to u and are removed by the algorithm due to the removing of u.
This immediately implies our theorem.

To prove our claim, we show that if v1 and v2 are both from an optimum
solution, are connected to u and removed by u, then ∠v1uv2 > π

3
. Remember

that the selection of node u always implies that ru ≤ rvi
for i = 1, 2. We prove

∠v1uv2 > π
3

for different input graph models separately.

If the underlying graph is a mutual-inclusion graph, uvi is an edge implies that
I(u, vi) contains both nodes u and vi. Then obviously node vi is inside D(u, ru).
Thus, ‖uvi‖ ≤ ru for i = 1, 2. Moreover, because v1 and v2 are independent,
we have either v1 is not inside D(v2, rv2) or v2 is not inside D(v1, rv1) or both.
It implies that ‖v1v2‖ > min(rv1 , rv2) ≥ ru. Thus, ‖v1v2‖ > ‖uvi‖ for i = 1, 2.
In other words, ∠v1uv2 > π

3
.

If the underlying graph is a conflict graph, uvi is an edge implies that I(u, vi)
contains at least one of the nodes u and vi. It is easy to show that node u is
inside D(vi, rvi

) from ru ≤ rvi
. Thus, we have ‖uvi‖ ≤ rvi

for i = 1, 2. Since
v1 and v2 are independent, node v1 is not inside D(v2, rv2) and node v2 is not
inside D(v1, rv1). Thus, ‖v1v2‖ > max(rv1 , rv2). Consequently, ‖v1v2‖ > ‖uvi‖
for i = 1, 2. In other words, ∠v1uv2 > π

3
.

This finishes the proof of the theorem. Notice that, in the above proof, sur-
prisingly, the transmission radii of the nodes do not play any role.

In case of DG and IG graph models, the following theorem still guarantees a
constant approximation ratio for MIS.

Theorem 2 The computed I has size at least 1
40

of that of MIS if the input
graph is a disk graph or an interference graph.

Proof. We prove this using an area argument. Consider any node u from
I selected by our algorithm. The nodes from an optimum solution, which are
connected to u and removed by u, can be partitioned into two cases: outside
Du or inside Du. Remember that here Du = D(u, ru) in our notations.

First consider the nodes outside Du. Let v1, v2, · · · , vk �∈ Du be the k nodes
from the optimum solution that are connected to u and are removed by the
algorithm due to the removing of u. The selection of u implies that rvi

≥ ru
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for all i = 1, 2, · · · , k.

Node vi, i = 1, 2, · · · , k is connected to u implies that Di = D(vi, rvi
) intersects

with disk Du = D(u, ru) because if they do not intersect then obviously I(u, vi)
is empty, which further implies that there is no edge uvi in any graph models
introduced here. In addition, the disk Di = D(vi, rvi

) centered at vi, i =
1, 2, · · · , k cannot contain any node vj, j �= i inside because all disks centered
at vi, i = 1, 2, · · · , k, are mutually independent in the corresponding graph
model (the disk graph or the interference graph model). If vj is inside Di =
D(vi, rvi

), then I(vi, vj) contains vj regardless of the transmission radii of vi

and vj, implying that vivj is an edge in both the disk graph model and the
interference graph model.

Let Bu be the disk centered at u with radius 2ru and Tu = Bu − Du. Then
every disk Di, i = 1, 2, · · · , k, intersect Tu since it intersects Du. It is not
difficult to show that Tu ∩ Di achieves the smallest area when vi is on the
boundary of Bu and rvi

= ru. See the left figure of Figure 3. We can show that
∠wv2u > 5

12
π. Thus, the smallest area is at least 5

12
πr2

u. Notice that the area
of Tu is 3πr2

u.

u v2

w

v1

Tu

j

x

v

vi

Fig. 3. Left: The intersection Tu ∩ Di is bounded from below. Right: The number
of independent disks which cover any point x is bounded by 5.

Notice that the region Tu ∩ Di and Tu ∩ Dj for 1 ≤ i, j ≤ k may overlap.
However, we will show that every point x is covered by at most 5 disks from
Di, i = 1, 2, · · · , k. See the right figure of Figure 3. Assume node x is covered
by two disks Di and Dj, i.e., ‖xvi‖ ≤ rvi

and ‖xvj‖ ≤ rvj
. Then ‖vivj‖ >

max(rvi
, rvj

) because Di and Dj are independent in the corresponding graph
model (DG or IG), which implies that ∠vixvj > π

3
. Thus, x is covered by at

most 5 independent disks. Therefore, by an area argument, we have k · 5
12

πr2
u <

5 · 3πr2
u. Thus, k ≤ 35.

Then consider the nodes inside Du. Let v1, v2, · · · , vh ∈ Du be the h nodes
from the optimum solution that are connected to u and are removed by the
algorithm due to the removing of u. Then obviously, all disks centered at vi,
i = 1, 2, · · · , h contain node u. Since node u is covered by at most 5 disks from
previous analysis, we have h ≤ 5.

Consequently, at most 35 + 5 = 40 independent nodes are removed when we
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remove all nodes adjacent to a node u from I selected by our algorithm. This
finishes the proof.

The above theorems actually show that the graph models introduced in this
paper have hereditary property: there is a node with a constant bounded
number of independent neighbors, and the subgraph by removing this node
and its neighbors also does.

