
Generating Aspect Code from UML Models

Iris Groher
Siemens AG, CT SE 2

Otto-Hahn-Ring 6
81739 Munich, Germany

Iris.Groher@fh-hagenberg.at

Stefan Schulze
Siemens AG, CT SE 2

Otto-Hahn-Ring 6
81739 Munich, Germany

Stefan.Schulze@siemens.com

ABSTRACT
This position paper presents a concept for aspect-oriented design
and a seamless integration of AO design and implementation. We
suggest a design notation based on standard UML which separates
clearly the reusable programming language independent design of
aspect code and base (business logic) code from the language
dependant cross-cutting parts. Thus fostering reuse of aspect code
and simplifying the replacement of the aspect-oriented
implementation language. Additionally we ease the transition
from design to implementation by defining the mapping from
design model to implementation language and support automatic
generation of aspect-oriented code skeletons from the design
model.

Categories and Subject Descriptors
D.2.2 [Design Tools and Techniques]: Computer-aided software
engineering (CASE)

General Terms
Design, Languages

Keywords
AOSD, Aspect, AspectJ, cross cutting concerns, UML.

1. INTRODUCTION
Software design is an important step within the software
development lifecycle. Object-oriented (OO) design has shown its
strength when it comes to modeling common behavior; however
OO design does not adequately address behaviors that span over
many classes. Crosscutting requirements, such as persistence or
security, including all well known problems they lead to, are
present throughout the whole development lifecycle and therefore
cause a reduction in the expected benefits of design. Aspect-
oriented programming (AOP) addresses these problems at coding
level and offers low-level support for separation of concerns as
can be found e.g. in AspectJ [2][11], Hyper/J [8][9][14], LAC [7]
or Caesar [12]. A lack of design support leads to a gap between

design and implementation which worsens the desired results. To
gain the AOP benefits at earlier stages in the software
development lifecycle, similar separation capabilities must be
provided also at design level.

This paper addresses the specification of crosscutting concerns at
design level to maintain the separation of concerns earlier in the
lifecycle. We adopted a terminology for aspect-oriented modeling
(AOM) based on the core concepts presented in AspectJ [2][11]
and the concepts of the design notation UFA [5][6]. Our work can
be seen as a step towards a UML standardization on how to define
aspects at the design phase of aspect-oriented software
development (AOSD).

We present an extension to UML without changing its metamodel
specification to achieve standard UML conformity. Our intention
is to offer standard development tool support and
interchangeability between various CASE tools, so we customized
UML for supporting AOM only using its standard extension
mechanisms (such as stereotypes, tagged values and constraints);
see Section 2 for a detailed description. To gain the benefits of
code and design reuse of aspect-oriented software, the ability to
reuse aspect and base code separately is one of our key intentions.
We offer a terminology where aspect and base elements are
completely kept apart ; there is no direct connection between them
(as proposed in UFA [5]). Thus aspects and base elements are
reusable and independent of the implementation technology; for
more details please see Section 3.

Our work addresses the aspect-oriented development process from
design to code. Due to the fact that aspect support has been
focused mainly at implementation level, we focus on design and
present an automated mapping from design models to
programming models. We offer validation and AspectJ code
generation of models to avoid inconsistencies among design and
implementation. This helps developers concentrate on aspect-
oriented design having the code skeletons generated automatically
to gain the benefits they are used to in object-oriented software
development.

The sections of this paper are organized as follows: Section 2
describes the need for aspect-oriented design and the requirements
for a notation allowing separation of concerns at design level.
Section 3 describes the syntax and semantics of our notation.
Section 4 presents the automated mapping between design model
and AspectJ code. We conclude with a note on future work and a
summary in Section 5 and 6.

Submitted for: Workshop on Aspect-Oriented Modeling with UML,
AOSD, March 17-21, 2003, Boston, USA.

2. MODELING CROSS-CUTTING-
CONCERNS IN THE DESIGN PHASE
Aspect-oriented software development is a new technology for
separation of concerns (SOC) in software development. The
techniques of AOSD make it possible to modularize crosscutting
aspects of a system. AOP offers the low-level support for SOC,
but there is a lack of high-level means for expressing aspects.
Using AOSD in real-world development projects soon meets
problems when defining aspects at the early analysis and design
steps of an aspect-oriented application. Development of large
software systems follows development processes that all include
activities like requirements engineering, analysis, design and
implementation. Following a process, such as the Rational
Unified Process [15][10], and focusing on AOP at coding level is
a paradigm shift between object-oriented design and aspect-
oriented code. This leads to inconsistencies between design and
implementation as the aspect-oriented paradigm is not seamlessly
supported during design phase.

