
0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2417558, IEEE Transactions on Computers

1

Towards Energy Efficient Duty-Cycled Networks:
Analysis, Implications and Improvement
Jiliang Wang, Member, IEEE, Zhichao Cao, Member, IEEE, Xufei Mao, Member, IEEE,

Xiang-Yang Li, Fellow, IEEE, Yunhao Liu, Fellow, IEEE

Abstract—Duty cycling mode is widely adopted in wireless sensor networks to save energy. Existing duty-cycling protocols cannot well
adapt to different data rates and dynamics, resulting in a high energy consumption in real networks. Improving those protocols may
require global information or heavy computation and thus may not be practical, leading to many empirical parameters in real protocols.
To fill the gap between the application requirement and protocol performance, in this paper, we analyze the energy consumption for
duty cycled sensor networks with different data rates. Our analysis shows that existing protocols cannot lead to an efficient energy
consumption in various scenarios. Based on the analysis, we design a light-weight adaptive duty-cycling protocol (LAD), which reduces
the energy consumption under different data rates and protocol dynamics. LAD can adaptively adjust the protocol parameters according
to network conditions such as data rate and achieve an optimal energy efficiency. To make LAD practical in real network, we further pre-
calculate optimal parameters offline and store them on sensor nodes, which significantly reduces the computation time. We theoretically
validate the performance improvement of the protocol. We implement the protocol in TinyOS and extensively evaluate it on 40 TelosB
nodes. The evaluation results show the energy consumption can be reduced by 28.2%∼40.1% compared with state-of-the-art protocols.
Results based on data from a 1200-node operational network further show the effectiveness and scalability of the design.

✦

1 INTRODUCTION

Recent advances in Wireless Sensor Networks (WSNs) have
fostered a large collection of applications [1] [2]. In those
networks, a collection of battery powered sensor nodes are
self-organized to form a network, interact with the physical
world and perform certain tasks, e.g., data collection. Due to
the limited energy budget on wireless sensor nodes, the duty-
cycling mode is often used to achieve a long lifetime. In the
duty-cycling mode, each node periodically turns on the radio
to sense the channel and receive packets. Then the node turns
off the radio when there are no packets in order to reduce
energy consumption of idle listening.

Due to the importance of duty-cycling mode, a large col-
lection of duty-cycling protocols are developed in WSNs. In
synchronous duty-cycling protocols [3] [4] [5], the sender and
receiver are synchronized, which enables the sender transmit
packets right after the receiver wakes up. Synchronous duty-
cycling protocols require time synchronization [6] with extra
overhead and hence are not flexible and efficient [4]. To
overcome those shortcomings, asynchronous duty-cycling pro-
tocols, e.g., [7] [8] [9] [10], are proposed. In those protocols,
each node employs the Low Power Listening (LPL) technique
to periodically wake up after sleeping for a certain period
(namely sleep interval). After waking up, a node stays awake
for channel sensing and packet reception (namely awake time).
With packets to transmit, a node first transmits preambles until

• Jiliang Wang, Zhichao Cao, Xufei Mao and Yunhao Liu are with School of
Software and TNLIST, Tsinghua University, China. E-mail: {jiliang, caozc,
xufei, yunhao}@greenorbs.com.

• Xiang-Yang Li is with Department of Computer Science and Technology,
Tsinghua University, China and also with Illinois Institute of Technology,
USA. E-mail: xli@cs.iit.edu

• The preliminary version of this paper is presented in INFOCOM 2014.

the receiver wakes up. Recently, some variant techniques, such
as low power probing (LPP) [11], are proposed to support
receiver initiated duty-cycling protocols, e.g., [12].

With those basic designs, there are many works to further
improve energy efficiency and support adaptive duty-cycling.
For example, MiX-MAC [13] improves the energy efficiency
by switching between different duty-cycling MAC protocols.
In IDEA [14], a centralized method is proposed to tune the
parameters in LPL protocols. In GDSIC [15], a distributed
method is presented to achieve energy fairness. In X-MAC [9],
energy efficiency is improved by tuning the sleep interval.
In [16] [17], heuristic approaches are proposed to improve
energy efficiency. In [18], an efficient method is presented to
reduce unnecessary awake time due to interference.

Those existing protocols propose promising approaches to
improve energy efficiency. However, there exist several prob-
lems while applying those protocols to practical WSNs. First,
many impacting factors, e.g., data rate, which significantly
impact the performance, are not thoroughly addressed in prac-
tical designs. Second, many existing protocols require global
information, centralized or heavy computation to improve the
performance. Third, in practical protocols which are widely
used, e.g., TinyOS LPL MAC, still relies on empirical parame-
ter settings. Those parameters, which have a significant impact
to system performance [19], are not thoroughly analyzed and
addressed.

Due to the existence of those problems, the performance
of duty-cycling protocols may significantly deviate from the
optimal performance. Such problems are also experienced in
a real network CitySee [2], in which 1200 nodes are deployed
in an urban area. The duty-cycling mode is adopted to save
energy for the network. Based on the collected data, we find
that without carefully considering the traffic impact and the
awake time, the duty cycle radio is significantly different from



0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2417558, IEEE Transactions on Computers

2

(a)

(b)

(c)

R

S

5��UHFHLYHU 6��VHQGHU awake time

R

S

R

S

s s

D D D D

s sense channel ack D pkt/preamble

s

s s

D D D D D D D

D

D

s

D D D D

s

D D D DD D

s

Fig. 1: An example for the mechanism of duty cycling
protocols.

small scale tests. We also find that state-of-the-art protocols
with empirical parameters [19] are not adequate to optimize
the performance, and also not adaptive for nodes with various
traffic patterns in the network.

In this work, we propose a framework for distributed
duty-cycling protocol design under different traffic patterns
with protocol dynamics. The framework incorporates different
impacting factors such as awake time and traffic pattern to
optimize energy consumption and derives a method for setting
parameters. We theoretically analyze the performance gain of
the proposed framework. Further, as an example, we apply the
analysis to the de facto duty-cycling protocols in WSNs, i.e.,
TinyOS LPL MAC [20] and ContikiMAC [21]. We find those
protocols, though widely adopted by application developers, is
inefficient under various network conditions. Our design can
significantly improve the performance.