Figure 4 gives a configuration example such that there are 12 independent
nodes that are removed in DG and IG models. These 12 nodes vi, i = 1, 2, · · · , 12
are equally distributed on the circle centered at u with radius 2ru. The inter-
ference radius of each of them is set as ru + ε for a very small positive ε. Both
the transmission radius and the interference radius of u is set as ru. A node
wi, i = 1, 2, · · · , 12, is placed on segment uvi and ‖uwi‖ = ru. Thus, node u
has interference with all 12 nodes vi, i = 1, 2, · · · , 12 in both DG and IG, and
these 12 nodes are independent with each other in these two graph models
also. It then implies that the lower bound on the approximation ratio for MIS
of recursively picking the smallest radius is at least 12 for interference graph
model and the disk graph model. We conjecture that 12 is also the tight upper
bound, but to prove that, a more rigorous analysis is needed. We leave it as a
possible future work.

u

v
1

π/6

w

1

2

w

v2

Fig. 4. Twelve independent neighbors are removed by u in DG and IG models.

This simple approximation method for MIS can be easily converted to a dis-
tributed one that is suitable for wireless ad hoc networks. It is omitted here
due to space limit.

3.2 PTAS for Maximum Weighted Independent Set

In this subsection, we will present a PTAS for the maximum weighted in-
dependent set (MWIS) for graph models introduced in this paper. Assume
that we are given a set D = {D1, D2, · · · , Dn} of n interference disks in a two-
dimensional plane, where disk Di has interference radius ri, center vi = (xi, yi)
and a weight w(Di) = wi. The weight is typically assigned to node, but here
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we assume that it is assigned to the interference disk Di for later convenience.
The transmission radius of node vi is ti, which will only be used to determine
if two nodes are connected in the corresponding graph model. For a subset of
disks U ⊆ D, let w(U) =

∑
Di∈U w(Di), i.e., the summation of the weights of

disks in U . Two disks Di and Dj are said to be independent if the two nodes
vi and vj are not connected in the corresponding graph model; otherwise they
are called non-independent. Figure 5 shows the non-independence in different
graph models.

u v u v u v u vw

DG MG CG IG

Fig. 5. Non-independence in different graph models. The shaded disks represent the
transmission regions and the non-shaded disks represent the interference regions.

Similarly, we also adopt the shifting strategy [30] to develop a PTAS for the
maximum weighted independent set problem under various new graph models
introduced in this paper. Before presenting our method, let’s briefly review
the shifting strategy [30] used to develop a PTAS for MIS in the unit disk
graph. Here we assume that the radius of each disk is 1

2
. The plane is assumed

to be subdivided into grid of size at m by m for some integer m by a collection
of vertical lines x = i ·m and horizontal lines y = j ·m. A subdivision is called
(r, s)-shifting if it is formed by a collection of vertical lines x = i · m + r and
horizontal lines y = j · m + s, where 0 ≤ r, s < m − 1. A square is formed by
two consecutive vertical lines and two consecutive horizontal lines in a (r, s)-
shifting. For each square, an optimal solution of MIS is obtained in polynomial
time for all disks contained in the square but not intersecting the boundary of
the square. The union of the MIS in all squares is returned as the final solution
for this shifting, which clearly is an independent set. Through the pigeonhole
principal, it was showed that there is a shifting of the subdivision such that
the size of the computed independent set is at least (1 − 1

m
)2 of optimum.

We build our PTAS for approximating MIS in various graph models introduced
in this paper based on the approach of [13], i.e., to divide the interference
disks into different levels according to their radii. At same level, all nodes
have similar interference radii, i.e., they are within a constant factor of each
other. As in [13,29], we scale all disks so that the largest disk has interference
radius 1

2
. Let rmin be the smallest interference radius among all wireless nodes.

Let k > 1 be a fixed integer (whose value will be specified later) and � =⌊
logk+1

1
2rmin

⌋
. We partition the set of interference disks D into � + 1 levels

such that level j, 0 ≤ j ≤ �, consists of all disks Di with interference radius
satisfying that 1

(k+1)j+1 < 2ri ≤ 1
(k+1)j . Let l(Di) denote the level of disk Di,
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i.e., l(Di) =
⌊
logk+1

1
2ri

⌋
. Notice that we do not partition the transmission

disks at all. Surprisingly, the solely partition of interference disks is enough to
get a PTAS for us.

Similar to the approaches [13,29,30], for each level j, we subdivide the plane
into grid by using a set of vertical lines Lj,v : x = v 1

(k+1)j , v ∈ Z and a set

of horizontal lines Hj,h : y = h 1
(k+1)j , h ∈ Z. Hereafter j is called the level

of the lines Lj,v and Hj,h; v (and h) is called the index of the vertical (and
horizontal) line lj,v (and hj,h) at level j. A (r, s)-shifting of the subdivision is
the grid defined by the set of vertical lines whose indices modulo k equal r
and the set of horizontal lines whose indices modulo k equal s. It was proved
in [13] that a vertical line at level j of a (r, s)-shifting subdivision is also a
vertical line at level j + 1 of the (r, s)-shifting subdivision.