Aspects must be identified both at design and implementation
phases to avoid their divergence. Our requirements for specifying
crosscutting concerns at a higher level of abstraction are the
following:

�� The terminology should be simple to understand and
straightforward to use for developers being familiar with
design notations like the UML.

�� Design modeling should be supported by powerful
CASE tools to improve developer productivity and
ensure syntactical correctness of the model.

�� The notation should support the most common aspect-
oriented approaches and languages. A direct mapping
between design model and supported programming
model must be possible and straightforward.

�� The direct mapping between the notation and the
supported implementation language should allow
automatic code generation based on the design model.

�� It should be applicable in real-world development
projects and offer the capability of modeling large
systems.

2.1 Standard UML Extension Mechanisms
UML is acquainted to be the industry-standard modeling language
for the software engineering community; using standard UML
improves developer productivity, offers high acceptance, broad
development tool support and interchangeability among tools.
Developers can model using familiar tools and environments and
therefore gain all the benefits they are used to in object-oriented
design. Using UML and its built-in extension mechanisms as a
modeling language for supporting AOM fulfills the first and the
second requirement. UML is an extensible modeling language to
enable domain specific modeling. It offers a set of built-in
extension mechanisms to customize the UML for a specific
domain, e.g. aspect-oriented modeling. Model elements can be
customized and extended with new semantics by using
stereotypes, constraints, tag definitions, and tagged values. The
principal extension mechanism is the concept of stereotype which
provides a way of classifying model elements as if they were

instances of new virtual metamodel constructs. These model
elements have the same structure (attributes, associations,
operations) as similar non-stereotyped model elements of the
same kind [13].

2.2 Mapping AspectJ Concepts
AspectJ, an aspect-oriented extension to the Java language, is one
of the most common aspect-oriented languages. Therefore we
chose to adopt AspectJ concepts for the implementation language
dependent parts of our notation. This enables us to automatically
generate AspectJ code skeletons from a design model to avoid
inconsistencies between design and implementation which adds to
the seamless support of the whole aspect-oriented development
process. A mapping between model and code must be
straightforward and automated to enable developers to be as
productive as they are used to when the developing object-
oriented systems. In the future we will add further support of
other implementation languages similar to AspectJ (such as
AspectC++ [1], AspectR [3] and AspectS [4]) to our notation
which can easily be achieved by changing the well separated
implementation language dependant part of our notation and by
changing the mapping rules from model to code. The support of
AO concepts diverging from AspectJ (such as HyperJ [8]) should
be considered and is part of some future work; see Section 5 for
more details.

3. MODELING ASPECTS IN UML
An appropriate notation should consider the fact that crosscutting
concerns affect multiple classes in a system. Since a concern itself
can consist of several classes (e.g. security concern) and since all
of these classes may be associated with the classes the concern
crosscuts we suggest the module construct for a concern to be
higher-level than a class. Otherwise associations modeled on class
level would supersede the logical grouping of all classes
belonging to one concern. This would make the readability of the
design quite difficult and lead to a “graphical tangling” of cross-
cutting concerns instead of a clear separation. Therefore we base
our notation on the work on UFA [5][6], which suggests package
level (de)composition.
We adopted the underlying concepts of UFA and added additional
support for AspectJ concepts (e.g. introduction mechanisms),
since UFA is not specifically designed to support AspectJ. As our
goal was to leverage the power of UML and existing CASE tools
we modified the syntax of UFA to achieve UML standard
conformity. In the following we will present the resulting notation
and its syntax.

Connector

Aspect
Package

Base
Package

«use» «use»

Figure 1: Package Level (De)Composition

The notation includes a base package (containing the business
logic), an aspect package (containing the crosscutting concern)1
and a connector to link aspect and base elements. This separation
enables high reusability of the aspect and base package code since
the connector is the only crosscutting element. Additionally the
connector encapsulates the underlying implementation technology
which eases its replacement (e.g. replace of AspectJ with
AspectC++). The aspect can be modeled independently from any
design it may potentially crosscut; the connection between base
design and aspect design is specified separately from the aspect.
Both aspect and base elements can be modeled using common
UML elements, such as classes or interfaces.

«introduce»
Introduction

«advice»
Advices

«pointcut»
Pointcuts

Figure 2: Connector Package

The connector includes AOP’s core concepts and benefits, e.g.
specifying execution points in a program, actions to be performed
at those points and type-modification constructs. Every design
model must use a specific connector type that maps to the AOP
technologies to be used for the implementation. The connector
type described in the following (see Figure 2) is designed
according to AspectJ concepts.
The AspectJ connector defines pointcuts (i.e. execution points),
advices (i.e. actions to be performed at pointcuts) and
introductions (i.e. type-modification constructs). All these
elements are defined syntactically as methods of the class they
belong to. E.g. a before advice used to trace method calls at
pointcut login would be declared as a method of the connector’s
Advice class:

<<before>> login(Tracer.trace)
The stereotype before indicates an AspectJ’s before advice. Our
notation contains similar stereotypes for AspectJ’s after and
around advices. The parameter “Tracer.trace” of the advice
specifies the method Tracer.trace to execute at pointcut login.