We implement our design LAD in TinyOS [22] and conduct
extensive experiments on a network with 40 TelosB nodes.
LAD can adaptively adjust the protocol parameters according
to network conditions such as data rate and acheive an optimal
energy efficiency. To make LAD practical in real network, we
further precalculate optimal parameters offline and store them
on sensor nodes, which significantly reduces the computation
time. We also examine the performance based on data from a
1200-node network to show the scalability of our design. The
contributions are summarized as follows.

• We present a framework to qualitatively analyze the
significant impact of traffic and protocol dynamics in
duty-cycling protocols. We apply the analysis to existing
protocols and show the problems of real protocol designs.

• We propose a light-weight distributed duty-cycling pro-
tocol design (LAD) which can achieve optimal energy
efficiency with different data rates and protocol dynamics
in real networks.

• We implement the protocol in TinyOS with TelosB nodes.
The experimental results demonstrate that our protocol
can achieve 28.2%-40.1% performance gain compared to
existing duty-cycling protocols.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the analysis of the energy consumption in

x1 x2

ts

x3

(c) tw< td

td
tw pkt that will not 

extend the time
pkt that will 

extend the time

tw
td

td

x1 x2

ts tw-td

x3

(b) tw� td

td
td

td

x1 x2

ts tdtw

L

x3

(a)

td

Fig. 2: Illustration of different time durations in duty-cycling
protocols.

the duty-cycling mode and the analysis on a real protocol
implementation. Section 3 shows our protocol design based
on the analysis. Section 4 presents the implementation and
evaluation results. Section 5 introduces related work and
Section 6 concludes this work.

2 PROTOCOL ANALYSIS
In this section, we first show the basic mechanism of LPL
protocol with a simple motivating example. Then we analyze
the impact of different parameters to protocol performance.
Based on the analysis, we explain why existing adaptive pro-
tocols cannot achieve optimal performance and how to achieve
this. We also analyze the de facto duty-cycling protocol
implementation in TinyOS as well as the duty cycling protocl
in Contiki OS, and show that our design can significantly
improve the performance.

2.1 Preliminary
2.1.1 LPL mechanism
While there exist a variety of duty-cycling protocols, they
share a similar design principle. As shown in Figure 1(a),
each node periodically wakes up and senses the channel. If the
channel is busy, the node remains awake for a certain period
of time. With packets to send, a sender generates signals, by
sending preambles or data packets, to let the receiver know
its existence. Once the receiver wakes up, it will sense the
signal from the sender. Upon receiving a packet, the receiver
extends the awake time for a certain period td (e.g., TinyOS
LPL MAC).

2.1.2 Motivating example
Figure 1 shows three examples. Case (a) illustrates the basic
mechanism of the simplified LPL protocol. In case (b), the
time interval between two consecutive channel sensing is
larger than that in Case (a). Thus the energy consumption at the
receiver is reduced. However, the energy consumption at the
sender increases because the sender needs to wait for a longer
time (sending more packets or preambles) until the receiver
wakes up and senses the signal from the sender. In case (c),



0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2417558, IEEE Transactions on Computers

3

the traffic rate also impacts the energy consumption. When
the awake time is large, the energy consumption at the sender
can be reduced since multiple packets may be sent during the
same waking up period of the receiver. However, the energy
consumption at the receiver will increase in the meantime. On
the other hand, for a lower traffic rate, multiple packets cannot
be sent during the same waking up period of the receiver. Thus
both the sleep interval and awake time should be carefully set
in order to reduce the total energy consumption.

2.1.3 Parameters
In this work, as shown in Figure 2, we have the following
important parameters in our analysis.

• ts: the sleep interval.
• tw: the time a node stays awake after waking up, tw = 0

means the node will immediately go to sleep when no
signal is sensed.

• td : the dynamically extended awake time, i.e., a node
extends the awake time to t + td after receiving a packet
at t.

• τ: the overhead to sense the channel.
In the analysis, we assume the data rate is λ and different
nodes may have different λ . In LPL protocol, as we have
introduced, a node needs to check received signal strength
in the channel to see if there is any signal in the channel.
To improve the reliability, a node often checks the channel
multiple times. τ is used to denote such an overhead to sense
the channel.

2.2 Energy Analysis
According to the mechanism, there are two cases for sending
a packet in duty-cycling protocols:

• If the receiver is sleeping, the sender needs to wait until
the receiver wakes up and turns on the radio. We denote
such kind of transmission as preambled transmission, e.g.,
x3 in Figure 2(a).

• Otherwise, the packet is transmitted when the receiver’s
radio is on. We denote such kind of transmission as non-
preambled transmission, e.g., x1 and x2 in Figure 2(a).

In the analysis, we mainly focus on the radio-on (awake)
time, which is the main source of energy consumption on
sensor nodes [9][15]. As shown in Figure 2 (a), when there is
no packet transmission, each node keeps the radio off for ts and
then on for tw. Considering the dynamic protocol behaviors,
upon receiving a packet at time t, the receiver extends the
radio-on time to t + td .

We denote the period from the time a node goes to sleep
state to the next time the node goes to sleep state as a
cycle, i.e., the period of length ts + L in Figure 2(a). Note
that the cycle length may not be fixed if td ̸= 0. In each
cycle, the energy consumption consists of the following two
parts [9][15]: (1) radio-on time for receiving packets; (2) radio-
on time for sending packets. To calculate the average energy
consumption per packet, we first calculate the expected total
radio-on time for sending and receiving packets in each cycle.

Then we calculate the number of packets in each cycle in order
to calculate per-packet energy consumption.

2.2.1 Energy consumption for receiving packets
In order to calculate the radio on time, we first calculate the
radio-on time for receiving packets. If td = 0, the radio-on
time at the receiver for each cycle is tw according to the
mechanism of LPL. If tw = 0, a node immediately goes to sleep
when no signal is detected [9]. In real protocols the receiver
may dynamically extend the awake time upon a reception. We
assume there are k packets to extend the awake time, namely
extending packets. Denote those k packets as x1, x2, . . ., xk and
the corresponding receiving time as t1, t2, . . ., tk. To facilitate
the analysis, we denote the packet after xk as xk+1 at time
tk+1. Then we calculate the expected radio-on time for two
cases, tw ≥ td and tw < td . We first calculate the probability of
k extending packets. Without ambiguity, we use the notation
to denote the corresponding period as well as its length in
the figure. Assume in each cycle, the time starts at 0 for
presentation simplicity.