Any two consecutive vertical lines at level j whose indices modulo k equal r,
and any two consecutive horizontal lines at level j whose indices modulo k
equal s, form a j-square in the (r, s)-shifting subdivision. See Figure 6 for an
illustration of a 0-square for r = s = 0 and k = 3. In the figure, the solid lines
are lines at level 0 and all dashed lines are lines at level 1. The j-squares are
represented by thicker lines. The square represented by thicker solid lines is a
0-square and the squares represented by thicker dashed lines are 1-squares.

Clearly, any j-square S is subdivided into (k + 1)2 (j + 1)-squares (by lines
Lj+1,v and Hj+1,h at level j + 1). Notice that it only contains k2 grids defined
by lines at level j. These (j+1)-squares S ′ are called the children of S, denoted
by S ′ ≺ S. And S is called the parent of S ′. Obviously, any j-square S has
length k

(k+1)j . Notice that an interference disk at level j has radius r satisfying
1

(k+1)j+1 < 2r ≤ 1
(k+1)j . Thus, a j-square can contain some disks inside with

level at least j − 1, but not any disks inside with level less than j − 1.

A disk Di with center (xi, yi) and radius ri is said to hit a vertical line at x = a
if a − ri < xi ≤ a + ri. Similarly, we say the disk Di hits a horizontal line at
y = b if b − ri < yi ≤ b + ri. In other words, a disk hits a line if it intersects
this line or it touches the line from the left or from the bottom.

For maximum weighted independent set problem, an interference disk Di at
level l(Di) = j is said to be active (respecting to (r, s)-shifting) if it does
not intersect the boundary of any j-square of the (r, s)-shifting subdivision.
However, the definition of active disks for minimum vertex cover is different,
which will be discussed in detail later. Let DS be the set of disks in D that
are active for S. For a j-square S, let D<j

S be the set of active disks with level
less than j and intersecting with S. Similarly, we define D≤j

S , D=j
S , D>j

S , and
D≥j

S for active disks intersecting S and with level no more than j, equal to j,
larger than j, and no less than j respectively. For a j-square S, let OPT<j

S be
the set of disks from OPT (DS) with level less than j and intersecting with S.
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Similarly, we define OPT≤j
S , OPT=j

S , OPT>j
S , and OPT≥j

S respectively.

For each level j, let Dj(r, s) be the set of active interference disks at level j
respecting to (r, s)-shifting. Define D(r, s) = ∪�

j=0Dj(r, s), i.e., the union of
active interference disks at all levels respecting to (r, s)-shifting. Then a j-
square S is called relevant if D(r, s) contains at least one disk of level j that is
inside S in the corresponding graph model. More rigorous definition of relevant
will be given later, which depends on the graph models. Let OPTIS(D′, G)
denote the weight of the maximum weighted independent set for a set of disks
D′ when the network is modeled by graph model G. We will omit G and/or
IS when it is clear from the context. The following proof is given by Erlebach
et al. [13] for the disk graph model and ru = tu for each node u. We found
that the correctness of this lemma does not depend on the graph model. We
include it here for the completeness of presentation.

Lemma 3 Given a graph G, which is a disk graph, or an interference graph,
or a mutual-inclusion graph, or a conflict graph, there is at least one (r, s)-
shifting, 0 ≤ r, s < k such that

OPT (D(r, s), G) ≥ (1 − 1

k
)2 · OPT (D, G)

Proof. Consider a maximum weighted independent set S� ⊆ D for any
graph model introduced here. Let S�

r be the set of disks Di ∈ S� such that
the disk Di hits some vertical line Lj,v at the level j = l(Di) whose index v
modulo k equals r. Then ∪k−1

r=0S
�
r ⊆ S�. In addition, S�

r , 0 ≤ r ≤ k−1 are pair-
wisely disjoint. Thus,

∑k−1
r=0 w(S�

r ) ≤ w(S�). The pigeonhole principal implies
that there is an index r0 such that w(S�

r0
) ≤ 1

k
· w(S�). Let S�

r0
= S� − S�

r0
.

Therefore, w(S�
r0

) ≥ (1 − 1
k
) · w(S�).

Using the same technique, we can show that there is an index s0 such that
the set of disks from S�

r0
, among which each Di does not hit a horizontal line

Hj,h at its level j = l(Di) and the index h modulo k equals s0, has total
weight at least (1 − 1

k
) · w(S�

r0
). Use S�

r0,s0
to denote such set of disks, i.e.,

S�
r0,s0

= S�
r0
−S�

r0,s0
. Here S�

r0,s0
is defined similarly to S�

r by replacing S� with
S�

r0
.

Obviously, S�
r0,s0

is an independent set for D(r0, s0). Thus, there is a (r0, s0)-
shifting such that the weight of the maximum weighted independent set in
D(r0, s0) is at least (1 − 1

k
)2 of the optimum OPT (D).

The lemma implies the following corollary:

Corollary 4 If we can solve the maximum weighted independent set for disks
inside each relevant j-square optimally, then we have a PTAS for MWIS, i.e.,
setting k = 1+ε+

√
1+ε

ε
implies that OPT (D(r, s), G) ≥ 1

1+ε
· OPT (D, G).
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Before we show the PTASs for MWIS for graph models introduced in this
paper, we first exam the structural properties of an optimum solution for
all disks in D(r, s) for 0 ≤ r, s ≤ k − 1. Hereafter, for convenience, we say
two interference disks are independent if the corresponding two nodes are not
connected in the corresponding graph model.