The pointcut definition in the connector’s pointcut class would
be:

login(<!>com.siemens.UserManager.login)
Where the “<!>” construct marks pointcuts on method calls and
the “com.siemens.UserManager.login” parameter specifies the
execution point the pointcut matches to (here the login method).
Our notation defines further constructs for AspectJ’s possibilities
to intercept method executions, constructor calls, throwing of

1 To simplify AspectJ code generation we currently focus solely

on the scenario described in Figure 1 which applies only one
aspect to a base package that contains the business logic.

exceptions, property access etc. We also support AspectJ’s
wildcards for pattern matching when defining a pointcut (e.g.
..UserManager.* for all methods of a class called
UserManager).

3.1 Design Example
The example in Figure 3 shows how to model an aspect related to
security (authentication) to give some guidelines and indications
on how to use our notation.

Base Package<<aspect>>
Authentication

System

+ getUserData()

Authentication

+ checkAuthentication()

Connector

ClientServer

+ getValues()

«uses»

<<use>><<use>> <<pointcut>>
Pointcut

authenticate(<!> Server.getValues())
authorize(<!> Server.getValues())

<<advice>>
Advice

<<before>> authenticate(System.getUserData())
<<before>> authorize(Authentication.checkAuthentication())

Figure 3: Security Design Example

Every time the user performs an invocation on the Server, he is
authenticated. Both base package and aspect package are
independent from each other, no connection is modeled inside.
The connector, specifying the weaving rules, includes program
execution points (pointcuts) and actions to be performed at those
points (advices). The pointcuts are triggered every time the client
invokes the Server.getValues() method, the actions to be
performed before the method call are reading and checking the
user data to authenticate him. Both base elements and
authentication aspect are reusable and independent of the
implementation technology. This example can be modeled using
any CASE tool that supports standard UML.

4. GENERATION OF ASPECTJ CODE
The generation of AspectJ code should raise the acceptance of our
notation as it offers an automatic mapping from design models to
concrete implementations. Code generation improves developer
productivity, ensures syntactical correctness and reduces errors
when mapping model to code. We have chosen AspectJ to be our
target language as it is the aspect-oriented language that is mainly
used at present. The generation is done following concrete
mapping rules between model and AspectJ concepts. As the
AspectJ compiler produces class files that comply to the Java byte
code specification any compliant Java Virtual Machine (JVM) can
interpret the produced class files. While designing the code
generator we have evaluated some possible technologies:

�� Code generation based on design model data in XMI
(XML Metadata Interchange).

�� Code generation through a design pattern approach
supported by advanced CASE tools.

�� Code generation as an integral part of a CASE tool
based on the APIs of the specific CASE tool.

The main purpose of XMI is to enable easy interchange of
metadata between modeling tools (based on the OMG-UML) and

metadata repositories (OMG-MOF based) in distributed,
heterogeneous environments [18]. A possible solution would have
been to write a code generator that parses XMI and generates the
aspect-oriented code. Because in this case the whole code
including the object-oriented base elements (such as classes and
interfaces) would have to be generated by our code generator, we
opted against this solution.
The second alternative would have been to use a tool like Rational
XDE from Rational [16] that allows the user to define proper
patterns and code templates for these patterns. Thus we would
have defined a pattern and code template per connector element.
The user-defined-patterns concept of the Rational XDE showed
not to be powerful enough which is mainly due to the limited code
generation possibilities. It is currently not possible to influence
the weaving of the user-defined-patterns code templates and the
code generated by Rational XDE’s code generator.
Finally we chose the third alternative and selected the CASE tool
Together from Borland which is extensible through an open Java
API [17]. It offers the possibility of developing custom software
that plugs into the Together platform in the form of modules. A
module in this case is an assembly of Java classes that offer APIs
defined by Together and are registered with the CASE tool. The
API is composed of a three-tier interface that enables varying
degrees to access the native infrastructure. The tool automatically
validates and generates the object-oriented base elements such as
classes and interfaces. The aspect-oriented validation and code
generation are implemented as modules.
The development of the code generator is divided into two
modules:

�� Model validation: validates an aspect-oriented design
model for syntactical and semantical correctness (e.g.
the existence of referenced pointcuts). It is possible for
the user to validate a design model without generating
code afterwards.

�� Code generator: generates AspectJ code for a validated
aspect-oriented model.