Case 1 (tw ≥ td): As shown in Figure 2(b), a packet extends
the radio-on time only when it is received after time ts+(tw−
td). Denote the probability for k extending packets as P1(k)
and the number of transmissions in a time interval t by N(t).
Only when there is no packet in the time period [ts+(tw− td),
ts+ tw], there is no extending packet for case 1. Thus we have
P1(0) = p(N(td) = 0). For k > 0, we have

• N(td) > 0: there should be at least one transmission in
the time window [ts + (tw − td), ts + tw] as shown in
Figure 2(b), otherwise k = 0.

• ti − ti−1 ≤ td for 1 < i ≤ k , otherwise ti will not be an
extending transmission.

• tk+1 − tk > td , otherwise tk+1 should also be an extending
transmission in the same cycle.

Then the probability for k (k > 0) extending packets is
P1(k) = p(N(td)> 0∧ t2 − t1 ≤ td ∧ · · ·

∧ tk − tk−1 ≤ td ∧ tk+1 − tk > td).

Case 2 (tw < td): Denote the probability with k extending
packets as P2(k). This case can be further divided into two
cases considering whether there are packet transmissions in
the sleeping time of length ts.

Case 2.1 (N(ts)> 0): There are packet transmissions in the
sleep time of length ts. The receiver can receive packets after
it wakes up and the radio-on time is extended by a length of
td . Then this case transforms to case 1 with tw = td .

Case 2.2 (N(ts) = 0): There is no packet transmission in the
sleep time of length ts. The radio-on time will only be extended
if there are packets received in time period tw after the receiver
wakes up, i.e., N(tw)> 0. If k = 0, we have P2(0) = p(N(tw) =
0). For k > 0, the probability can be calculate as follows,

P2(k) = p(N(tw)> 0∧ t2 − t1 ≤ td ∧ · · ·
∧ tk − tk−1 ≤ td ∧ tk+1 − tk > td)

Till now, we have calculated the probability for k extending
packets. To calculate the expected radio-on time for k extend-
ing packets in case 1 and case 2, we first calculate expected



0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2417558, IEEE Transactions on Computers

4

0
50

100
150

200

0

100

200
0

1000

2000

3000

4000

tw
td

A
vg

. E
ne

rg
y

(a)

0
50

100
150

200

0
50

100
150

200
0

100

200

300

tw
td

A
vg

. E
ne

rg
y

(b)

0
50

100
150

200

0

100

200
0

50

100

150

200

250

tw
td

A
vg

. E
ne

rg
y

(c)

Fig. 3: Performance of duty-cycling for different data rates, with τ = 10, α = 1, β = 1 and γ = 1. (a) λ = 0.0001, (b) λ = 0.02,
(c) λ = 0.1 (pkt/ms). For different data rates, using the same parameter setting results in totally different performance. For
example, a small tw and td , which is preferred in (a), is prohibited in (b).

inter-packet time between two consecutive extending packets.
Given the maximum inter-packet time t, the expected inter-
packet time T (t) is calculated as

T (t) =
∫ t

0
xp(d = x|N(t)> 0)dx. (1)

where p(d = x) denotes the probability that the inter-packet
interval is x.

For case 1, as shown in Figure 2(b), the expected radio-on
time L1(k) with k packets is calculated as

L1(k) = tw + kT (td) (2)

For case 2, as shown in Figure 2(c), the expected radio-on
time L2(k) with k packets is calculated as

L2(k) =

⎧
⎪⎨

⎪⎩

td + kT (td) Case2.1
tw Case2.2&k = 0
T (tw)+(k−1)T (td)+ td Case2.2&k > 0

(3)

Eq.(2) and (3) show that for different data rates, the resulted
radio on time are different. Then we can calculate the expected
radio-on time.

E(L) =

{
∑∞

k=0 L1(k)P1(k) Case1
∑∞

k=0 L2(k)P2(k) Case2
(4)

Note here for case 2 we should calculate the expected radio-on
time across different cases.

2.2.2 Energy consumption for sending packets
The expected energy consumption for sending packets depends
on the number of preambled transmissions and non-preambled
transmissions. We first calculate the number of non-preambled
transmission Mi and preambled transmission Mp. For case 1,
the expected number of non-preambled packets is the sum of
packets in the time window of length tw− td and packets after
such a time period. For case 2, the expected number of non-
preambled transmission is E(Mi) = P2(k)k. We have

E(Mi) =

{
∑∞

k=0 kp(N(tw − td) = k)+∑+∞
k=0 P1(k)k Case1

∑+∞
k=0 P2(k)k Case2

According to the data rate, the expected number of pream-
bled transmissions is

E(Mp) = λ ts. (5)

2.2.3 Average energy consumption

The energy consumption for each cycle depends the radio-on
time for sending and receiving packets, the channel sensing
and the energy to send/receive packets. The energy con-
sumption for radio-on time for receiving packets, which is
proportional to E(L), is calculated as αE(L), where α is a
coefficient for energy consumption. The energy consumption
for channel sensing is denoted by τ . For each preambled
transmission, the expected radio-on time at the sender is ts/2.
For each non-preambled transmission, the extra radio-on time
is negligible. Therefore, the expected energy consumption for
sending packets can be calculate as βE(Mp)ts/2 with β as a
coefficient.

Theorem 1: The average energy consumption per packet is
calculated as

G =
αE(L)+βE(Mp)ts/2+ γ(E(Mp)+E(Mi))+ τ

E(Mp)+E(Mi)
(6)

where τ is the additional overhead for sense the channel.
Usually, τ should be very small. Our goal is to optimize G
for different parameters. We use the equation as the guideline
for our protocol design. In the design section, we show how
to leverage this equation to improve the energy efficiency.