Given a graph model, an optimum solution cannot contain any disk that hits a
line at level 0 of the (r, s)-shifting subdivision. In other words, each disk of the
optimum solution OPT (D(r, s)) is contained inside some 0-square. Moreover,
the optimum solution can be divided into two subsets. One contains some
independent interference disks at level 0, denoted by I0. The other one contains
independent interference disks at lower level that are independent with any
interference disk from I0. By the definition of D(r, s), all interference disks in
the second subset cannot intersect any lines, with level 1, of the (r, s)-shifting
subdivision. In other words, each interference disk in the second subset is
contained inside some 1-square. Figure 6 gives an example of optimum solution
in a 0-square. Here k = 3 and r = s = 0. The interference disks with the
thickest boundary are at level 0. The interference disks that are not active
is represented by dashed boundary. The shaded interference disks are in the
optimum solution.

0 1 2 3
0

1

2

3

0

1

2

3

4

a 0-square

a 1-square

Fig. 6. An optimum solution for a 0-square when disk graph model is used and
tv = rv for each node v.

The above partition of interference disks in the optimum solution in a 0-square
can be performed recursively down to the squares at level � as follows. Given
a j-square S, let I be a set of independent interference disks of level smaller
than j, each of which intersects S. Let MWIS (S, I) be a maximum weighted
independent set of interference disks that are contained in S (must be of level
at least j) and independent from the interference disks in I. Then the union
of MWIS (S, ∅) for all relevant squares S without parent must be the optimum
solution for D(r, s).

We then discuss in detail how to compute MWIS (S, I) using the dynamic
programming. Assume that we already computed the entry MWIS (S, I) for
all squares S with level at least j + 1 and all appropriate independent sets I
intersecting S. The interference disks in MWIS (S, I) can be divided into two
subsets. One, denoted by X, contains some independent interference disks

18



inside S with level j that are independent with interference disks from I. The
other one contains independent interference disks with level larger than j that
are independent with any interference disk from I and X. By the definition of
D(r, s), all interference disks in the second subset cannot intersect any lines,
with level j + 1, of the (r, s)-shifting subdivision because we only consider
active interference disks. In other words, each interference disk in the second
subset is contained inside some (j + 1)-square S ′, which is contained in S.
Thus, by properly choosing the set of interference disks X (interference disks
inside S with level j and independent with I), we compute MWIS (S, I) from

MWIS (S, I) = max
X





 ⋃

S′≺S

MWIS (S ′, IS′ ∪ XS′)


 ⋃

X


 .

Here IS′ is the subset of interference disks from I that intersect S ′. XS′ is
defined similarly.

The algorithm processes all relevant squares in order of non-increasing levels.
For each j-square S and some appropriate independent set I, MWIS (S, I) is
computed by dynamic programming, as shown in Algorithm 2.

As did in [13], we can easily show that the running time of this algorithm
is O(k2nC). Here C is the constant in Lemma 5. Notice that, recently Chan
[31] present a PTAS for maximum weighted independent set for disk graphs
defined in [13] with time complexity nO(1/ε) for two dimensional fat objects. It
remains a future work if it also produces PTASs for the MWIS in the graph
models introduced in this paper.

It is not difficult to prove the correctness of the above dynamic programming
approach. To guarantee that it runs in polynomial time of the number of in-
terference disks n and k, we have to show that the size of IS ∪ XS, i.e., the
number of independent interference disks with level at most j and intersect-
ing a j-square S, is always bounded by a constant under the graph models
introduced in this paper.

Lemma 5 Let S be any j-square and let I be a set of independent interference
disks with level at most j, each of which may connect to some interference disks
contained in S. Then there is a constant C depending on the graph model and
k such that the cardinality of I is at most C.

Proof. We prove this lemma individually for each graph model.

For mutual-inclusion graph model, the interference disk whose center is outside
of S cannot connect with any interference disk contained inside S regardless
of the size of their transmission radii. So if we add them to MWIS (S, I), the
resulted set is still guaranteed to be an independent set of interference disks.
Thus, to bound |I|, we only have to consider the interference disks whose
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Algorithm 2 Approximate Maximum Weighted Independent Set

Input: All n wireless nodes, their geometry locations, and the interference
disks and the transmission disks defined by each node
Output: A set of independent interference disks I.

1: for all j = � + 1 downto 1 do
2: for all square S with level j do
3: Let R be all interference disks in D(r, s) of level ≤ j and intersecting

S. For mutual-inclusion graph model, we only consider disks of level
≤ j and with centers inside S.

4: for all J ⊆ R with at most C interference disks do
5: if J is an independent set then
6: Let X be interference disks in J with level j.
7: for all child square S ′ of S do
8: Let I ′ be disks in J intersecting S ′.
9: Set X = X ∪ MWIS (S ′, I ′).