CASE-Tool AO-Model
Validation

Code
Generator

.java filesAspectJ
Compiler

.class files

Figure 4: Code Generation Model

The AspectJ code generation is a one-time/one-way generation,
the development of modules offering roundtrip engineering is not
yet supported by Together’s Open API. It is planned for future
versions. The generated code templates can then be completed by
the user and compiled using AspectJ’s aspect weaver.

5. FUTURE WORK
As our work is a first step towards aspect support in design, there
is still some related work to do. We will continue to refine the
notation while testing it in larger development projects to get
feedback concerning our work.

Future extensions of the code generator could support roundtrip
engineering including reverse engineering for aspect mining.
Currently Together’s Open API does not support the
implementation of a module for roundtrip engineering, but it is
planned to be provided in the next version.
An automated code generation for other languages similar to
AspectJ like AspectC++ [1] or AspectS [4] is planned. Such an
extension to our notation and the code generator should be
straightforward; only the code generator mapping rules should
have to be specified.

Even if AspectJ is currently the best known AO language there are
many other promising AO languages that are based on different
concepts like HyperJ [8][9], where the system functionality is
implemented in separate Hyperslices, or Caesar [12], where an
aspect is regarded as a number of abstractions collaborating to
realize a certain concern in the system. The authors will
investigate, if their approach can also be mapped to these AO
language flavors.
6. SUMMARY
Aspect-oriented software development is missing standardized
concepts in the design phase. To make AOSD more widely
accepted we have to offer solutions for designing cross-cutting
concerns and we have to integrate the different phases of the
AOSD life-cycle more smoothly by supporting the aspect-oriented
paradigm in every phase.
The design notation presented here is a first step towards a simple
and powerful notation that fosters support from existing CASE
tools since it is based on UML. The notation in combination with
the code generator we make AOSD more usable and more
efficient for software development.
A first prototype of the code generator described in chapter 4 is
currently under development. We expect to prove our assumptions
about the usefulness of our notation and the aspect-oriented code
generation in the near future using this prototype in development
projects.
But there are still many issues to solve until we have as efficient
development support as it is already common for object-oriented
software development. The future improvements of our work
concern the notation that should support more complex
relationships between several aspects and it also concerns a
complete CASE tool support as e.g. roundtrip engineering.

7. ACKNOWLEDGMENTS
We thank all researchers who explored the idea of crosscutting
concerns to a state we could build on to gain a first experience in
development projects, especially the group around AspectJ,
Hyper/J and UFA. We also want to thank our colleagues at
Siemens for their valuable feedback.

8. REFERENCES
[1] AspectC++, http://www.aspectc.org/
[2] AspectJ, http://www.eclipse.org/aspectj/
[3] AspectR, http://aspectr.sourceforge.net/
[4] AspectS, http://www.prakinf.tu-

ilmenau.de/~hirsch/Projects/Squeak/AspectS/

[5] S.Herrmann. Composable Designs with UFA.
Submission to AOSD 2002.

[6] S. Herrmann, M. Mezini. Aspect-Oriented Software
Development with Aspectual Collaborations. Submission to
ECOOP 2002.

[7] S. Herrmann, M. Mezini. Combining Composition Styles in
the Evolvable Language LAC. Submission for ASoC
Workshop at ICSE 2001.

[8] Hyper/J, http://www.alphaworks.ibm.com/tech/hyperj
[9] Hyperspaces, http://www.research.ibm.com/hyperspace/
[10] I. Jacobson, G. Booch, J. Rumbaugh. Unified Software

Development Process. Addison-Wesley Professional,
February 1999.

[11] G. Kiczales. E.Hilsdale, J. Hugunin, M. Kersten, J. Palm and
W. Griswold. An overview of AspectJ. In Proc. Of 15th.
ECOOP, LNCS 2072, p. 327-353, Springer-Verlag, 2001

[12] M. Mezini, K. Ostermann. Conquering Aspects with Caesar.
To appear in Proceedings of the 2nd International
Conference on Aspect-Oriented Software Development
(AOSD), March, 2003, Boston, USA.

[13] OMG Unified Modeling Language Specification, version
1.4, September 2001

[14] H. Ossher and P. Tarr. Multi-Dimensional Separation of
Concerns and The Hyperspace Approach. In Proceedings of
the Symposium on Software Architectures and Component
Technology: The State of the Art in Software Development.
Kluwer, 2000.

[15] Rational Unified Process (RUP)
http://www.rational.com/products/rup/index.jsp

[16] Rational XDE™,
http://www.rational.com/products/xde/index.jsp

[17] Together, http://www.togethersoft.com/
[18] XMI specification version 1.2,

http://cgi.omg.org/docs/formal/02-01-01.pdf