2.3 Example

Assume the traffic follows a poisson distribution. Considering
the memorylessness and independence of inter-arrival time, we
have

P1(k) = p(N(td)> 0)
k

∏
i=2

p(ti − ti−1 ≤ td)p(tk+1 − tk > td)

Denote t ′i = ti − ti−1, since the probability density function of
inter-arrival time is f (t) = λe−λ t , we have

P1(k) = p(N(td)> 0)
k

∏
i=2

td∫

0

f (t ′i )dt ′i

+∞∫

td

f (t ′k+1)dt ′k+1

= p(N(td)> 0)
k

∏
i=2

td∫

0

λe−λ t′i dt ′i

+∞∫

td

λe−λ t′k+1 dt ′k+1

= (1− e−λ td )ke−λ td

(7)



0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2417558, IEEE Transactions on Computers

5

Similarly, we can calculate the P2(k) as

P2(k) = p(N(tw)> 0)
k

∏
i=2

td∫

0

f (t ′i )dt ′i

+∞∫

td

f (t ′k+1)dt ′k+1

= (1− e−λ tw )(1− e−λ td )k−1e−λ td

(8)

where P(0) = e−λ tw .
Consequently, the expected awake time at the receiver E(L)

can be calculated as E(L) = ∑∞
k=0 L(k)P(k). More specifically,

we have the following lemma:
Lemma 2: The expected awake time E(L) on the receiver

is
E(L) =

{
tw +T (td)(eλ td −1) Case1
e−λ ts A+(1− e−λ ts )B Case2

where

A = e−λ twtw +(1− e−λ tw)(T (tw)−T (td)+ td +T (td)eλ td )

B = td +T (td)(eλ td −1)

Proof: For Case 1, the expected radio-on time is calculat-
ed as E(L) = ∑+∞

k=0 P1L1(k). For Case 2, the expected radio-on
time is calculated as E(L) = ∑+∞

k=0 P2L2(k). It should be noted
here for Case 2, we need to calculate the expected radio-on
time across different cases. Combining Eq. (7), (8), (2) and (3),
we can calculate E(L).

Thus we have

E(Mi) =

{
λ (tw − td)+ eλ td −1 Case1
e−λ tsC+(1− e−λ ts )(eλ td −1) Case2

(9)

where C = eλ td − e−λ (tw−td). Based on those parameters, we
finally obtain G for the average energy consumption per packet
with poisson distributed traffic.

2.4 Revisiting Existing Protocols
We revisit two widely used low duty cycling protocols, the
de facto duty-cycling protocol implementation, i.e TinyOS
LPL MAC , and the ContikiMAC [21] in ContikiOS. We
also demonstrate the implications of leveraging the analysis
to improve energy efficiency.

2.4.1 TinyOS LPL MAC
In TinyOS LPL MAC, the typical channel sensing time is
5∼15ms and the typical sleep interval is 500ms. We set α = 1,
β = 1, ts = 500 and τ = 10. According to Eq. (6), we calculate
average energy consumption G for different tw, td and data rate
λ . We show the average energy per packet in Figure 3. We
find that current parameter settings in TinyOS LPL MAC may
lead to very poor performance.

For a low data rate (e.g., λ = 0.0001 pkt/ms), as shown in
Figure 3(a), the energy consumption increases when tw or td
increases. This is because though increasing the awake time
reduces the energy consumption at the sender, this increases
energy consumption at the receiver. For a low data rate, the
reduced energy consumption at the sender is relative small
and is defeated by the increased energy consumption at the
receiver. In the default TinyOS LPL MAC, the typical value
of td is set to 100ms. According to Figure 3(a), such a setting

will introduce a significant additional overhead. Thus td should
be set smaller.

When the data rate becomes higher (e.g., λ = 0.02 pkt/ms),
as shown in Figure 3(b), the energy consumption decreases
when both tw and td increase. This is because when the
traffic is relative high, prolonging the awake time, though
increases the energy consumption at the receiver, increases the
probability of non-preambled transmissions and thus reduces
the energy consumption for the senders. Therefore, increasing
tw, which is previously prohibited, is beneficial in this case.
Similarly, prolonging td can also increase the probability for
non-preambled transmissions and hence reduce the energy
consumption.

When the data rate is even higher (e.g., λ = 0.1 pkt/ms),
as shown in Figure 3(c), the energy consumption quickly
decreases as the increasing of td . This is because when the data
rate is high, the probability of receiving packets, during the
extended time of td , becomes very high. When the number of
received packets during td increases, the benefit can overcome
the overhead. Thus td is a crucial factor to the performance.
We should set tw and td to larger values.

2.4.2 ContikiMAC
ContikiMAC [21] provides the default duty-cycling MAC
layer protocol in Contiki OS. In ContikiMAC, the channel
sensing overhead τ is smaller than that in TinyOS and td = 0.
We also evaluate the performance for different settings based
on the result in Eq. (6) for different data rates. The results
are similar to those shown in Figure 3. We also observe
that ContikiMAC is not always energy efficient. This shows
that in current ContikiMAC design, the parameters should be
carefully determined.

2.4.3 Summary
As a result, we can see that 1) using the fixed settings, e.g.,
tw and td in different protocols for different scenarios, are not
appropriate and may lead to a high energy consumption, 2) the
extended time td impacts the energy efficiency under different
scenarios, 3) traditional methods to optimize the sleep interval
may not result in an optimal result under different data rates,
and 4) according to the analysis we can derive the appropriate
settings for LPL protocols under different network scenarios.

3 PROTOCOL DESIGN
Based on the analysis result, we present the design of a
light-weight distributed adaptive duty-cycling protocol to im-
prove energy efficiency and tackle the problems for existing
protocols. The design aims to improve energy efficiency for
different protocols under different network conditions.

3.1 Design Overview
The design consists of three major components, (1) a network
estimation component, (2) an online parameter optimization
component and (3) an adaptive duty-cycling protocol compo-
nent. First, the network estimation component measures the



0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2417558, IEEE Transactions on Computers

6

3DUDPHWHU�HVWLPDWLRQ

3DUDPHWHU�
FDOFXODWLRQ

$GDSWLYH�GXW\�F\FOLQJ

7LQ\26�/3/�0$&

7UDIILF�
PRQLWRULQJ

1HWZRUN�VWDWXV

3DUDPHWHUV

Fig. 4: Implementation of adaptive duty-cycling protocol based
on TinyOS LPL MAC.

required network status for calculating optimal parameters.
Based on the result, the parameter optimization component
provides the optimal parameters for the duty-cycling protocol.
Based on the optimal parameter settings, the adaptive duty-
cycling protocol accordingly adjusts the protocol parameters
such as sleep interval, awake time and extending time.

3.2 Network Estimation & Parameter Optimization
To optimize the energy efficiency according to Eq. (6), we
need to estimate the parameters λ and τ . We estimate the
parameter λ using maximum likelihood estimation (MLE).
By dividing the time into time slots of length w, we count
the number of packets ki in the latest n time slots. Then we
obtain the estimation of λ by λ̂MLE = 1

nw ∑n
i=1 ki. Usually, the

time used for a node to check the channel is fixed. Thus we
can measure the time for channel sensing, i.e., reading the
received signal strength, in an offline fashion. Therefore, τ
can be measured offline. For example, in TinyOS, the time
used for channel sensing is 10ms.