10: end for
11: Let I be disks in J with level less than j.
12: if w(X) > w(MWIS (S, I)) then
13: MWIS (S, I) = X.
14: end if
15: end if
16: end for
17: end for
18: end for
19: I ← ⋃

S: S is relevant and do not have a parent MWIS (S, ∅).

centers are inside S, i.e., the interference disks that can possibly “connect”
with some interference disk contained inside S. Remember that, in the mutual-
inclusion graph model, we say two interference disks centered at nodes u and
v are connected iff u and v are inside I(u, v). Notice that all interference disks
in I have level at most j, which implies that each interference disk in I has a
diameter at least 1

(k+1)j+1 . Then the distance between the centers of any two

interference disks Dp and Dq from I is at least 1
2(k+1)j+1 ; otherwise, these two

disks Dp and Dq will not be independent in MG. The j-square S has side
length k

(k+1)j . Therefore, there are at most a constant CMG independent disks
whose centers are inside S. See Figure 7. Here, by an area argument,

CMG ≤ (
k

(k + 1)j
)2/(π(

1

4(k + 1)j+1
)2) =

16k2(k + 1)2

π
.

For conflict graph model, again, we only have to consider all independent
interference disks that could connect to some interference disks contained in
S. Remember that, here, two interference disks Dp and Dq are independent if
vp and vq are not inside I(vp, vq). Equivalently, vp is not inside Dq and vq is
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10 2 3

1/2(k+1)
j+1

j−square

Fig. 7. There are at most a constant number of independent interference disks of
level at most j, intersecting a j-square S in MG (left) and CG (right). Only the
interference disks are drawn. The transmission disks are omitted. Here k = 3 and
the largest square is j-square. The smaller dashed squares are (j + 1)-squares.

not inside Dp. Thus, the distance between the centers of any two disks from I
is at least 1

2(k+1)j+1 , i.e., the radius of the possible smallest interference disks
of level j. Using the same area argument as for MG, we can show that there

are at most 16k2(k+1)2

π
independent interference disks whose centers are inside

S. Then we concentrate on estimating how many independent interference
disks, denoted by IO, such that (1) their centers are not inside S, (2) with
level at most j, (3) each of them intersects S. We show that there are only a
constant number of such interference disks by an area argument. Consider the
four strips, denoted by B(S), surrounding S with width 1

2(k+1)j+1 . See Figure 7
for an illustration. For an interference disk Di ∈ IO, it is not difficult to show
that B(S)∩Di achieves the smallest area when vi is on the boundary of B(S)
and rvi

= 1
2(k+1)j+1 . The smallest area of B(S) ∩ Di is π 1

8(k+1)2(j+1) . Similar

to Theorem 2, every point in B(S) is covered by at most 5 interference disks

from IO. The area of B(S) is 2k(k+1)+1

(k+1)2(j+1) . Thus, the size of IO is at most

5 · 2k(k + 1) + 1

(k + 1)2(j+1)
/(π

1

8(k + 1)2(j+1)
) =

80k(k + 1) + 40

π

Thus, the total number of independent interference disks I with level at most
j and intersecting S is at most

CCG ≤ 16k2(k + 1)2

π
+

80k(k + 1) + 40

π
.

For interference graphs, as we already showed that CG ⊆ IG, any indepen-
dent set in IG is also an independent set in CG. For the conflict graphs, we
considered all interference disks that intersect the j-square and for interfer-
ence graph model, we also have to consider all interference disks intersecting
the j-square. Thus, CCG is also an upper-bound of the number of independent
disks with level at most j intersecting S for interference graph model.

For disk graph model, there are two approaches to bound the number of in-

21



dependent interference disks with level at most j that intersect the j-square,
denoted by CDG. One approach is to use the fact that CG ⊆ DG and the set
of interference disks from which to select an independent set is same for disk
graph model and the conflict graph model. Thus, we have CDG ≤ CCG. The
other approach is to follow the analysis for conflict graph model. Since if two
interference disks are independent then the distance between their centers is
at least the smaller radius of these two disks. Following the analysis for CG,
we will get the exact same bound CDG for the disk graph model.

This finishes the proof of the lemma.

Remark 1: The main contributions of our PTAS compared with the method
presented in [13] are the definition of active disk respecting to a (r, s)-shifting,
and the new method (stated in Lemma 5) to include which disks should be
considered when processing a square S. Notice that the simple extension of
method in [13] will not work here because the number of independent inter-
ference disks that intersect a j-square in the mutual-inclusion graph model is
not bounded by any constant. It is easy to show that the disks Di, i ≥ 1, with
center vi = (2i−1(1 + ε)i, 0) and radius ri = 2i−1(1 + ε)i are independent; all
such disks intersect any square containing the point (0, 0). Here ε is a small
positive real number.

Remark 2: The other contribution is that although the underlying graph
models require the transmission radius of each node (thus, the independence
of nodes requires the nodes’ transmission radii), we introduced a new concept
of independence among the interference disks only. Consequently, in our anal-
ysis of the upper bound of the number of independent interference disks that
intersect a j-square, the transmission radius tv of every node v does not play
any role here. Notice that we do not require any relations among the transmis-
sion radii and the interference radii of all nodes, except that the interference
radius of each node is at least its transmission radius.

Remark 3: Our PTAS can be extended further as long as Lemma 5 holds
even the transmission regions and the interference regions are not disks.