Based on Eq. (6) and the estimated parameters, we calculate
the optimal tw, td and ts. The challenge is that calculating
those parameters according to Eq. (6) introduces a significant
computation overhead, which is not applicable for resource
limited sensor nodes. To conquer this challenge, we pre-
calculate the optimal values of tw, td and ts for different λ and
store those values on sensor nodes. According to the measured
parameters from the parameter estimation component, each
node locally searches for corresponding optimal settings of
tw, td and ts to reduce the computation overhead.

Storing the parameter settings for different λ also consumes
a lot of space, as theoretically λ may vary from 0 to a very
large range. It should be noted here in wireless sensor networks
the data rate λ is bounded by the limited link capacity. Thus
we set a maximum and minimum data rate for data rate λ
as λmin and λmax. When λmin ≤ λ ≤ λmax, we calculate the
corresponding values of tw, td and ts for the optimal energy
consumption. Then we store the optimal values corresponding
to discrete values of λ in a table on each sensor node. To
find the optimal values, we find the entry in the table with the
closest data rate to the given data rate.

3.3 Adaptive Duty-cycling Protocol
To be adaptive to network conditions, the component takes the
optimal parameters from the parameter optimization compo-

nent as input and accordingly adjust the protocol behavior.
First, each node adjusts the sleep interval and awake time

according to ts, tw and td . Meanwhile, the sender should know
the parameter settings of the receiver in order to send packets.
In our protocol, each node records the sleep interval ts for
all neighbors. The information is piggybacked in broadcast
or data packets in order to notify other nodes. To increase
the probability that the information is successfully received
by other nodes, the preamble length of broadcast is set to the
maximum length of ts in all neighbors. Considering packet
losses in real networks, when a sender does not have the sleep
interval information for a particular node, the sender uses the
maximum of ts to ensure that the receiver wakes up at least
once and sense the transmission from the receiver.

4 IMPLEMENTATION AND EVALUATION

We implement our protocol in TinyOS 2.1 and evaluate its
performance in a network consisting of 40 TelosB nodes. To
further validate its scalability and effectiveness, we conduct
trace driven simulations based on data from a 1200-node
network.

4.1 Implementation
The architecture of the implementation is shown in Figure 4.
We build our protocol LAD based on the default duty-cycling
protocol in TinyOS. The value of τ is determined offline
by measuring the channel sensing operation in TinyOS LPL
MAC. in TinyOS, we measure the time for each channel
sensing, i.e., reading the received signal strength. Since the
time for channel sensing is usually fixed, we can use the time
for protocol implementation. In TinyOS, each node checks
RSSI values for up to 400 times to improve detection accuracy.
Thus in the default implementation, the channel sensing takes
up to about 10ms. The time is relative longer than that in
the implementation of ContikiMAC. We implement a traffic
monitor on top of the TinyOS LPL MAC to record the number
of received packets for each time window (currently we set
the window size to 1 second). As introduced in Section 3, we
use the latest 10 windows to estimate λ . For a shorter window
size, it will change more frequently. For a longer window size,
more data are averaged. Our method can also deal with bursty
traffic without frequent parameter change. We also test our
method for bursty traffic and the result shows that our method
is effective for traffic with bursty.

To obtain the optimal parameter settings, as introduced in
Section 3, we store the optimal parameter settings for different
λ on sensor nodes. For λ < 0.0001, we set the tmin

w = 0
and tmin

d = 0. For λ > 0.1, we check the space according
to optimal value of G in Eq. (6) for tw, td and ts. We find
that increasing td indicates improvement on energy efficiency.
However, when td is larger than 100ms, the improvement
becomes limited. Thus we set tmax

d = 100ms and tmax
w = 200ms.

When 0.0001 < λ < 0.1, we discretize λ with an interval of
0.0002. Then we can calculate the optimal values for ts, tw and
td with respect to different values of λ and store those values



0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2417558, IEEE Transactions on Computers

7

��

����

����

����

����

��

�� ���� ���� ���� ���� ���� ���� ����

&
'
)

5DGLR�'XW\�&\FOH

/$'
;�0$&

/3/�QRH[WHQGLQJ
/3/

$�0$&

(a)

��

����

����

����

����

��

�� ����� ���� ����� ���� ����� ���� ����� ���� �����

&
'
)

5DGLR�'XW\�&\FOH

/$'
;�0$&

/3/�QRH[WHQGLQJ
/3/

$�0$&

(b)

Fig. 5: Duty cycle ratio under different data rates: (a) under a high data rate; (b) under a low data rate.

in a table. The storage overhead is of 1500 bytes, which is
acceptable on a sensor node, e.g., TelosB node with 10KB
memory. The duty-cycling protocol takes the output from
parameter optimization component and accordingly adjust the
schedule. The implementation of our protocol is transparent to
applications and can be used in different upper layer services
such as [23] [2].

4.2 Evaluation
4.2.1 Methodology
We evaluate our protocol on a testbed consisting of 40 TelosB
nodes. To evaluate the multi-hop performance, we incorporate
our protocol with CTP [23] protocol for data collection.
We compare our design with the following protocols on the
testbed:

• TinyOS LPL MAC [20] (LPL) with default settings ts =
500ms, tw = 10ms and td = 100.

• TinyOS LPL MAC with minimal td value, td = 0 (LPL-
noextending).

• Parameter optimization with X-MAC [9].
• A-MAC [12], i.e., the most recent receiver-initiated duty

cycling protocol.
We evaluate the performance of those protocols under a rela-
tive high data rate (0.25 pkt/s for each node) and a relative low
data rate (0.025 pkt/s). For different data rates, we compare the
performance of different protocols from the following aspects:

• Duty cycle ratio, the percentage of radio-on time.
• Average energy consumption per packet.
• Packet loss ratio.
• Adaption to different data rates.
• Detailed radio operations.

We further conduct trace-driven simulations with data trace
from a network consisting of 1200 nodes.