4 Vertex Cover

The second problem we study is vertex cover problem which also has been
studied and applied in wireless networks [48–50]. It is well-known that the
minimum weighted vertex cover for a general graph can be approximated
within 2. In this section, we present a PTAS for the minimum weighted vertex
cover problem for all graph models introduced here. As we did for approxi-
mating MWIS, we use the same partition of interference disks into levels and
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the same subdivision of the plane into squares at each level. In addition, all
integer values r and s within interval [0, k − 1] are considered. We first study
the structural properties of the MWVC. Let OPT be the minimum weighted
vertex cover for D. Let OPTV (r) be the set of interference disks Di ∈ OPT
such that the interference disk Di hits some vertical line Lj,v at the level
j = l(Di) whose index v modulo k equals r. Similarly, let OPTH(s) be the
set of interference disks Di ∈ OPT such that the interference disk Di hits some
horizontal line Hj,h at the level j = l(Di) whose index h modulo k equals s.
Let OPT (r, s) = OPTV (r) ∪ OPTH(s).

Lemma 6 There is a (r0, s0)-shifting such that the total weight of interference
disks in OPT (r0, s0) is no more than 2

k
of the weight of OPT .

Proof. Obviously, OPTV (r) are pair-wisely disjoint for 0 ≤ r < k and∑k−1
r=0 w(OPTV (r)) = w(OPT ). Through pigeonhole principal, there is an in-

teger r0 such that w(OPTV (r0)) ≤ 1
k
w(OPT ). Similarly, there exists s0 such

that w(OPTH(s0)) ≤ 1
k
w(OPT ). Therefore, w(OPT (r0, s0)) ≤ w(OPTV (r0))+

w(OPTH(s0)) ≤ 2
k
w(OPT ).

The idea of this proof is given by Erlebach et al. [13] for the disk graph model
and ru = tu for each node u. We found that the correctness of this lemma
does not depend on the graph model. We include it here for the completeness
of presentation.

For independent set problem, to guarantee that the union of independent set
of interference disks in each child of a square S is still an independent set, we
only consider the independent disks that are totally contained in the children
of S. In other words, an interference disk with level j is active for MWIS if
it is geometrically inside some j-square. Contrary to MWIS, a vertex cover
of nodes whose interference disks are inside a square could use some nodes
whose interference disks are not totally inside in this square. Then we have to
define active disks for a j-square differently from MWIS. As the vertex cover
has to cover all edges, we associate each edge to at least one square and then
compute the vertex cover for all edges associated with that j-square.

For graph model DG, IG, and CG, we associate an edge uv to a j-square
S if S intersects with Du ∩ Dv. Obviously, in any graph model introduced
in this paper, if uv is an edge then the interference disk Du intersects the
interference disk Dv. In addition, there is always some square S that has non-
empty intersection with Du ∩ Dv. Thus, any edge uv is associated with some
square. See the left figure in Figure 8 for an illustration.

For graph model MG, we associate the edge uv to a j-square S if S intersects
with Du ∩ Dv and S contains u inside and either (1) ru < rv or (2) ru = rv

and the identity ID(u) of u is less than ID(v). For any edge uv, assume that
u ∈ S1 and ru ≤ rv. Then S1 ∩ (Du ∩ Dv) �= ∅ because u ∈ Du ∩ Dv. So edge
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uv must be associated with square S1. See the right figure in Figure 8.

a) non-mutual-inclusion (b) mutual-inclusion

Fig. 8. Examples for the associated edges and the active disks.

For a j-square S, an interference disk Du is said to be active for S if there
is an edge uv associated with S for some v. Thus, for edges associated with
a j-square S, their vertex cover must be a subset of the active interference
disks in S. Notice that an active interference disk Du for a j-square S always
intersects S in any graph model. See Figure 8 as an illustration. Here the
dashed interference disks are inactive, the solid interference disks are active
for S. For all graph models, each interference disk is at most active for four
j-squares on the same level of this disk.

A j-square S is called relevant if there are some edges in the corresponding
graph model associated with S. Given a j-square S, the presented algorithm
will then construct a vertex cover for the edges associated with S using inter-
ference disks active for S with a prior assumption that some active interference
disks P are already chosen to be in the vertex cover. More precisely, given some
subset P of active interference disks for a j-square S, we will compute the min-
imum weighted set of active interference disks X, denoted by VC (S, P ), such
that P ∪ X is a vertex cover for edges associated with S.

For each j-square S, we consider all the interference disks each of which is
incident on some edges associated with S. We then consider the optimum
solution OPT restricted to a square S, denoted by OPTS, i.e., the interference
disks in OPT that are active for S. Then, OPTS is a vertex cover for all
edges associated with S. Define active edges of S as the set of edges uv with
interference disks Du and Dv are active for S. Then the active edges of S
contains the associated edges of S. Thus, OPTS is also a vertex cover for all
active edges of S.

Consider a relevant 0-square S, the optimum solution OPTS can be divided
into two subsets. One contains the interference disks which is a complement of
an independent set of active interference disks for S at level 0, denoted by P0.
The other one contains disks at lower level that, together with P0, can form a
vertex cover for all edges active for S. Figure 9 gives an example of optimum
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solution restricted in a 0-square. Here k = 3 and r = s = 0. The interference
disks with the thickest boundary are at level 0. The interference disks that
are not active are represented by dashed boundary. The un-shaded disks are
in the optimum solution. The shaded disks are an independent set.

0 1 2 3
0

1

2

3

0

1

2

3

4

a 0-square

a 1-square

Fig. 9. Active disks and a vertex cover (shaded disks) for a 0-square in disk graph
model. Here the transmission disks are not drawn for simplicity.

The above partition of interference disks in the optimum solution in a relevant
0-square can be performed recursively down to the squares at level � as follows.
Given a j-square S, let R be the set of all active interference disks for S with
level at most j. Then any active edge using only interference disks from R
must have vertex cover from R. Thus, for any vertex cover U , R−U must be
an independent set. Hereafter, we will use J to denote a set of independent and
active interference disks with level at most j for a j-square S. Let Q = R−J ,
i.e., the complement set of interference disks of J . Then, Q can cover all
interference disk in R. Here, we say an interference disk Du covers another
interference disk Dv, if there is an edge uv in the corresponding graph model.
Let P = Q<j. Let VC (S, P ) be the set of minimum weighted interference disks
such that VC (S, P ) ∪ P is a vertex cover for all active edges for S. Notice
that, for optimum solution OPT restricted to S, we can set Q = OPT≤j

S ,
P = OPT<j

S , J = R−OPT≤j
S . The union of VC (S, ∅) for all relevant squares

S without parent must be a vertex cover for the graph defined on D.

A dynamic programming to compute VC (S, ∅) is straightforward. The algo-
rithm presented here is similar to that of [13]. It processes all relevant squares
in order of non-increasing levels. For each j-square S and some set P , VC (S, P )
is computed by dynamic programming, as shown in Algorithm 3.

For the base situation (without a relevant child), we actually try all the comple-
ment sets of possible independent active interference disks to get the optimum
solution with minimum weight. The output of the algorithm is the union of
the VC (S, ∅), taken over all relevant squares S that do not have a parent.
Similar to Algorithm 2, the running time of this algorithm is O(k2nC2). Here
C2 is a constant that will be proved by the following Lemma 7.

Lemma 7 Let S be any j-square and J be a set of independent interference
disks with level at most j that is active for S. There is a constant C2 depending

25



Algorithm 3 Approximate Minimum Weighted Vertex Cover

Input: All n wireless nodes, their geometry locations, and the interference
disks and the transmission disks defined by each node
Output: A vertex cover C.

1: for all j = � + 1 downto 1 do
2: for all square S with level j do
3: Let R be all active interference disks for S with level ≤ j.
4: for all J ⊆ R with at most C2 interference disks do
5: if J is an independent set then
6: Let Q = R − J and X be disks in Q with level j.
7: for all relevant child square S ′ of S do
8: Let P ′ be disks in Q that is active for S ′.
9: Set X = X ∪ VC (S ′, P ′).

10: end for
11: Let P be disks in Q with level less than j.
12: if w(X) > w(VC (S, P )) then
13: VC (S, P ) = X.
14: end if
15: end if
16: end for
17: end for
18: end for
19: C ← ⋃

S: S is relevant and do not have a parent VC (S, ∅).

on the graph model and k such that the cardinality of J is at most C2.

Proof. For the graph models DG, IG, and CG, all active interference disks in-
tersect the j-square S. Then, the number of interference disks in J is bounded
by a constant using an area argument, which is the same as Lemma 5.

We then consider the graph model MG. For each interference disk Du ∈ J
with center u outside S, there is an interference disk Dv with level at least j
and uv is an edge in MG. Observe that u must be inside Dv regardless of the
size of the transmission radii tu and tv. Thus, u is always inside the extended
square S∪B(S), where B(S) is same to the definition in the proof of Lemma 5.
Similarly, the number of independent active interference disks is at most

C2 ≤ (
1

(k + 1)j−1
)2/(π(

1

4(k + 1)j+1
)2) =

16(k + 1)4

π
.

This finishes the proof.

The following lemma shows that our algorithm does compute a valid vertex
cover.

Lemma 8 Given S and P , our algorithm does compute X = VC (S, P ) such
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that X ∪ P is a vertex cover for all edges associated with S.

Proof. For any edge uv associated to S, without loss of generality, we assume
that ru ≤ rv.

If the interference disk Du has level j, then both Du and Dv are in R. Obvi-
ously, not both Du and Dv can belong to some independent set J . In other
words, either Du or Dv or both is selected to Q. If Du is selected to Q, then
Du is also selected to X. So X ∪ P covers edge uv. If Du is not selected to Q,
then Dv must be selected to Q. Then Dv will be put into X if l(Dv) = j or it
will be put to P if l(Dv) < j. Thus, X ∪ P covers edge uv.

If Du has level larger than j, then edge uv is also associated with some child
square S ′ of S. By induction, VC (S ′, P ′) covers edge uv, where P ′ is the disks
in Q that are active for S ′. Since VC (S, P ) = X ∪⋃

S′≺S VC (S ′, P ′), we know
that uv is also covered by VC (S, P ).

Since every edge is active for some square, the output of our algorithm is a
vertex cover of D.

We then study the quality of the computed vertex cover. Let OPT be the
minimum weighted vertex cover of D in a graph model introduced in this
paper. The following theorem shows that the shifting strategy does work for
MWVC problem. The proof of this theorem is omitted here since it is similar
to a theory proved in [13] for disk graph model when tv = rv for every node v.

Theorem 9 For all graph models introduced here, there is a (r, s)-shifting,
0 ≤ r, s < k such that for the vertex cover C generated by the algorithm,

w(C) ≤ (1 +
6

k
)w(OPT ).