4.2.2 Overall performance
We first compare the duty cycle ratio for different protocols
under different data rates. Figure 5(a) shows the result under
a high data rate. We can see that our design outperforms other
approaches in terms of duty cycle ratio. More specifically,
in our protocol, more than 90% of nodes have a duty cycle

ratio lower than 16%. While among other protocols, X-MAC
achieves the best performance, because X-MAC can adaptively
adjust the parameters. However, the performance of X-MAC
is lower than our protocol since X-MAC does not consider
the traffic and protocol dynamics. In X-MAC, there are more
than 50% of nodes with a duty cycle ratio higher than 15%.
Figure 5(b) shows the result for a low data rate. Under a low
data rate, the radio duty cycle for all protocols are reduced.
In our protocol, more than 80% of nodes have a duty cycle
ratio lower than 7%. The average duty cycle improvement to
X-MAC with parameter optimization is about 28.8% under a
high data rate and 28.2% under a low data rate. The average
duty cycle improvement to the default LPL MAC is about
40.1% under a high data rate and 28.6% under a low data
rate.

We also evaluate the average energy consumption per pack-
et. Figure 6(a) shows the average energy consumption per
packet under a high data rate. First, we find that under a
high data rate, the LPL with delay after receiving (td > 0) is
significantly better than the protocol LPL-noextending (td = 0).
This verifies our observation in Section 3 that a longer awake
time even leads to a lower energy consumption since the time
for preambles can be reduced. This also coincides with our
analysis result in Figure 3(a). In our protocol, most nodes have
average radio-on time of less than 40ms while the best among
others has only 50% of nodes with average radio-on time of
less than 40ms. Figure 6 shows the energy consumption per
packet under a low data rate. First, the energy consumption
per packet under a low data rate is smaller than that under
a high data rate. Under a low data rate, our protocol is still
better than other protocols. We can also find that under a low
traffic rate, the LPL-noextending becomes slightly better than
LPL. This coincides with our result in Figure 3(c).

4.2.3 Packet losses
Reliability is an important metric for data collection. If the
sleep interval and awake time are not appropriate, packets
may not be able to be processed in time and thus get lost.
We evaluate the packet losses for different nodes. Figure 9
shows the result for different protocols. We can see that under
different data rates, our protocol achieves a high reliability.



0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2417558, IEEE Transactions on Computers

8

��

����

����

����

����

��

�� ���� ���� ���� ���� ����

&
'
)

5DGLR�2Q�7LPH�SHU�3DFNHW

/$'
;�0$&

/3/�QRH[WHQGLQJ
/3/

$�0$&

(a)

��

����

����

����

����

��

�� ��� ���� ���� ����

&
'
)

5DGLR�2Q�7LPH�SHU�3DFNHW

/$'
;�0$&

/3/�QRH[WHQGLQJ
/3/

$�0$&

(b)

Fig. 6: Energy consumption under different data rates: (a) under a high data rate; (b) under a low data rate.

Sleep Interval Distribution

 0  0.5  1  1.5  2  2.5  3  3.5  4
x-axis

 0

 1

 2

 3

 4

 5

 6

 7

y-
ax

is

 100

 150

 200

 250

 300

 350

 400

Fig. 7: Node positions and the corresponding sleep interval
distribution. The sink node resides at position (0, 0).

The reliability of A-MAC is relative lower. We investigate
the data and find that there are mainly two reasons. First,
according to the A-MAC implementation, the sink in A-
MAC is not set to be always-on. This causes more packets
accumulated near the sink node and results in collisions and
overflow. Second, there is no approach provided to adjust the
probe time. As introduced in A-MAC [12], probes are easy to
collide in A-MAC with a relative high data rate on the testbed.
We also test for different network scales and data rates. We find
that when the network density is low, the A-MAC performs
better and presents similar results with other protocols.

4.2.4 Adaption to different data rates

We further investigate that how our approach adapts to dif-
ferent data rates. More specifically, we calculate the sleep
interval for different nodes with different data rates on the
testbed. Figure 7(a) shows the node layout on the testbed.
The sink node resides on the left-bottom corner. Figure 7(b)
shows the sleep interval distribution for different nodes in our
protocol. The darker color indicates a smaller sleep interval.
We can see by using our protocol nodes near the sink node
with a high data rate have a smaller sleep interval than other
nodes. This coincides with our analysis and also further shows
that our protocol can adjust the sleep interval according to the
data rate. We use the power level 1 for sensor nodes and the
communication range is about 20cm to 60cm. Figure 8 shows
the topology of the network.

Sensor 
Node Sink Node Routing Link

Fig. 8: The network topology.

4.2.5 Radio profiling

To examine the effectiveness of our protocol, we measure the
detailed radio behaviors on each node. To precisely record
the radio behavior, we log all radio operations (i.e. radio
on/off and packet receiving events) as a tuple < event, time >
on the local flash of each node. Then we derive the radio
status according to the recorded events. For example, for two
consecutive events radio-on and radio-off at time t1 and t2,
we derive the period [t1, t2] as a radio-on period. Then we
plot the radio status according to the logged events. The
data rate in our experiment is set to 4 pkt/s. Figure 10(a)
shows the radio operations in the default TinyOS LPL MAC.
Figure 10(b) shows the radio operations in our protocol. The
upper figures are for the senders and the lower figures are for
the receivers. From Figure 10(a), we can see for the default
TinyOS LPL MAC there exist many long radio-on time periods
for the sender due to the long sleep interval on the receiver.
This is because ts and td are not adjusted according to the
traffic. Further, Figure 10(b) shows the result for our protocol.
By leveraging parameter optimization, the sleep interval and
radio-on time can be adjusted according to the traffic. Thus
the radio-on time for sending a packet is significantly reduced.
While at the receiver side, the radio-on operations are more
frequent than that in the default LPL MAC. This is because our
protocol considers the energy consumption both at the sender
and receiver to optimize the parameters. Therefore, the average
energy consumption per packet is significantly reduced.



0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2417558, IEEE Transactions on Computers

9

��

����

����

����

����

��

�� ���� ���� ���� ���� ��

&
'
)

355

/$'
;�0$&

/3/�QRH[WHQGLQJ
/3/

$�0$&

(a)

��

����

����

����

����

��

�� ���� ���� ���� ���� ��

&
'
)

355

/$'
;�0$&

/3/�QRH[WHQGLQJ
/3/

$�0$&

(b)

Fig. 9: Reliability of packet transmission for different data rates: (a) under a high data rate; (b) under a low data rate.

4.3 Trace driven simulations

We further conduct trace driven simulations based on data
from CitySee network, which consists of 1200 sensor nodes
deployed in the urban area. The primary goal of CitySee is
to precisely measure CO2 emissions in a city-wide area. The
network covers an area of approximately 1,000,000 square
meters. The network employs a tiered architecture with four
subnets consisted of three kinds of nodes, i.e., normal TelosB
nodes, CO2 nodes and mesh nodes. A routing tree is built
in the network based on the ETX metric [24]. We use CTP
protocol to collect data from the network. Each node in the
network transmits 4 data packets back to the sink node every
10 minutes. In the network, we use the TinyOS LPL with
ts = 512, td = 10 and tw = 10.

4.3.1 Performance improvement for different nodes

We first evaluate the real traffic distribution on each node in
the network. In our application, each node records the packet
receiving time. Based on the receiving time, we calculate the
inter-packet interval to see if the incoming traffic follows pois-
son distribution. If the traffic follows a poisson distribution, the
inter-packet interval should follow the exponential distribution.
The result is shown in Figure 11. We also show the curve
fitting result for the data. We can see that the real data well fit
the exponential distribution. This shows that in the network,
the traffic can be approximated with the poisson distribution.

From the collected data, we can calculate the real duty
cycle ratio for each node. Accordingly, we can also use the
data rate as the input to our protocol and then calculate
the corresponding energy consumption. We compare the duty
cycle ratio of LAD to the actual duty cycle ratio in CitySee.
Figure 11(b) shows the improvement for nodes at different
locations in one subnet. We can see that the duty cycle ratio
for most nodes with our protocol is smaller than that in the
original network. For nodes near the sink, the improvement is
larger because of a higher data rate. We further show the CDF
of nodes with duty cycle ratio improvement in Figure 11(c).
The duty cycle ratio for more than 80% of nodes can be
significantly reduced with our protocol.

4.3.2 Different Traffic Distributions
We also evaluate the performance for different traffic distribu-
tions. We fix the data rate and set the inter-packet interval ac-
cording to different distributions (geometry, binomial, normal,
exponential distribution and etc). We calculate the radio-on
time per packet for different distributions. The result is shown
in Figure 11(d). We can see that for different distributions, the
energy consumptions on radio are similar. This shows that our
protocol can also be used in other traffic distributions.

5 RELATED WORK

There are mainly two types of duty-cycling protocols in
WSNs. The first type is synchronized duty-cycling protocol,
e.g., [3] [4] [5], in which the sender and receiver are syn-
chronized. Protocols of this type may introduce additional
computation and communication overhead. Meanwhile, those
protocols also have a fixed sleep schedule and are inefficient
to handle traffic dynamics [4].

The second type is asynchronized duty-cycling protocol. A
representative asynchronized duty-cycling protocol is studied
in B-MAC [7]. The sender uses preambles to wake up the
receiver. Based on the basic mechanism of B-MAC, many
protocols are proposed to improve the performance of B-
MAC, such as X-MAC [9], C-MAC [8], Wise-MAC [10], PW-
MAC [25] and etc. The basic principles of those protocols are
similar. Besides those sender initiated duty-cycling protocols,
recently receiver initiated duty-cycling protocols are proposed
to reduce the overhead due to collisions in preamble packets.
In those protocols, e.g., RI-MAC [11] and A-MAC [12],
the receiver will notify the sender to send packets, which
is different from the sender initiated protocols in which the
sender continuously sending preambles. In this paper, we
analyze the mechanism of widely use sender-initiated duty-
cycling protocols.

There are also many works proposed to support adaptive
duty-cycling and improve the performance. DSF [26] selects a
forwarding set to optimize the end-to-end reliability/cost/delay.
MiX-MAC [13] improves the energy efficiency by switching
between different duty-cycling MAC protocols. IDEA [14]
proposes a centralized method to tune the parameters for LPL



0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2417558, IEEE Transactions on Computers

10

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

x 104

OFF

ON

Time (ms)

Send SendDone

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

x 104

OFF

ON

Time (ms)

Receiving Event

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

x 104

OFF

ON

Time (ms)

Send SendDone

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

x 104

OFF

ON

Time (ms)

Receiving Event

(a) (b)

Fig. 10: Radio operations at the sender and receiver. (a)Radio operations for the default LPL MAC. (b) Radio operations for
LAD design.

20 40 60 80 100
0

500

1000

1500

2000

2500

3000

3500

Inter−Packet Interval

N
um

be
r

inter−packet interval
fit

(a)

600 650 700 750 800 850
140

160

180

200

220

240

260

280

300

SinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSinkSink

x

y

(b)

� ���� ��� ���� ���
�

���

���

���

���

�

'XW\�F\FOH�GLIIHUHQFH

&
'
)

(c)

normal geometry exponential binomial
0

10

20

30

40

50

O
ve

rh
ea

d 
pe

r p
ac

ke
t (

m
s)

(d)

Fig. 11: Trace driven simulation based on data in CitySee network. (a) Evaluation of real data distribution and the curve
fitting result using exponential distribution function. (b) Duty cycle improvement in a subnet, the red circle denotes the duty
cycle calculated from CitySee and the dark circle indicates the duty cycle ratio of our protocol. (c) CDF of the duty cycle
improvement. (d) Performance for different distributions.

protocols. T-MAC [27] is proposed to adjust the sleep and
awake time. In T-MAC, packets are sent in a bursty fashion
in order to improve energy efficiency. If there is no packet
to send, nodes turn off the radio. MS-MAC [28] proposes a
method to adjust the sleep and awake time by incorporating
node movement. In DMAC [29], nodes on a path to the
destination are synchronized in order to reduce the energy
consumption. In GDSIC [15], a distributed method is proposed
to achieve energy fairness. Recently, Sha et al. [18] present an
efficient design to improve energy efficiency of LPL in prac-
tical networks by addressing the false wake up problem due
to interference. pTunes [30] proposes a centralized parameter
optimization method which can work for different protocols.
In X-MAC [9], sleep interval is calculated to improve energy
efficiency. In [16] [17], heuristic approaches are presented
to improve energy efficiency. However, as we shown in our
analysis, there are various important impacting parameters
which are not thoroughly considered in existing works. In
this paper, we show that by solely considering the sleep
interval and duty cycle ratio, the energy consumption cannot
be optimized, especially in practical duty-cycling design with

dynamically extended awake time. We analyze the impact
of different parameters and present a practical mechanism to
optimize energy consumption for real networks.