Remark: The main contributions of our PTAS compared with the method
presented in [13] are the definition of active disk respecting to a (r, s)-shifting,
the new method to associate edges to a j-square, and the proof of Lemma 7.

5 Graph Coloring

In this section, we study how to color the graphs introduced in this paper. To
begin with, let δ(G) denote the largest d such that G contains a subgraph H
in which each vertex has degree at least d. It was proved by Szekeres and Wiff
[32] that, every graph G can be colored in δ(G) + 1 colors. Then Hochbaum
[33] presented a method to find the value of δ(G) and gave an efficient method
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to color G using δ(G) + 1 colors in O(|V | + |E|) time. For the completeness
of presentation, we review the algorithm here.

To evaluate δ(G), it dismantles G by successive removals of vertices of mini-
mum degree and all incident edges. Let vi denote the ith vertex removed from
G and Gi+1 be the graph after vi is removed (set G1 = G). The degree of vi

in graph Gi is called its valid degree. Set δ(G) as the maximum valid degree
of all nodes. Let vj be the node with the maximum valid degree δ(G). Then,
vj has δ(G) neighbors among the vertices vj+1, vj+2, · · · , vn. In, addition, all
nodes vi with i > j have degree at least δ(G) in graph Gj. To color G in no
more than δ(G) + 1 colors, it scans the sequences of vi’s from vn to v1 and
assigns to each vi the smallest positive integer not yet assigned to any of its
neighbors.

Theorem 10 The above coloring method achieves a constant approximation
ratio for graph models DG, CG, MG, IG.

Proof. It was already known that, for any graph G, G can be colored by
δ(G) + 1 colors. Let H be a subgraph such that all nodes have at least δ(G)
degree in H. Let u be the node of H with the smallest interference radius. Let
NH(u) be all neighbors of u in H. Then |NH(u)| ≥ δ(G). Consider the induced
coloring on N(u) by any coloring of G. The nodes in N(u) with the same color
form an independent set. It was proved in Theorem 1 and Theorem 2 that, if u
has an interference radius less than all its neighbors NH(u), then the maximum
independent set in NH(u) has size at most 40, 5, 5 and 40 for the disk graph
model, the mutual-inclusion graph model, the conflict graph model, and the
interference graph model respectively. Let OPT be the chromatic number of
the corresponding graph. There are only OPT − 1 colors for nodes in NH(u).
Then |NH(u)| ≤ 5(OPT−1) for mutual-inclusion graph and the conflict graph,
while |NH(u)| ≤ 40(OPT − 1) for the disk graph and the interference graph.
Thus, the colors used by the above method is at most 5 · OPT − 4 for MG
and CG, while at most 40 · OPT − 39 for DG and IG.

6 Summary and Future Work

We first proposed several new graph models for wireless ad hoc networks,
namely, the disk graphs (DG), the conflict graphs (CG), the mutual-inclusion
graphs (MG), the interference graphs (IG), and the mutual communication
graphs (MCG) by assuming that each wireless node has an interference disk
and a transmission disk. We showed that the maximum independent set prob-
lem (MIS) and the minimum graph coloring problem (MGC) can be approx-
imated by simple approximation algorithms within 40, 40, 5, 5 and 5 for
DG, IG, CG, MG, and MCG respectively. We also presented PTASs for the
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weighted versions of MIS and the minimum vertex cover problem (MVC) for

all graph models. The time complexity of our PTASs is O( 1
ε2

nO( 1
ε4

)). All of
these proposed simple approximation algorithms and PTASs can be used in
various applications for wireless ad hoc networks.

One of the most challenging problems is to design a PTAS for dominating set
and the connected dominating set problems for introduced graph models, if it
is possible. These has been studied in [30,53] for unit disk graph when each
node only has one transmission disk. However, little is known for the graph
models presented in this paper, even the simpler case when nodes only have
transmission disks, and different nodes may have different transmission radii.
We leave these problems as future work.
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A Appendix: Notations Used

For easy reading, we summarize the notations used in the following table.

D a set of 2-dimensional interference disks

Di an interference disk D(vi, rvi) with index i

l(Di) the level of a disk Di

vi the center of a disk Di

ti the transmission radius of wireless node i

ri the radius of the interference disk Di

I(u, v) the intersection region defined by two nodes u and v

k parameter to control the quality of solution

� + 1 the total levels of disks

D(r, s) disks that are active for shifting (r, s)

MWIS (S, I) the maximum weighted set of independent disks inside a square
S and are independent with disks in I

VC (S, P ) the minimum weighted set of disks such that VC (S, P )∪P covers
all disks (with level at least j) inside a j-square S

US the set of disks in U that are active for a j-square S

U<j
S the set of disks in U with level less than j that are active for S.

Similarly we define U≤j
S , U=j

S , U>j
S , and U≥j

S .

R the set of active disks with level ≤ j, intersecting a j-square S

J a subset of independent active disks with level at most j, inter-
secting a j-square S

I the set of independent active disks in J with level less than j
that intersect a j-square S

Q the set of active disks not in J , with level at most j, intersecting
a j-square S. So Q = R − J .

P the set of active disks not in J , with level less than j, intersecting
a j-square

C, C2 upper-bounds on the number of independent active disks with
level at most j that intersect a j-square
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