6 CONCLUSION

During operation of a 1200-node network, we find that current
duty-cycling protocols may lead to a high energy consumption.
State-of-the-art protocols cannot efficiently adapt to traffic and
protocol dynamics. Thus they are not accurate and adequate to
optimize the energy consumption, resulting in many empirical
parameters in practical protocols. In this paper, we present
a practical adaptive duty-cycling protocol to reduce energy
consumption. The proposed protocol minimizes the energy
consumption per packet with only local information under
various traffic rates and protocol dynamics. We evaluate our
approach on 40 TelosB nodes and the results show that our
approach can improve the performance by 28.2%-40.1%. Data
from a large-scale network deployed in an urban area also
validate the effectiveness of our approach.



0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2417558, IEEE Transactions on Computers

11

ACKNOWLEDGEMENT

This work is supported in part by NSFC Distinguished Young
Scholars Program under grant 61125202, NSFC under grant
61202359, 61373166 and 61272426.

REFERENCES

[1] X. Wu, M. Liu, and Y. Wus, “In-situ soil moisture sensing: Optimal
sensor placement and field estimation,” ACM Transactions on Sensor
Network (TOSN), vol. 8, no. 4, pp. 1–33, 2012.

[2] X. Mao, X. Miao, Y. He, X. Li, and Y. Liu, “Citysee: Urban co2
monitoring with sensors,” in IEEE INFOCOM, 2012.

[3] T. van Dam and K. Langendoen, “An adaptive energy-efficient mac
protocol for wireless sensor networks,” in ACM SenSys, 2003.

[4] Y. W, H. J, and E. D, “An energy-efficient mac protocol for wireless
sensor networks,” in IEEE INFOCOM, 2002.

[5] W. Ye, F. Silva, and J. Heidemann, “Ultra-low duty cycle mac with
scheduled channel polling,” in ACM SenSys, 2006.

[6] M. Maróti, B. Kusy, G. Simon, and Ákos Lédeczi, “FTSP: The Flooding
Time Synchronization Protocol,” in ACM SenSys, 2004.

[7] J. Polastre, J. Hill, and D. Culler, “Versatile low power media access
for wireless sensor networks,” in ACM SenSys, 2004.

[8] S. Liu, K.-W. Fan, and P. Sinha, “Cmac: An energy-efficient mac
layer protocol using convergent packet forwarding for wireless sensor
networks,” ACM Transactions on Sensor Networks, vol. 5, no. 4, pp.
29:1–29:34, Nov. 2009.

[9] M. Buettner, G. V. Yee, E. Anderson, and R. Han, “X-mac: a short
preamble mac protocol for duty-cycled wireless sensor networks,” in
ACM SenSys, 2006.

[10] A. El-Hoiydi and J.-D. Decotignie, “Low power downlink mac protocols
for infrastructure wireless sensor networks,” Mobile Networks and
Applications, vol. 10, no. 5, pp. 675–690, 2005.

[11] Y. Sun, O. Gurewitz, and D. B. Johnson, “Ri-mac: a receiver-initiated
asynchronous duty cycle mac protocol for dynamic traffic loads in
wireless sensor networks,” in ACM Sensys, 2008.

[12] P. Dutta, S. Dawson-haggerty, Y. Chen, C. jan Mike Liang, and A. Terzis,
“Design and evaluation of a versatile and efficient receiver-initiated link
layer for low-power wireless,” in ACM SenSys, 2010.

[13] C. J. Merlin and W. B. Heinzelman, “Schedule adaptation of low-power-
listening protocols for wireless sensor networks,” IEEE Transactions on
Mobile Computing, vol. 9, no. 5, pp. 672–685, 2010.

[14] G. W. Challen, J. Waterman, and M. Welsh, “Idea: integrated distributed
energy awareness for wireless sensor networks,” in ACM MobiSys, 2010.

[15] Z. Li, M. Li, and Y. Liu, “Towards energy-fairness in asynchronous
low-duty-cycle wireless sensor networks,” in IEEE INFOCOM, 2012.

[16] M.-R. Jurdak, S. M.-P. Baldi, and M.-C. V. Lopes, “Adaptive low power
listening for wireless sensor networks,” IEEE Transactions on Mobile
Computing, vol. 6, no. 8, pp. 988–1004, 2007.

[17] C. Merlin and W. Heinzelman, “Cycle control for low-power-listening
mac protocols,” in IEEE MASS, 2008.

[18] M. Sha, G. Hackmann, and C. Lu, “Energy-efficient low power listening
for wireless sensor networks in noisy environments,” in ACM/IEEE
IPSN, 2013.

[19] Discussion on awake time. [Online]. Avail-
able: http://mail.millennium.berkeley.edu/pipermail/tinyos-help/2008-
June/033991.html

[20] TinyOS LPL MAC. [Online]. Available: http://www.tinyos.net/tinyos-
2.x/doc/html/tep105.html

[21] A. Dunkels, “The contikimac radio duty cycling protocol,” SICS, Tech.
Rep., 2011.

[22] TinyOS:http://www.tinyos.net.
[23] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P. Levis, “Collection

tree protocol,” in ACM SenSys, 2009.
[24] D. Couto, D. Aguayo, J. Bicket, and R. Morris, “A high-throughput path

metric for multi-hop wireless routing,” in ACM MobiCom, 2003.
[25] L. Tang, Y. Sun, O. Gurewitz, and D. B. Johnson, “Pw-mac: An energy-

efficient predictive-wakeup mac protocol for wireless sensor networks,”
in IEEE INFOCOM, 2011.

[26] Y. Gu and T. He, “Data forwarding in extremely low duty-cycle sensor
networks with unreliable communication links,” in ACM SenSys, 2007.

[27] T. van Dam and K. Langendoen, “An adaptive energy-efficient mac
protocol for wireless sensor networks,” in ACM SenSys, 2003.

[28] H. Pham and S. Jha, “An adaptive mobility-aware mac protocol for
sensor networks (ms-mac),” in IEEE MASS, 2004.

[29] G. Lu, B. Krishnamachari, and C. Raghavendra, “An adaptive energy
efficient and low-latency mac for data gathering in sensor networks,” in
WMAN, 2004.

[30] M. Zimmerling, F. Ferrari, T. Voigt, and L. Thiele, “ptunes: Runtime
parameter adaptation for low-power mac protocols,” in ACM/IEEE IPSN,
2012.


